
sensors

Article

Clustering and Flow Conservation Monitoring Tool
for Software Defined Networks

Jesús Antonio Puente Fernández 1,†, Luis Javier García Villalba 1,*,† ID and Tai-Hoon Kim 2,†

1 Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense
de Madrid (UCM), Calle Profesor José García Santesmases 9, Ciudad Universitaria, 28040 Madrid, Spain;
jesusantoniopuente@ucm.es

2 Department of Convergence Security, Sungshin Women’s University, 249-1 Dongseon-Dong 3-ga,
Seoul 136-742, Korea; taihoonn@daum.net

* Correspondence: javiergv@fdi.ucm.es; Tel.: +34-91-394-7649
† Those authors contributed equally to this work.

Received: 30 January 2018; Accepted: 31 March 2018; Published: 3 April 2018
����������
�������

Abstract: Prediction systems present some challenges on two fronts: the relation between video
quality and observed session features and on the other hand, dynamics changes on the video quality.
Software Defined Networks (SDN) is a new concept of network architecture that provides the
separation of control plane (controller) and data plane (switches) in network devices. Due to the
existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network
status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends
on a strategy of monitoring and information requests of network devices. In this paper, we propose
an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such
an algorithm is based on grouping network switches in clusters focusing on their number of ports
to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries
in network switches with common characteristics and then, by omitting redundant information.
In this way, the present proposal decreases the number of monitoring queries to switches, improving
the network traffic and preventing the switching overload. We have tested our optimization in
a video streaming simulation using different types of videos. The experiments and comparison with
traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar
values decreasing the number of queries to the switches.

Keywords: clustering; data plane; flow conservation; software defined networks; statistics; videostreaming

1. Introduction

Current internet subscription and business advertisement models for Internet video content are
subject to achieving sufficient Quality of Experience (QoE) level in the video delivery. Moreover,
the increase of video streaming content requires the provision of computation and infrastructure to
satisfy these levels of QoE and High Quality (HQ). In the same way, High Definition (HD) content
traffic has already overcame Standard Definition (SD) traffic, making HD video the most consumed by
users [1]. Due to emerging online streaming video platforms as YouTube and Netflix, the HQ online
video streaming has become an essential part of life for people around the world.

Most of the video service providers are always looking for the fastest delivery of their contents
to clients in Content Delivery Networks (CDN). Nevertheless, the speed of this content depends on
the network status and network conditions. Due to these conditions, the user (client) will experiment
with better or worse quality of experience (QoE) receiving the video content. Then, if there is no

Sensors 2018, 18, 1079; doi:10.3390/s18041079 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7573-6272
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/1079?type=check_update&version=2
http://dx.doi.org/10.3390/s18041079

Sensors 2018, 18, 1079 2 of 23

resources provision and adaptation in the user applications, the traffic control could cause network
congestion, frozen images or loss of coordination between audio and video during a video streaming.
This problem has a direct impact on the degradation of video quality and experience on different
user devices.

A new concept of network architecture such as Software Defined Networking (SDN), decouples
the network control (control plane) from the underlying network resources (data plane) being controlled
through a centralized controller using OpenFlow as standard protocol in their communications.
Moreover, it also provides a set of application programming interfaces (APIs) to abbreviate the
implementation of network services as routing, QoS, QoE, access control, and load balancer among
others. In addition, it provides per flow statistics collection primitives to be queried at any time.
Therefore, using this global view of the network is an essential advantage to developing sophisticated
and complex monitoring tools. Taking into account these benefits, general lines of a well-designed
network monitoring framework are a broad selection of network metrics as data rate, error rate among
others to monitor different levels of aggregation.

The appropriate SDN-based network behaviour depends on the capacity of the controller to make
good decisions. The controller can not only correct failures inside the network, but it can also prevent
future issues based on the available monitoring information. For instance, the controller can prevent
DDoS or a decreasing of QoS/QoE analyzing metrics as data rate, packet loss or delay in the links
within the network. Therefore, introducing SDN enables the exchange of network information with
flexibility and adaptability.

To improve video QoE, it is important to obtain in every moment a full and accurate state of network
resources. These data are very useful to build prediction systems or monitoring tools [2] that are able to
suggest the best path for data delivery, especially video content. However, applying monitoring tools in
networks usually requires the installation of costly hardware and software. A solution for providing
monitoring metrics to the SDN controller is the analysis of the information provided by the OpenFlow
Protocol. However, the use of the OpenFlow Protocol to request switch information increases the load
of data and control planes [3]. If the controller continuously requests information to every switch in the
network, it provides accuracy in the monitoring information, but this process generates an additional
task in network switches and therefore, increasing the load of the controller affects other demanding
tasks. Then, the optimization of controller requests is an open challenge in the research community.
In the present work, we analyze the most relevant contributions in this topic.

In addition, we present a new enhanced controller that decreases the number of monitoring
queries in the switches of the topology without compromising the accuracy of monitored values.
For this reason, we reduce the request of the switches that do not offer valuable information for
the analysis. This controller enhancement consists of two techniques: the first choice employs the
flow-conservation algorithm for switches that are composed of two ports and the second option uses
supervised learning as clustering. Such flow-conservation law states that all incoming data to the
switch will be the same that it forwards to the remaining port. Then, the value of the outgoing link of
a switch can be estimated with the value of the incoming link reducing to half the monitoring request
in such cases. The other enhancement is grouping the network switches in clusters to apply random
queries to them instead of querying all of them. In both cases, remaining values of non-monitored
switches will be calculated with the information from neighbouring switches using the principle of
conservation of currents flows.

To demonstrate the feasibility of our monitoring tool, we use a network emulator to build a testing
scenario in which the two monitoring techniques proposed in this paper are tested in a video streaming
delivery between two hosts (client and server). Such simulations have been separated in two study
cases: Study Case A and Study Case B. Study Case A has been focused on testing the effectiveness
in the reduction of monitoring queries comparing statistics of data and error rate in two links of the
topology. Study Case B has been performed to further check the results of the enhanced algorithm
with other types of videos.

Sensors 2018, 18, 1079 3 of 23

The rest of the paper is outlined as follows: Section 2 explains the Software Defined Networks
and their architecture focusing on the OpenFlow Protocol and its packet processing which is the most
extended in SDN. Related works are described in Section 3. The proposed algorithm to enhance the
monitoring request is explained in Section 4. To check the well behaviour of the present algorithms,
Section 5 contains the simulations and results of the testing. Finally, Section 6 concludes with a short
discussion and conclusions.

2. Software Defined Networking and OpenFlow Protocol

In this section, we provide a general overview of Software Defined Networking and the protocol
that it utilizes in its communication.

2.1. Software Defined Networking

Software Defined Networking (SDN) is a new network paradigm that gathers the key features from
traditional networks: centralized network management, active networks and network virtualization.
SDN was created to facilitate innovation since it enables simple programmatic control of the network
behaviour: traffic data-path, load balancing among others. SDN facilities network management by
decoupling the control plane (the decisions within the network) from the data plane (underlying
network devices) as Figure 1 depicts. In this way, it removes the rigidity of static protocols since both
planes are placed together.

Inside, the controller is running a high-level software application that provides a fast network
management. Therefore, this centralized controller does not require individual configuration of network
devices since every network behaviour is managed through the controller. Applicability in fields such as
home networking, research campus, data centers, Internet of Things (IoT) among others [4] is carried out
by SDN and managed by the OpenFlow [5,6] protocol. This protocol is the most extended in SDN and
its maintenance and specification are the responsibility of the Open Networking Foundation-ONF [7].
In the next section, we provide a short overview of the OpenFlow protocol.

SDN ARCHITECTURE

APPLICATION LAYER

Load Balancing Routing

Nothbound API

CONTROL PLANE

NOS

DATA PLANE

OF-Switch

Southbound APIOpenFlow
Protocol

Figure 1. SDN Architecture.

Logically, SDN is divided into three layers: data layer, control layer and application layer [3,8,9].
Network resources (data layer) are connected to the control layer through southbound interfaces.
These interfaces provide the abstraction of the programmable switches and the connection with the

Sensors 2018, 18, 1079 4 of 23

software that is running within the controller. OpenFlow is the most representative example of this
type of interfaces. As mentioned before, over these interfaces is running a Network Operating System
(NOS) which is responsible for controlling network behaviour. Different NOS are available attending
to the programming language that are been developed: NOX/POX [10], Maestro [11], Beacon [12]
Floodlight [13], ONOS [14] and OpenDaylight [15]. Continuing with the logical design, the control
plane is connected to the application layer through northbound interfaces which allow the creation of
both applications and high-level network policies that are sent to the NOS. In the same way, examples
of northbound interfaces are Frenetic [16,17], Procera [18], Netcore [19] and McNettle [20].

2.2. OpenFlow Protocol

OpenFlow [5] is the most extended used protocol in SDN. Its best feature is that the research
community can contribute to its development and implementation of a wide range of functionality
since it is open source. It defines the communication between the Layer 2 network devices (switches)
and the controller. In a deeper view, it provides the ability to program the flow tables placed within
a switch and it is also able to change or introduce new functionality at run-time.

The OpenFlow architecture [5] follows the SDN principle of decoupling data and control planes.
It is based on three main entities: an OpenFlow switch (data plane), an external controller (control plane)
and the OpenFlow Protocol [5]. This protocol is in charge of the communication between the controller
(control plane) and network switches (data plane) through a secure channel. For more information,
the OpenFlow Switch Specification [6] describes the requirements of an OpenFlow Switch.

3. Related Works

Monitoring tools are used to retrieve a global view of the traffic that is in the network. Due to
the existence of multiple vendors, several monitoring tools are proposed. Such tools are very
useful for network administrators to analyse the network for preventing future congestion problems,
illegitimate traffic flows among others.

Monitoring networks is a task that can be performed taking into account two approaches:
passive and active methods. Each one has their advantages and disadvantages but both values should
be complementary. Moreover, we distinguish between SDN oriented and non-SDN oriented works.

Due to the recent spreading of Internet video delivery, it is expected to be deployed more
broadly over the next few years. In this way, one of the key video enhancing solutions based on
a onSDN oriented approach is HTTP adaptive streaming (HAS) [21]. As a relatively new technology in
comparison with traditional push-based adaptive streaming techniques, deployment of HAS presents
new challenges and opportunities for content developers, service providers, network operators and
device manufacturers.

This is not only via traditional computers. Works like Amram et al. [22] propose a novel dynamic
transport architecture for next generation mobile networks adapted to video service requirements.
Its main novelty is the transport optimization of video delivery that is achieved through a QoE oriented
redesign of networking mechanisms as well as the integration of CDN techniques.

Passive methods are helped by special purpose hardware as sniffers or built into other devices
such as routers, switches or hosts. Their main characteristic is that they do not increase the traffic
within the network when they are measuring statistics. This approach is highly valuable in network
trouble-shooting but limited in isolating the exact fault location. Due to all packets inspections by the
passive approach, security related issues are generated about how the data gathered from the network
is protected.

Active methods are focused on the injection of packets within the network sending packets to
network devices as switches and servers among others. Contrary to passive methods, active methods
have a direct impact on network traffic since they increase such traffic. Such packets added to the
traffic are called probe packets and their main function is to obtain and to measure statistics as delay,
round-trip time among others.

Sensors 2018, 18, 1079 5 of 23

Protocols such as Network Management Protocol (SNMP) [23] and Network Configuration
Protocol (NETCONF) [24] allow for the monitoring of network devices and statistics using the passive
method in traditional networks. In the same way, monitoring tools to estimate both sample and
complete traffic statistics in flow based networks are NetFlow [25] and sFlow [26].

Continuing with monitoring tools, jFlow [27] is an extension of Java Language [28] that allows
checking flow annotations in a static way. Moreover, it provides a compiler that checks (also statically)
and prevents information fugues via storage channels. jFlow offers features that make flow checking
less restrictive than other languages. These features are: a decentralized label model which enables the
creation of privacy policies, an access control that permits code privileges and change them, a label
polymorphism in the data classes, a run-time label checking to ensure that the information is not
leaked and finally automatic label inference to abbreviate annotations that in other cases are required.
Then, taking advantage of all these features, jFlow is a powerful tool to obtain flow statistics across
the network.

Regarding SDN oriented approaches, one of the main proposals related with network monitoring is
SuVMF [29] that provides a novel architecture for SDN large-scale networks based on a Software-Defined
Unified Virtual Monitoring Function. This work also uses a passive method to monitor and it consists
of three important entities that are responsible for monitoring management, intelligent control and
modules that filter and transform the data. The statistics collection utilizes several passive methods such
as sFlow [26] and SNMP [23] among others.

Sandor et al. [30] propose a three-tier architecture that implements response and reconfiguration
capabilities in an industrial control system. It adopts a SDN tier for dynamic communications
flow (re)configuration and whitelisting, an application tier for the optimal placement of anomaly
detection systems and a supervision tier for gluing the three tiers together. Continuing this line,
Genge et al. [31] propose a novel SDN controller named OptimalFlow that redesigns the network
according to the solutions delivered by an integer linear programming (ILP) optimization problem.
Such ILP encapsulates a shortest path routing objective and harmonizes ICS flow requirements
including quality of service, security of communications, and reliability. Moreover, it also exposes
two communication interfaces to enable a hierarchical control plane. Its northbound interface reduces
a complete switch infrastructure to an emulated (software) switch, while its southbound interface
connects to an OpenFlow controller to enable the monitoring and control of realemulated switches.

In [32], the authors use passive and active methods to measure network performance. It uses
beacons to send probe packets and install additional flows in switches. Then, these beacons are used
to estimate the packet lost rate and delay. A hybrid solution between passive and active methods
is the framework besought in [33]. This work proposes a network-monitoring framework based on
an orchestrator module with a flexible method to retrieve network statistics. Moreover, it creates
a user profile based on its needs, retrieving statistics with passive (data rate and error rate) and active
(probe packets to the switches) methods.

Works like OpenNetMon [34] monitor per-flow metrics in OpenFlow networks. It is specialized
in throughput, delay and packet loss to determine if the end-to-end Quality of Service parameters
are met to find suitable paths. It looks for the minimum number of queries to switches in order to
obtain the metrics. The time interval of these polls depends on the increase-decrease of its past values.
Applying different strategies to query for statistics can help to reduce the overhead in switches as well
as in networks. In this order, OpenTM [35] proposes to follow a non-uniform querying distribution
respect uniform schemes. This shows that this strategy is much faster than the existing ways of traffic
estimation in IP networks.

Chowdhury et al. [36] propose Payless, a lowcost efficient network monitoring framework for
SDN. Its main feature is that it provides an abstract view of the network and a regular manner to request
statistics about the network resources. Moreover, since it has been developed as a set of connectable
components, it provides interfaces to connect all of them (highlevel RESTful API). Then, a developer is
able to insert custom components in the Payless framework and therefore, change its behaviour. Payless

Sensors 2018, 18, 1079 6 of 23

is based on the following components: a Request Interpreter that is responsible for transferring high
level primitives to flow level primitives. In addition, it contains a Scheduler that polls the switches in
order to collect per flow statistics, per flow aggregate statistics and per queue statistics. To detect the set
of switches that have to be queried in a scheduled statistics collection, the Switch Selector component
identifies them based on parameters (flow, aggregate or queue). Finally, an Aggregator & Data Store
module is liable for collecting raw data from selected switches by the Switch Selector and also for
storing such data in the data store which is an abstraction of a persistent storage system.

Continuing with monitoring in flow networks, Flowsense [37] is an approach that looks for high
accuracy statistics with zero measurement cost using the physical separation of the control and data
planes in SDN. It takes into account three properties: the duration that the flow takes in the entry of
the flow table, the quantity of traffic that matches with that flow and finally, the input port of traffic
that matches the entry. Nevertheless, Flowsense has some limitations: it seriously depends on the type
of traffic that it is going to monitor since large flows as a video transmission can delay its computation
and utilization. In addition, it is limited when it is trying to capture instant usage in any moment of the
monitoring process.

Yu et al. [38] propose OpenSketch, a traffic measurement scheme for SDN that separates the
measurement data plane from the control plane. For the control plane, OpenSketch provides a library
that is responsible for configuring the pipeline and allocating the network resources for multiple
measurement labours. For its part, it provides in the data plane a three-phase pipeline: hashing,
filtering and counting. The first stage collects the packets source field and applies a hashing function
to them. After that, the filtering stage gathers the packets destination field and filters them according
a matching rule. Each matching rule has assigned an index field that will be used in the third phase to
calculate the counter location. These steps intend to reduce the switches memory and maximize the
accuracy in the measured values of the monitored network.

Continuing in this line, FlowCover [39] is also a low-cost scheme for monitoring SDN that collects
the statistics of the network. It considerably reduces the communication traffic due to the aggregation
request and replies against leaving the global view of the network. Moreover, it takes into account
the real traffic across the network changing the polling scheme of the request. The architecture of
FlowCover consists of three layers: OpenFlow Network Layer, FlowCover Core Layer and Monitoring
Applications Layer. The OpenFlow Network Layer is composed of the network devices and the
connections between them and the controller. For its part, the FlowCover Core Layer is the main
component of the framework. The switches send the arrive/expire messages to the Core Layer and
then, it forwards the messages to the routing module and flow state tracker. While the path is being
calculated through the routing module, the state tracker holds the active flows in the network in real
time. Therefore, the monitoring scheme takes all this information and calculates an effective polling
plan and forwards it to the flow state collector. The last layer, Monitoring Applications Layer, is a set
of multiple monitoring tasks such as link utilization, traffic matrix estimation, among others.

Another strategy to take into account is duplicating the traffic and sending it to a monitoring
agent. This idea is used in MonSamp [40] where the authors create two agents named as collector and
analyser to continuously read the flows within the switches. The algorithm will increase or decrease
the flow rules in switches based on the capacity of the monitor and the network links congestion.
The properties of these monitoring strategies can be used in parallel with other modules to get better
results in terms of QoS among others. In [41], a framework for optimized multimedia routing in
combination with a monitoring module is presented to provide QoS in different multimedia services.
Its best advantage is the easy way to add routing algorithms to get the best path in the data sending.
In the same way, Georgopoulos et al. [42] propose an OpenFlow-assisted QoE Fairness Framework
that aims to fairly maximize the QoE of multiple competing clients in a shared network environment.
By leveraging a Software Defined Networking technology, such as OpenFlow, they provide a control
plane that orchestrates this functionality.

Sensors 2018, 18, 1079 7 of 23

4. Enhanced Monitored Algorithm

The high performance of video content and other applications is a consequence of the network
state and network components. In other words, if the network load is not so high, the controller
will balance its resources to the application or service that demands such resources. Because of this,
monitoring tools are important in networks with big demands of computation. To get the best network
performance and response, it is important not to load the CPU and memory of the controller with
statistics queries messages. In this way, we analyze the network topology and look for strategies to
enhance these statistics queries.

4.1. Network Notation

Our network abstract model is gathered in Table 1. The network topology is represented as
a directed graph G = (S, L) where S = {s1, s2, ..., sn} denotes the set of switches and L = {l1, l2, .., lnl}
represents the set of links between switches. Additionally, the set of clusters is denoted as
C = {c0, c1, . . . , cnc−1} where each cluster is at the same time a set of switches. For instance, the arc(i, j)
represents the link from source switch i to destination switch j. We let ns = |S|, nl = |L| and nc = |C|
denote the number of switches, links and clusters in the topology respectively. Also, we define degree
of a switch (number of incident links) like deg(si) where si ∈ S. We assume that ns, nl and nc are finite
and deg(si) > 0.

Table 1. Network Notation Model.

Symbol Description

G = (S, L) Network graph
S Set of switches in the network Graph G
L Set of links in the network Graph G
C Set of clusters that contains switches

s1, s2, ..., sn Generic switches in the network Graph G
l1, l2, ..., ln Generic links in the network Graph G

c0, c1, ..., cnc−1 Generic clusters in the network Graph G
ns = |S| Number of switches in G
nl = |L| Number of links in G
nc = |C| Number of clusters in G

arc(i, j) ∈ L Link from source switch si to destination switch sj
deg(si) Number of links in switch si

In addition, we assume that the monitored data is grouped in packet flows F. Thus, all data
packets that are sent in G belongs at least, to one packet flow Fi ∈ F. Each Fi has a path from its source
switch si to its destination switch sj.

4.2. Flow-Conservation Algorithm Enhancement

One of the enhancements used in this paper is the framework for monitoring SDN networks
proposed in [43]. This framework divides the control layer in several modules for performing different
operations and provides network statistics to the Application layer. In this way, the technique
performed by these modules reduces the number of statistics queries that the controller performs to the
switches of the topology. Such a reduction is due to the utilization of the flow conservation algorithm
in 2-grade switches since all data traffic that the switch incoming port receives will be forwarded to
the outgoing port of the same switch and therefore, the traffic over such links will be nearly the same.

4.3. Clustering Enhancement Technique

The other monitoring enhancement technique proposed in this paper is based on clustering
methods. The term of clustering corresponds to a procedure that groups a set of objects or various

Sensors 2018, 18, 1079 8 of 23

subsets in a way that the objects share one or more characteristics in common. In our case, the common
feature between all switches of S will be their number of ports and their critical value.

Applying clustering methods in a set of objects to be studied offers several benefits in terms of
performance, scalability and management among others. These benefits are traduced in this research
work as follows: firstly, using clustering methods for monitoring statistics increases the performance in
the SDN infrastructure due to the reduction of traffic flow to the SDN controller. Secondly, applying our
clustering enhanced algorithm offers scalability since no matter the number of network devices (e.g.,
a huge SDN network with more than a single SDN controller) in the infrastructure. Finally, using
clustering methods offers a simplification in the switches management since similar switches can be
handled in the same way.

The decision of using the number of ports as a common characteristic of network switches
has been reached due to the probability of the traffic density that is flowing within such switches.
Besides, the number of ports of a switch implies directly in the probability of the possible number of
paths to forward the incoming data within them. Therefore, the greater the number of ports, the greater
the probability that the switch is being used in a data path due to the number of possible destination
switches that is connected to itself.

It is important to clarify that as an initial step of this work, the authors have tried to find a solution
for pure SDN network infrastructures.

Before starting to request statistics to switches, Clustering_Function(G) reads the network
topology structured in a graph G = (S, L) that will be used to create the clusters. Since G contains
the network graph, the function Create_Cluster(G, Algorithm, N) divides it in N clusters, defined as
c0, c1, ..., cnc−1. This switches grouping is based on the number of ports that they are composed of,
applying one of the available algorithms: K-Means, Hierarchical, Expectation-Maximization or Density
Based. Next, a short explanation about the different clustering algorithms:

• K-Means: is a clustering method that aims to divide n observations into c clusters based on the
nearest mean of each observation (single mean vector).

• Hierarchical: is a method of cluster analysis that builds a cluster hierarchy based on the distance
of the objects’ connections.

• Expectation-Maximization (EM): is an iterative method to look for maximum likelihood or
maximum. In other words, it estimates the means and standard deviations for each cluster to
maximize the likelihood.

• Density Based: is a clustering algorithm that defines areas with higher object density than the rest
of the data set.

Once the algorithm has been selected, the criteria to build the clusters are the following:

• Switches that contain two ports (incoming and outgoing) will be grouped in a cluster to which
the flow conservation algorithm (proposed in [43]) is applied.

• In other cases, clusters that contain switches with three or more ports will be grouped by their
criticality. This critical value is assigned to each switch depending on how many times such
a switch appears in all available paths to send the data from the client host to the server host.

The clustering process described above is gathered in the Create_Cluster(G, Algorithm, N)

function in Algorithm 1. Concretely, function Load_Instances() goes over all switches and assigns
them values of how many ports they have and in the same way, function Calculate_Criticality()
assigns them values of their criticality. Next, the grouping step is performed through the
Run_Clusters(S, Algorihtm, N) function introducing one of the implemented clustering algorithms
(K-Means, Hierarchical, Expectation-Maximization, Density Based) and the number of clusters
nc as parameters.

Sensors 2018, 18, 1079 9 of 23

Algorithm 1: Create Cluster Function.
Input:

Network Graph G(S, L)
Algorithm Alg
Number of Clusters N

Result:
Set of clusters C

1 procedure CREATE_CLUSTER

2 foreach switchsi ∈ S do
3 si = Load_Instances();
4 si = Calculate_Criticality();

end
5 C = Run_Clusters(S, Alg, N);
6 return C;
7 end procedure

Once the clustering process has been performed, our monitoring tool starts to gather network
information in each monitoring period tmon. In order to reduce statistics queries, we apply different
strategies in each network cluster:

• The cluster that contains switches with two ports (deg(si) = 2 for all si ∈ cj) applies the
enhancement based on the flow conservation algorithm proposed in [43] as Section 4.2. In this
way, Algorithms 2–4 will be applied to cluster ci = (Si, Li) that will be set as the input graph of
Algorithm 2. Therefore, these switches are released from being queried since their data will be
obtained through their neighbouring switches.

• For clusters that contain switches with three or more ports, N switches (where N is a percentage
of the total number of switches of each cluster fixed by the user) are randomly chosen in each
tmon period. In this way, all switches of each cluster will be monitored but not in the same period.

• Another strategy that contains switches with three or more ports is based on choosing the most
concurrent switches (in terms of traffic) in the same monitoring period. Hence, switches that are
not forwarding traffic will not be monitored and the number of statistics queries will decrease.

Clusters are used by the controller to perform the queries as the Algorithm 2 states. For experimental
proposes, we choose data rate and error rate as metrics to demonstrate the feasibility of our proposal.

Data rate is a monitoring metric that can prevent links congestion, links failures, DDoS attacks
among others. Therefore, the controller starts the topology monitoring going over all clusters obtained in
the Algorithm 2. The cluster that contains 2-grade switches will not be monitored since their values will
be calculated with neighbour switches’ data rate values using Neighbour_Switch() function. In other
cases, for clusters cj that contain switches whose grade is greater or equal to three, the controller chooses
randomly N (value fixed) switches si ∈ cj using a passive method o f pt_port_stats(node, port(j))
provided by Floodlight [13] to send the request (OFPT_STATS_REQUEST) to each switch si through
a secure channel. Once the switch has received such a message, it responds to the controller with another
message called (OFPT_STATS_REPLY) indicating its state. The controller receives such a response
and identifies the counter of such a switch with its port in the topology. Sent data rate dsij is calculate
as the difference between the bytes sent (dsk

ij
− dsk−1

ij
) in a monitoring period tmon. To get dsij original

metrics, the controller contrasts if the links of the switches are being monitored in such a period.

Sensors 2018, 18, 1079 10 of 23

Algorithm 2: Calculate Data Rate Function.
Input:

Set of Clusters C
Result:

Data rate dsij sent for each arc(i, j) ∈ L

1 procedure CALCULATE_DATA_RATE

2 Start timer t with period tmon;
3 foreach period k = 0, 1, 2 ∈ t do
4 foreach cluster ci ∈ C do

5 if ports_number(ci) = 2 then
6 foreach arc(i, j) ∈ ci do

7 sm = Neighbour_Switch(G, arc(i, j));
8 dsij = dsim ;

end

end
9 else

10 sz = choose_random(ci);
11 is_monitored(sz) = true;
12 sk

z = tx_bytes in o f p_port_stats(node, port(i))
13 if k > 0 then

14 dszj =
sk

z−sk−1
z

tmon
;

end
15 if is_monitored(sm) = true for each sm ∈ ci then

16 foreach switchsm ∈ ci do
17 is_monitored(sm) = f alse;

end

end

end

end

end
18 end procedure

Therefore, applying these enhanced techniques, we are decreasing the number of switches
requested with respect to a non-enhanced technique such as monitoring tools that monitor all switches
of the topology.

Continuing with the network metrics, the error rate is the measure that calculates the packet loss
percentage in a link. Algorithm 3 is the procedure that is responsible for calculating the error rate in
an arc(i, j) within the topology.

Sensors 2018, 18, 1079 11 of 23

Algorithm 3: Calculate Packet Loss Rate Function.
Input:

Network link arc(i, j)
Monitoring period tmon

Time period k
Result:

Packet loss rate lrij for arc(i, j)

1 procedure PACKET_LOSS_RATE_SWITCH

2 sk
i = tx_bytes in o f pt_port_stats(src_node, src_port(i))

3 rk
j = rx_bytes in o f pt_port_stats(dst_node, dst_port(i))

4 if k > 0 then

5 lrsij=
(sk

i −sk−1
j)−(rk

i −rk−1
j)

tmon ;

end

6 end procedure

Algorithm 4: Calculate Error Rate Function.
Input:

Set of Clusters C
Result:

Error rate lrsij for each arc(i, j) ∈ L

1 procedure CALCULATE_ERROR_RATE

2 Start timer t with period tmon;
3 foreach period k = 0, 1, 2 ∈ t do
4 foreach cluster ci ∈ C do

5 if ports_number(ci) = 2 then
6 foreach arc(i, j) ∈ ci do

7 lrm = packetLossRateSwitch(Neighbour_Switch(G, arc(i, j)));
8 lrsij = lrsim ;

end

end
9 else

10 sz = choose_random(ci);
11 is_monitored(sz) = true;
12 lrsij = packetLossRateSwitch(G, arc(i, j));
13 if is_monitored(sm) = true for each sm ∈ ci then

14 foreach switchsm ∈ ci do
15 is_monitored(sm) = f alse;

end

end

end

end

end
16 end procedure

Sensors 2018, 18, 1079 12 of 23

The controller uses a passive method o f pt_port_stats(node, port(i)) that sends port request
(OFPT_STATS_REQUEST) to switches si ∈ cj through a secure channel. Once the switch receives this
message, it replies its state to the controller with the (OFPT_STATS_REPLY) message. The controller
receives the response and identifies the counter with the corresponding switch and port in the topology.
Then, the error rate value in a link arc(i, j) defined as lrsij or lr′sij

is calculated as difference of the dsij or
d′sij

sent bytes in the source switch and source port sij or s′ij minus the incoming bytes in the destination
port of the destination switch rsij or rs′ij

in a period tmon.

4.4. Scalability

As is stated in Section 2 of this research paper, a SDN infrastructure abstracts the control plane
from deployed network devices via southbound interfaces. This control plane abstraction is managed
by a single SDN controller that can address scalability issues when the topology hosts several switches.
Several works have proposed distributed controller architectures [14,44,45] to address scalability issues.

Normally, video streaming applications are geographically distributed applications due to vendor
or proprietary demands among others. However, the monitoring tool proposed in this paper has been
designed for a generic network with a single SDN controller. Then, in order to address the scalability
issue, the use of multiple SDN controllers for complex or bigger topologies adding a synchronization
state protocol for the proposed algorithm should not be complicated.

5. Simulations and Results

In this section, we test the feasibility of the Clustering enhanced technique with respect to the
Flow-Conservation Algorithms. The simulations are tested using the topology described in Figure 2
which is composed of 7 OF-Switches (s1, s2, s3, s4, s5, s6 and s7) and 2 host (h1 and h2) connected
to s1 and s7 respectively. The links [switch: s3-port: p4, switch: s6-port: p1] and [switch: s6-port:
p2, switch: s5-port: p3] are configured with values of maximal data rate (1 Mbps of bandwidth) and
loss percentage (5% of the package will be lost).

p1
p3

s1

s2

s3

s4

s5s6

s7

Max. Rate = 1Mbps
Loss=5%

Servidor

h1

10.0.0.1
Servidor

h1

10.0.0.1

Cliente
10.0.0.2

h2

Cliente
10.0.0.2

h2

p2
p2

p2
p2

p2

p2
p2

p1

p1

p1

p1

p1

p1p3

p3

p3

p3

p4

Max. Rate = 1Mbps
Loss=5%

Figure 2. Topology Tested.

All simulations were run in a network simulator called Mininet v2.1.0 [46] using python scripts,
which contains the topology to examine, as previously described. Mininet is able to create with few
steps custom topologies to be simulated in a computer. The testing set was executed in a virtual
machine within a ThinkServer model TD350 that is composed of an Intel Xeon Series E5-2600 v3 with
12 cores, 64 GB DDR4 RAM and Ubuntu 14.04 as Operative System. Inside the server is the VM,
which is comprised of a Linux (Ubuntu v. 13.04) guest Operative System (64 bits, 8 GB RAM, 2 CPUs,
8 GB HD). Both the clustering and flow-conservation monitoring modules are implemented using the
java-based Floodlight controller [13] inside such a VM.

Sensors 2018, 18, 1079 13 of 23

A simulation consists of a video streaming sent from host 1 to host 2 using VLC video server
and RTPUDP as streaming protocol at the same time that the monitoring module is running.
Therefore, the main task of the monitoring module is to measure the statistics of network switches
(both the links where the video is being sent and the rest of them). We use a set of videos for the video
streaming where their features are gathered in Table 2 while the monitoring time (tmon) is 200 ms.
The videos used in the videostreaming are “Highway_cif” [47], “Akiyo_cif” [48], “Bridge-far_cif” [49]
and “Clarie_cif” [50]. The connection between the client host and server host is a fixed path composed
of [switch: s1-port: p1, switch: s1-port: p3, switch: s3-port: p1, switch: s3-port: p4, switch: s6-port: p1,
switch: s6-port: p2, switch: s5-port: p3, switch: s5-port: p2, switch: s7-port: p3, , switch: s7-port: p1].

Table 2. Features of videos used in the simulations.

Video Format Frames Duration (s) Size Bitrate (kbits/s)

Highway_cif MPEG 12 2000 80 2.5 MB 257.4
Akiyo_cif MPEG 12 300 11.96 481.6 KB 329.8

Bridge-far_cif MPEG 12 2101 84 2.95 MB 252.1
Clarie_cif MPEG 12 494 19.72 712 KB 295.8

The testing set is divided into two study cases: Study Case A and Study Case B. The first group,
Study Case A is comprised of a proof of concept where the differences between the clustering and
flow conservation enhanced algorithms are manifested in the video streaming of “Highway_cif” [47].
Then, this study case is repeated twice in the same conditions changing the monitoring method. In the
first one, the clustering enhancement proposed in this paper is used, and in the other, the method
proposed in [43] is applied, which reduces the number of queries of 2-grade switches of the topology.
Moreover, for each monitoring method, the test is repeated twice more in order to separate the values
of each metric (data rate and error rate). Finally, the results are compared with these two enhanced
modules to determine which method is efficient in terms of load and accuracy. The results from these
tests are divided into three metrics: the number of requests to get the status of each switch, the data
rate and error rate of the switches that compose the streaming path.

On the other hand, the Study Case B is focused on the applicability of the clustering algorithm
in other videos (“Akiyo_cif” [48], “Bridge-far_cif” [49] and “Clarie_cif” [50]). The aim of this study
case is to check the feasibility of our enhancement with different types of video in terms of frames,
duration and bitrate and also different data rate patterns. Following the same procedure as the Study
Case A, the test is repeated twice for each video to obtain its data rate.

The parameters for both Study Cases are: links [switch: s3-port: p4, switch: s6-port: p1] (hereafter
called Link A) and [switch: s6-port: p2, switch: s5-port: p3] (hereafter called Link B) are set with
a Bandwidth of 1 Mbps and a loss percentage of 5% respect the packets that are sent through these links.

5.1. Study Case A

Regarding the data rate simulations that we have performed, the number of monitoring queries
in the non-enhanced method during simulation (80 s) is 2079 requests while in the enhanced algorithm
is 903. The difference of 1176 queries shows a reduction ratio of 57% of requests with respect to
a non-enhanced monitoring simulation as is gathered in Table 3.

Table 3. Summary of Enhanced vs. Non-Enhanced Methods for Data Rate in Study Case A.

Method Request Number Improvement Improvement (%) Topology Link Difference

Enhanced 903 1176 57% Link s3–s6 45.49 Kbps
Non-Enhanced 2079 Link s6–s5 54.33 Kbps

Sensors 2018, 18, 1079 14 of 23

For its part, Figure 3a,b show the traffic flow between two simulations in which one applies the
enhancement and the other does not use it. Figure 3a describes the data flow (in bps) through the links
s3-s6 (switch: s3-port: p4, switch: s6-port: p1) and Figure 3b the links between s6 and s5 (switch: s6-port:
p2, switch: s5-port: p3). The pointed lines (blue lines) show the data rate that the server is sending the
video while the solid lines (green lines) show the data rate obtained using the non-enhanced method
and the dotted lines (red lines) display data rate with the enhanced algorithm. As expected, both
links experiment with an increase of data rate due to the transmission of the video between h1 and
h2. As soon as the transmission finishes (around 200 requests), the data rate decreases demonstrating
the efficiency of the algorithm to detect changes in the network transmission. Similarly, the average
difference between the links s3–s6 with/without the enhancement is 45.49 Kbps and 54.33 Kbps in the
link s6-s5 as Table 3 describes. These results confirm that the enhancement maintains good levels of
accuracy and reduces the number of requests in the data plane.

In the same way as the data rate metric, Figure 3c,d show the error rate in the traffic data over
the streaming path. Figure 3c describes the error rate in the data flow (in bps) through the links
s3–s6 (switch: s3-port: p4, switch: s6-port: p1) and Figure 3d between link s6–s5 (switch: s6-port: p2,
switch: s5-port: p3). The solid lines (green lines) show the error rate obtained using the non-enhanced
method, the dotted lines (red lines) display error rate with the enhanced algorithm and the dotted
continue line (blue lines) shows the netem percentage configured in Mininet (5% packet loss).
As expected, both links are able to detect the loss of information between the links due to the features
of these links.

Therefore, based on our algorithm design, we can estimate approximately that a 57% message
reduction is achieved in a topology similar to the experiment. This reduction belongs to the proportion
between the accounted statistics messages in the links link s3–s6 and s6–s5 from the enhanced and
non-enhanced simulations.

(a) Data rate of link s3–s6

Figure 3. Cont.

Sensors 2018, 18, 1079 15 of 23

(b) Data rate of link s6–s5

(c) Error rate of link s3–s6

Figure 3. Cont.

Sensors 2018, 18, 1079 16 of 23

(d) Error rate of link s6–s5

Figure 3. Enhanced vs. Non-Enhanced Data and Error Rate of Highway_cif.

5.2. Study Case B

The average number of monitoring queries in the non-enhanced method during simulation
is 2089 requests while in the enhanced algorithm the average value is 901. Then, the fact that the
average difference is around 1186 queries shows a reduction ratio of 57% of requests with respect to
a non-enhanced monitoring simulation as is stated in Tables 4–6.

Table 4. Summary of Enhanced vs. Non-Enhanced Methods for Data Rate in Akiyo video within Study Case B.

Method Request Number Improvement Improvement (%) Topology Link Difference

Enhanced 900 1186 57% Link s3-s6 3.42 Kbps
Non-Enhanced 2086 Link s6-s5 4.54 Kbps

Table 5. Summary of Enhanced vs. Non-Enhanced Methods for Data Rate in Bridge-far video within
Study Case B.

Method Request Number Improvement Improvement (%) Topology Link Difference

Enhanced 903 1183 57% Link s3-s6 29.86 Kbps
Non-Enhanced 2086 Link s6-s5 39.8 Kbps

Table 6. Summary of Enhanced vs. Non-Enhanced Methods for Data Rate in Claire video within Study Case B.

Method Request Number Improvement Improvement (%) Topology Link Difference

Enhanced 903 1190 57% Link s3-s6 5.21 Kbps
Non-Enhanced 2093 Link s6-s5 8.72 Kbps

In the same way as the Study Case A, Figure 4a,b show the traffic flow in the video called
“Akiyo_cif” [48], Figure 5a,b show the traffic flow in the video called “Bridge-far” [49] and finally,

Sensors 2018, 18, 1079 17 of 23

Figure 6a,b show the traffic flow in the video called “Claire” [50] between two simulations in which one
applies the enhancement respect to another that does not use it. Figures 4a, 5a and 6a describe the data
flow (in bps) through the links s3–s4 (switch: s3-port: p2, switch: s4-port: p1) and Figures 4b, 5b and 6b
the links between s4 and s9 ((switch: s4-port: p2, switch: s9-port: p2). The solid lines show the data rate
obtained using the non-enhanced method and the dotted lines display data rate with the enhanced
algorithm. As expected, our enhanced method is able to monitor every type of video (no matter the
traffic pattern) obtaining almost the same rate with very small differences and reducing to 57% the
number of monitoring queries as is stated in Tables 4–6.

Based on our algorithm design with the videos used in the Study Case B simulations, we can
estimate that approximately a 57% message reduction is achieved in a topology similar to the
experiment. This reduction belongs to the proportion between the accounted statistics messages
in the links link s3–s6 and s6–s5 from the enhanced and non-enhanced simulations.

To finish with the monitoring enhancement of our research work, both study cases show
a reduction in the network traffic flow to keep free the SDN controller for other management actions.

(a) Data rate of link s3–s6

(b) Data rate of link s6–s5

Figure 4. Enhanced vs. Non-Enhanced Data and Error Rate of Akiyo_cif.

Sensors 2018, 18, 1079 18 of 23

(a) Data rate of link s3–s6

(b) Data rate of link s6–s5

Figure 5. Enhanced vs. Non-Enhanced Data and Error Rate of Bridge-far_cif.

Sensors 2018, 18, 1079 19 of 23

(a) Data rate of link s3–s6

(b) Data rate of link s6–s5

Figure 6. Enhanced vs. Non-Enhanced Data and Error Rate of Clarie_cif.

6. Conclusions and Future Works

Users quantify their QoE in a video delivery being receptors of a non-stop streaming of instead
of a good application quality. Hence, the goal for future networks is to dynamically adapt the QoE
demands of users and applications that are using the networks.

SDN has changed the architecture of traditional networks separating the control and data planes
removing its rigidity. In this way, SDN provides a unified view of the network providing scalability,
flexibility and a centralized control.

A good monitoring tool is a crucial element in the network management since accurate and timely
statistics on network devices are essential for management operations as load balancing, intrusion

Sensors 2018, 18, 1079 20 of 23

detection among others. Management applications may need to monitor network devices to obtain
port traffic per unit time.

This paper presents an efficient SDN monitoring tool that reduces the number of monitoring
requests clustering techniques in the devices of which the network is composed. This reduction in the
queries to the network switches depends on the number of ports of the switches within a cluster.

To demonstrate the effectiveness of our monitoring tool, we have tested our enhanced technique
using clustering algorithms to gather a statistics collection compared with not applying such
enhancement in the same scenario. We have evaluated and compared the results in the same polling
conditions. We have found that data rate values coming from the network switches are almost the
same as the values coming from the data rate of the server that is providing the video streaming.
Therefore, we have shown that our framework reduces the number of queries to the controller and the
CPU load in the controller. Moreover, data rate and error rate values coming from the results of the
simulations performed with the Mininet tool confirm the feasibility of such a framework due to the
few differences between such values in enhanced and non-enhanced simulations.

As part of future work, we want to plan new strategies to reduce the monitoring queries as well
as optimizations for measuring other variables such as delay, packet loss, jitter or packet duplication.
Similarly, the use of active methods for monitoring SDN can be also taken into account to improve the
quality of metrics. Moreover, there are new clustering algorithms such as density models (DBSCAN
and OPTICS) or subspace models such as biclustering (also known as co-clustering).

Moreover, the study of scalability is a very interesting topic that will be take into account with the
inclusion of more SDN controllers to interconnect complex or huge topologies with several servers and
switches, hybrid topologies (both OpenFlow switches and nonOpenFlow switches) and topologies
with different traffic flows (intermediate traffic flows).

Acknowledgments: This research work was supported by Sungshin Women’s University. In addition,
L.J.G.V. thanks the European Commission Horizon 2020 5G-PPP Programme (Grant Agreement number
H2020-ICT-2014-2/671672-SELFNET - Framework for Self-Organized Network Management in Virtualized
and Software-Defined Networks).

Author Contributions: All authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
CDN Content Delivery Network
DDoS Distributed Denial of Service
HD High Definition
HQ High Quality
NETCONF Network Configuration Protocol
NOS Network Operative System
OF OpenFlow
ONF Open Networking Foundation
OS Operative System
QoE Quality of Experience
QoS Quality of Service
SDN Software Defined Network
SNMP Simple Network Management Protocol
TLS Transport Layer Security
VLAN Virtual Local Area Networks

Sensors 2018, 18, 1079 21 of 23

References

1. CISCO. Visual Networking Index: Forecast and Methodology, 2011–2016; Technical Report; CISCO: San Jose, CA, USA, 2012.
2. Jiang, J.; Sekar, V.; Milner, H.; Shepherd, D.; Stoica, I.; Zhang, H.C.A. A practical prediction system for video

QoE optimization. In Proceedings of the 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), Santa Clara, CA, USA, 16–18 March 2016; pp. 137–150.

3. Reitblatt, M.; Foster, N.; Rexford, J.; Schlesinger, C.; Walker, D. Abstractions for Network Update.
In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Helsinki, Finland, 13–17 August 2012; pp. 323–334.

4. Valdivieso Caraguay, A.L.; Benito Peral, A.; Barona López, L.I.; García Villalba, L.J. SDN: Evolution and
Opportunities in the Development IoT Applications. Int. J. Distrib. Sens. Netw. (IJAHUC) 2014, 10, 735142.

5. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.;
Turner, J. OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Comput. Commun. Rev.
2008, 38, 69–74.

6. OpenFlow Switch Specification v1.1.0. Available online: https://www.opennetworking.org/wp-content/
uploads/2013/04/openflow-spec-v1.0.0.pdf (accessed on 2 April 2018).

7. Open Networking Foundation. Available online: http://www.opennetworking.org (accessed on
2 April 2018).

8. Sezer, S.; Scott-Hayward, S.; Chouhan, P.K.; Fraser, B.; Lake, D.; Finnegan, J.; Rao, N. Are We Ready for SDN?
Implementation Challenges for Software-defined Networks. IEEE Commun. Mag. 2013, 51, 36–43.

9. Kim, H.; Feamster, N. Improving Network Management with Software Defined Networking. IEEE Commun. Mag.
2013, 51, 114–119.

10. Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX: Towards an Operating
System for Networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 105–110.

11. Cai, Z.; Cox, A.L.; Eugene, T.S. Maestro: A System for Scalable OpenFlow Control. In TSEN Maestro-Technical
Report TR10-08; Rice University: Houston, TX, USA, 2010.

12. Beacon: A Java-based OpenFlow Control Platform. Available online: https://openflow.stanford.edu/
display/Beacon/Home (accessed on 2 April 2018).

13. Project Floodlight: Open Source Software for Building Software-Defined Networks. Available online:
http://www.projectfloodlight.org (accessed on 2 April 2018).

14. Project ONOS: Open Network Operating System for Building Software-Defined Networks. Available online:
https://onosproject.org (accessed on 2 April 2018).

15. OpenDaylight (ODL) Open Source SDN Platform. Available online: https://www.opendaylight.org
(accessed on 2 April 2018).

16. Foster, N.; Harrison, R.; Freedman, M.J.; Monsanto, C.; Rexford, J.; Story, A.; Walker, D. Frenetic: A Network
Programming Language. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming, Tokyo, Japan, 19–21 September 2011; Volume 46, pp. 279–291.

17. Foster, N.; Guha, A.; Reitblatt, M.; Story, A.; Freedman, M.J.; Katta, N.P.; Walker, D. Languages for
Software-defined Networks. IEEE Commun. Mag. 2013, 51, 128–134.

18. Voellmy, A.; Kim, H.; Feamster, N. Procera: A Language for High-level Reactive Network Control.
In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland,
13–17 August 2012; pp. 43–48.

19. Monsanto, C.; Foster, N.; Harrison, R.; Walker, D. A Compiler and Run-time System for Network Programming
Languages. In ACM SIGPLAN Notices; ACM: New York, NY, USA, 2012; Volume 47, pp. 217–230.

20. Voellmy, A.; Wang, J. Scalable Software Defined Network Controllers. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication,
Helsinki, Finland, 13–17 August 2012; pp. 289–290.

21. Oyman, O.; Singh, S. Quality of experience for HTTP adaptive streaming services. IEEE Commun. Mag.
2012, 50, doi:10.1109/MCOM.2012.6178830.

22. Amram, N.; Fu, B.; Kunzmann, G.; Melia, T.; Munaretto, D.; Randriamasy, S.; Sayadi, B.; Widmer, J.;
Zorzi, M. QoE-based transport optimization for video delivery over next generation cellular networks.
In Proceedings of the 2011 IEEE Symposium on Computers and Communications (ISCC), Kerkyra, Greece,
28 June–1 July 2011; pp. 19–24.

https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
http://www.opennetworking.org
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://www.projectfloodlight.org
https://onosproject.org
https://www.opendaylight.org

Sensors 2018, 18, 1079 22 of 23

23. Case, J.D.; Fedor, M.; Schoffstall, M.L.; Davin, J. Simple Network Management Protocol (SNMP); RFC 1157
(Historic); 1990. Available online: https://datatracker.ietf.org/doc/rfc1157/?include_text=1 (accessed on
2 April 2018).

24. Enns, R.; Bjorklund, M.; Schoenwaelder, J.; Bierman, A. Network Configuration Protocol (NETCONF); RFC
6241 (Historic); 2011. Available online: https://tools.ietf.org/html/rfc6241 (accessed on 2 April 2018).

25. Claise, B. RFC 3954-Cisco Systems NetFlow Services Export Version 9; RFC 3954; Internet Engineering Task
Force; 2004. Available online: https://tools.ietf.org/html/rfc3954 (accessed on 2 April 2018).

26. Phaal, P.; Lavine M. Sflow Version 5, 2004. Available online: https://sflow.org/sflow_version_5.txt (accessed
on 2 April 2018).

27. Myers, A.C. JFlow: Practical Mostly-static Information Flow Control. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA,
20–22 January 1999; pp. 228–241.

28. Gosling, J.; Joy, B.; Steele, G.L.; Bracha, G.; Buckley, A. The Java Language Specification; Pearson Education:
London, UK, 2014.

29. Choi, T.; Kang, S.; Yoon, S.; Yang, S.; Song, S.; Park, H. SuVMF: Software-defined Unified Virtual Monitoring
Function for SDN-based Large-scale Networks. In Proceedings of the Ninth International Conference on
Future Internet Technologies, Tokyo, Japan, 18–20 June 2014.

30. Sandor, H; Genge, B.; Haller, P.; Graur, F. Software Defined Response and Network Reconfiguration for
Industrial Control Systems. In Proceedings of the International Conference on Critical Infrastructure
Protection, Arlington, VA, USA, 13–15 March 2017; pp. 157–173.

31. Genge, B.; Haller, P. A Hierarchical Control Plane for Software-Defined Networks-based Industrial
Control Systems. In Proceedings of the IFIP Networking Conference (IFIP Networking) and Workshops,
Vienna, Austria, 17–19 May 2016; pp. 73–81.

32. Shibuya, M.; Tachibana, A.; Hasegawa, T. Efficient Performance Diagnosis in OpenFlow Networks Based
on Active Measurements. In Proceedings of the 1st ACM Conference on Information-Centric Networking
(ICN-2014), Nice, France, 23–27 February 2014.

33. Valdivieso Caraguay, A.L.; Puente Fernández, J.A.; García Villalba, L.J. An Optimization Framework
for Monitoring of SDN/OpenFlow Networks. Int. J. Ad Hoc Ubiquitous Comput. (IJAHUC) 2015,
doi:10.1504/IJAHUC.2015.10001757.

34. Van Adrichem, N.L.; Doerr, C.; Kuipers, F.A. Opennetmon: Network Monitoring in Openflow
Software-defined Networks. In Proceedings of the Network Operations and Management Symposium
(NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–8.

35. Tootoonchian, A.; Ghobadi, M.; Ganjali, Y. OpenTM: Traffic Matrix Estimator for OpenFlow Networks.
In Passive and Active Measurement; Springer: Berlin/Heidelberg, Germany, 2010; pp. 201–210.

36. Chowdhury, S.R.; Bari, M.F.; Ahmed, R.; Boutaba, R. Payless: A low cost network monitoring framework
for software defined networks. In Proceedings of the 2014 IEEE Network Operations and Management
Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–9.

37. Yu, C.; Lumezanu, C.; Zhang, Y.; Singh, V.; Jiang, G.; Madhyastha, H.V. Flowsense: Monitoring network
utilization with zero measurement cost. In Proceedings of the International Conference on Passive and
Active Network Measurement, Hong Kong, China, 18–19 March 2013; pp. 31–41.

38. Yu, M.; Jose L; Miao, R. Software defined traffic measurement with opensketch. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, Lombard, IL, USA, 2–5 April 2013.

39. Su, Z.; Wang, T.; Xia, Y.; Hamdi, M. FlowCover: Low-cost flow monitoring scheme in software defined
networks. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA,
8–12 December 2014; pp. 1956–1961.

40. Raumer, D.; Schwaighofer, L.; Carle, G. MonSamp: A Distributed SDN Application for QoS Monitoring.
In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS),
Warsaw, Poland, 7–10 September 2014; pp. 961–968.

41. Valdivieso Caraguay, A.L.; Puente Fernández, J.A.; García Villalba, L.J. Framework for Optimized Multimedia
Routing over Software Defined Networks. Comput. Netw. 2015, 92, 369–379.

42. Georgopoulos, P.; Elkhatib, Y.; Broadbent, M.; Mu, M.; Race, N. Towards network-wide QoE fairness using
openflow-assisted adaptive video streaming. In Proceedings of the 2013 ACM SIGCOMM Workshop on
Future Human-Centric Multimedia Networking, Hong Kong, China, 16 August 2013; pp. 15–20.

https://datatracker.ietf.org/doc/rfc1157/?include_text=1
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc3954
https://sflow.org/sflow_version_5.txt

Sensors 2018, 18, 1079 23 of 23

43. Puente Fernández, J.A.; García Villalba, L.J. Flow Conservation Framework for Monitoring Software Defined
Networks. In Proceedings of the ICIT 2017: 19th International Conference on Information Technology,
Paris, France, 21–22 June 2017.

44. Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.V.; Kompella, R. Towards an elastic distributed SDN controller.
ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 7–12.

45. Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.V.; Kompella, R.R. ElastiCon; an elastic distributed SDN
controller. In Proceedings of the 2014 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, Marina del Rey, CA, USA, 20–21 October 2014; pp. 17–27.

46. Mininet-Mininet Simulator. Available online: https://github.com/mininet/mininet/wiki/Introduction-to-
Mininet (accessed on 2 April 2018).

47. Highway. Available online: http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html (accessed on
2 April 2018).

48. Akiyo. Available online: http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html (accessed on
2 April 2018).

49. Bridge-far. Available online: http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html (accessed on
2 April 2018).

50. Claire. Available online: http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html (accessed on
2 April 2018).

Sample Availability: Samples of the compounds are available from the authors.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html
http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html
http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html
http://www2.tkn.tu-berlin.de/research/evalvid/qcif.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Software Defined Networking and OpenFlow Protocol
	Software Defined Networking
	OpenFlow Protocol

	Related Works
	Enhanced Monitored Algorithm
	Network Notation
	Flow-Conservation Algorithm Enhancement
	Clustering Enhancement Technique
	Scalability

	Simulations and Results
	Study Case A
	Study Case B

	Conclusions and Future Works
	References

