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Abstract: Mapping the magnitude and spatial distribution of forest aboveground biomass (AGB,
in Mg·ha−1) is crucial to improve our understanding of the terrestrial carbon cycle. Landsat/TM
(Thematic Mapper) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geoscience Laser
Altimeter System) data were integrated to estimate the AGB in the Changbai Mountain area. Firstly,
four forest types were delineated according to TM data classification. Secondly, different models
for prediction of the AGB at the GLAS footprint level were developed from GLAS waveform
metrics and the AGB was derived from field observations using multiple stepwise regression. Lastly,
GLAS-derived AGB, in combination with vegetation indices, leaf area index (LAI), canopy closure,
and digital elevation model (DEM), were used to drive a data fusion model based on the random forest
approach for extrapolating the GLAS footprint AGB to a continuous AGB map. The classification
result showed that the Changbai Mountain region was characterized as forest-rich in altitudinal
vegetation zones. The contribution of remote sensing variables in modeling the AGB was evaluated.
Vegetation index metrics account for large amount of contribution in AGB ranges <150 Mg·ha−1,
while canopy closure has the largest contribution in AGB ranges ≥150 Mg·ha−1. Our study revealed
that spatial information from two sensors and DEM could be combined to estimate the AGB with an
R2 of 0.72 and an RMSE of 25.24 Mg·ha−1 in validation at stand level (size varied from ~0.3 ha to
~3 ha).

Keywords: forest AGB; ICESat/GLAS; Landsat/TM; vegetation index; canopy closure; random
forest; Changbai Mountain

1. Introduction

Forest play an important role in the global carbon cycle [1]. Deforestation and forest degradation
impact the estimation of anthropogenic greenhouse gas emissions and carbon stock in forests [2,3].
Forest carbon stocks that change dynamically over time can be monitored through regular mapping of
the total forest aboveground biomass (AGB, in Mg·ha−1) [3–5]. Therefore, mapping the magnitude and
spatial distribution of forest AGB is necessary for improving estimates of terrestrial carbon sources and
sinks. The traditional methods to estimate forest AGB is based on field measurements or long-term
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forest inventories; these methods can obtain good AGB estimation. National inventories (e.g., National
Forest Resource Inventory Program of the State Forestry Administration, China, or the U.S. Forest
Service Inventory and Analysis Program) provided the most detailed field estimates of forest AGB at
the national scale [6,7]. However, the lack of field measurements in remote areas and the inconsistency
of data requirements among different administrative units are the major constraints to obtain sufficient
regional AGB estimation using field-based methods [5,8]. In addition, obtaining comprehensive,
spatially-complete, temporally uniform, and accurate forest inventory data is usually time-consuming
and labor-intensive over very large areas. Reducing the uncertainty in the AGB estimates requires
spatially-continuous observations that are fine enough to capture the variability over a landscape that
may undergo natural disturbances or landuse changes [5,9].

Remote sensing has the capability to map forest AGB over wide geographical areas. However,
as no remote sensor has been developed that is capable of providing direct measurement of AGB,
additional field-sampled AGB is required to correlate with canopy reflectance measured by passive
optical sensors or backscatter intensity from Synthetic Aperture Radar (SAR) sensors from moderate
to fine spatial resolution [10]. Optical sensor data are appropriate for the retrieval of forest horizontal
structures, such as forest types and canopy cover, due to its spectral sensitivity to different species [11].
Furthermore, satellite-based optical sensors are perceptive to other forest structural variables, such as
species abundance [12], basal area [13], stem density [13], and crown size [14], which are correlated
to some degree with AGB because forest spectral reflectance contains information on the vegetation
chlorophyll absorption bands in the visible region and sustained high reflectance in the near-infrared
region [15]. Previous studies have demonstrated the sensitivity of visible and shortwave infrared
wavelengths to AGB [4,16–18]. In addition to the usage of single-band spectral signatures, various
vegetation indices (VIs) derived from TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper
Plus), MODIS (Moderate Resolution Imaging Spectroradiometer), etc., as primary data sources have
been used to estimate forest AGB in different regions, such as tropical America and Asia, Central
Europe, East Africa, the U.S., and China [16,18–21]. Moreover, some optical sensor data, such
as IKONOS, ALOS/PRISM (Advanced Land Observation Satellite/Panchromatic Remote-sensing
Instrument for Stereo Mapping), and ZY-3 (Zi Yuan 3), provide a stereo-imaging capability that can
be used to predict forest canopy structure [22–24]. Although passive optical remote sensing is widely
used for AGB estimation, frequent cloud coverage in mountains and moist regions, and the low
saturation level of spectral signatures on AGB estimation in medium to high AGB forest (i.e., the
spectral reflectance or vegetation index of optical remote-sensing sensors are of limited value in
medium to high biomass forests) are the major disadvantages of this technology [11,25,26].

Recently, much attention has been paid to the use of LiDAR (Light Detection And Ranging) remote
sensing in AGB estimation due to its potential to capture the vertical structure of vegetation in great
detail and it is the only sensor type available at present whose signal does not saturate in high AGB
forests (e.g., 1200 Mg·ha−1 and 1300 Mg·ha−1) [27–30]. LiDAR footprints may be used as a manner of
sampling similar to field plots, wherein the derived AGB is used to integrate optical remotely-sensed
data in order to facilitate stratification, thereby extending plot-level AGB to large areas [31]. Airborne
LiDAR provides highly accurate AGB estimates [32–34], but the associated large data volume, as
well as the sophisticated technical equipment and high acquisition costs to observe remote areas,
usually limit its application at regional and global scales [16]. The Geoscience Laser Altimeter System
(GLAS) sensor onboard the Ice, Cloud, and land Elevation satellite(ICESAT) satellite provided data
freely and has proven itself suitable for AGB and canopy height estimation over continental-to-global
areas [3,4,35–37]. One major limitation of GLAS was the lack of imaging capability and the fact that it
provided relatively sparse sampling information on forest structures [38]. Therefore, GLAS data are
often integrated with imaging optical systems to estimate forest structural variables at the regional
scale [39,40].

Due to the concerns of global climate change, as well as large swaths and daily availability of
moderate spatial resolution sensors data (e.g., MODIS), AGB estimation that integrated LiDAR with
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MODIS over continental-to-regional scales has gained increasing attention in the last few years [3,4,8,41].
However, moderate spatial resolution data loses spatial detail of AGB variability, and it is often difficult
to associate field data with satellite observations because the inconsistencies in spatial resolutions result
in a mismatch between filed plots and remotely-sensed imagery [11,42]. While medium resolution
data, such as TM/ETM+, provides spatial detail compatible with the size of vegetation units and
AGB field measurements [16], there are increasing demands and attempts for estimating AGB at
finer resolution from medium-resolution sensors [43]. The integration of Landsat and GLAS data for
large-area applications has become more practical with the free availability of their archives and the
capability of near-global coverage [44]. Duncanson et al. [44] combined Landsat/TM and spaceborne
LiDAR to estimate AGB in South-central Canada, and found that the data integration is most useful
for forests with an AGB less than 120 Mg·ha−1, an age less than 60 years, and a canopy cover less
than 60%. However, a generic GLAS-based AGB model was developed from field plot data and GLAS
waveform metrics, regardless of forest types. Moreover, an AGB map generated from the model that
was developed from field measurements and a serial of airborne LiDAR metrics was designed to
provide a reference for validation of AGB estimates. It was inevitable to introduce potential errors when
considering additional processing procedures of airborne LiDAR and the mismatch between airborne
LiDAR-derived AGB and GLAS-derived AGB in spatial resolution. Zhang et al. [5] presented a simple
parametric model that integrated leaf area index (LAI) estimates from Landsat and canopy height
from GLAS for conifer-dominant forests of California. The relationships between the GLAS-derived
maximum canopy height and Landsat-derived LAI were modeled using a linear model, which was
based on the assumption that the power law between LAI and the maximum tree height is a first
order approximation. In fact, the relationship between the two parameters was not linear, which
would introduce uncertainty into the estimation of the maximum tree height, which was used for AGB
estimation. Li et al. [45] described a Landsat-lidar fusion approach for modeling canopy heights of
young forests by integrating historical Landsat imagery with GLAS data. They used two methods to
explore the relationships between forest height and predictor, including stepwise linear regression
(SLR) and regression tree (RT). The RT models yielded substantially lower RMSD (root mean square of
the difference) than the SLR models when use three different variables groups. The best RT model was
developed when forest age metrics, NDVI metric, NBRI (normalized burn ratio index) metrics and IFZ
(integrated forest z-score) metrics (that is an index as a measure of forest likelihood) were used together.
Although RT can use multiple linear equations to approximate nonlinear relationships, the substance of
the final models in this study had only two linear regression equations. Obviously, the linear regression
models will show more overfitting with the increase of independent variables. Dolan et al. [46]
combined forest age information derived from Landsat data with canopy height data from GLAS to
quantify rates of forest growth in the eastern United States. They regressed the GLAS-derived heights
against the age of last disturbance in linear models to yield vertical growth rates. The growth rates
that combined with height-biomass allometric relations can be converted to estimates of AGB. Due
to lack of field measurements of AGB co-located with GLAS footprints, they used age (or growth
rates) as an intermediate variable to convert GLAS-derived height to AGB at landscape-scale (the first
step: GLAS-derived height to AGB at footprint-scale; the second step: linking relationships between
GLAS-derived AGB and Landsat-derived age; and, the third step: extrapolating GLAS-derived AGB
to landscape-scale using the relationships in the second step). The used allometric relations between
AGB and GLAS-derive height was derived from mixed forest region. Helmer et al. [47] used a method
similar with Dolan et al. [46] to estimate AGB of old-growth in Brazil. They also used age as an
intermediate variable to convert GLAS-derived heights to AGB at landscape-scale. Be different from
the other research, the used allometric relations between AGB and GLAS-derived height was derived
from evergreen broadleaf forest region. In summary, to the best of our knowledge, few published
studies have explored forest-type-specific AGB estimation integrated spaceborne LiDAR and Landsat
data at the regional level. In these studies, both the forest-type-specific prediction models of AGB and
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the validation of AGB estimates need to be improved. Furthermore, the performance (importance) of
remotely-sensed variables used to estimate forest AGB was not evaluated.

Changbai Mountain, in Northeast China, is well known for its contiguous biodiversity-rich, intact
terrestrial ecosystems, including Korean pine-broadleaf mixed forest, coniferous forest (evergreen and
deciduous), Erman birch forest, and tundra [48]. Almost all vegetation types from temperate to Arctic
areas can be found in the region. However, the AGB of the forest and the carbon storage is still unclear
in the Changbai Mountain region. The main aims of the study were to:(1) clarify the characteristics
of altitudinal forest zones in the Changbai Mountain region; (2) estimate a continuous AGB map
from nonparametric models; and (3) determine which remotely-sensed variables have the largest
influence on AGB estimation of four forest types. For these purposes, firstly, models to predict AGB at
the GLAS footprint level were developed from GLAS waveform metrics and the AGB derived from
field observation. Then, a nonparametric model integrated GLAS-derived AGB with Landsat-derived
variables, as well as DEM data, was implemented to estimate AGB in the Changbai Mountain region.
Finally, the contribution of remotely-sensed variables in modeling AGB was evaluated in different
AGB ranges of four forest types.

2. Materials and Methods

2.1. Study Area

Changbai Mountain (Changbaishan or Changbai Shan in Chinese, Mount Baekdu in North
Korean, or Paektu-san in South Korean) lies in the border region of China and North Korea and is
the highest mountain in the Eastern Eurasian continent [48]. The study site covers the Changbai
Mountain Natural Reserve of China and its surrounding area. This region is well known for its
contiguous biodiversity-rich, intact, terrestrial ecosystems and altitudinal vegetation zones [48,49].
The area is characterized by a temperate continental mountain climate with four distinct seasons
affected by monsoons. The mean annual temperature is ~3.3◦C, and the mean annual precipitation is
~672 mm [50]. The dominant species are Korean pine (Pinus koraiensis), Dahurian larch (Larixg melinii),
Manchurian fir(Abies nephrolepis), Amur linden(Tilia amurensis), Manchurian ash (Fraxinus mandshurica),
Mongolian oak (Quercus mongolica), Maple (Acer mono), and Erman’s birch (Betula ermanii).

2.2. Field Data

Field survey data spanning four forest types were obtained from two sources: national forest
inventory data and field measurements, as listed in Table 1. A database of forest inventory data was
assembled from the National Forest Resource Inventory Program of the State Forestry Administration,
China (NFRI). The investigation of NFRI is based on the forest management unit (state-owned forest
farms, nature reserves, forest parks, etc.) or county-level administrative areas. The purpose of the
investigation is to meet the needs of the forest management program, overall design, forestry division,
and planning. The field survey is developed from forest stands. A stand is a contiguous area that
contains a community of trees that are relatively homogeneous or have a common set of characteristics
(e.g., age and size class distribution, composition, structure, or spatial arrangement) [51]. The field
investigation of a stand includes records of stand area, forest types, dominant species, stand density,
canopy cover, average stand height, and DBH, etc. Biomass of a forest stand is the summation of
individual tree biomass per unit area. Forest stands were varied from ~0.003 ha to ~90 ha in size.
The survey results of NFRI data are shown in the form of forest inventory maps (the maps used in the
study are illustrated in Figure 1, ~117 thousand hectares). Forest inventory maps are usually developed
using a “classify and assign” method which provides an average AGB per stand usually based on a
classification of optical data and topographic maps. The AGB of a forest stand is the summation of the
individual tree AGB per unit area, i.e., stand density multiplied by single-tree AGB. Species-specific
allometric equations (see in the next paragraph) were employed to estimate the single-tree AGB. GLAS
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footprints that were dropped in to forest stands maps were overlaid onto forest stands to derive the
AGB of these footprints.

Table 1. Summary of field data: Nt is the total number of all field forest plots; and Necf, Ndcf, Ndbf,
and Nmxf are the total number of evergreen coniferous forest, deciduous coniferous forest, deciduous
broadleaved forest, and mixed forest plots, respectively.

Source Nt Necf Ndcf Ndbf Nmxf AGB Range (Mg·ha−1) LAI Range

NFRI 2911 756 571 762 822 10.52–303.84
field survey 58 5 4 30 21 7.73–323.63
field survey 40 12 5 7 16 1.73–7.49
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Figure 1. Overview of study area(ecf = evergreen coniferous forests,dcf = deciduous coniferous forests,
dbf = deciduous broadleaf forest, and mxf = mixed forest).

The geographic coordinates of 40 field plots were co-located with GLAS footprints. The other
18 field plots that were not co-located with footprints were intended to obtain as wide a range of
AGB as possible. The total of 58 field observations were implemented in September 2006 and June
2007. The field measurement scheme employed a 7.5 m radius central plot located on the center of a
GLAS footprint, plus three replicate plots located 20 m away from the center plot at azimuths of 120◦,
240◦, and 360◦. The species, canopy height, and DBH of all trees ≥5 cm were recorded in each plot.
Allometric equations of dominant species were used to estimate the single-tree AGB in all plots [52,53].
AGB estimation for most species were based on DBH-only allometric equations, except for spruce (Picea
koraiensis), which used DBH-H combined equations. All of the allometric equations were developed in
northeastern China. Then, the AGB of all plots could be estimated using the method mentioned above.
In addition, LAI was measured on fine days with few clouds during this period. The sample plots
were identified as 40 m × 40 m square areas (larger than a TM pixel) to allow for the potential error of
the global positioning system. A center point together with four other points, which were located 10 m
away from the center point in the north, south, west and south, were measured in each sample plot.



Remote Sens. 2017, 9, 707 6 of 25

Each sample plot was measured 15 times (three times for each point) using an LAI-2000 (LI-Cor Inc.,
Lincoln, NE, USA), and the average LAI was derived and used LAI for validation.

2.3. GLAS Data and Its Processing

GLAS was an active LiDAR sensor with 1064-nm laser pulses operating at 40 Hz and recorded
the echo of those pulses from an elliptical footprint of ~65 m diameter, spaced 172 m apart [54]. GLAS
carried three laser altimeters, named as L1, L2, and L3. L3 worked from 3 October2004 to 19 October
2008 (L3A–L3K, [55]).GLAS had a total of 18 operational periods during its six-year mission. The data
acquired during the L3C and L3F periods were usedin this research.The L3C and L3F datasets were
acquired using the L3 laser from 20 May to 23 June 2005, and from 24 May to 26 June 2006, respectively.
In Changbai Mountain region, forests were in the leaf-on growing season during the acquiring dates of
L3C and L3F.

The ICESat program provides 15 data products (GLA01 to GLA15). Two of them, GLA01
(waveform data) and GLA14 (global land surface altimetry data) of version 33, were employed
in the study. GLA01 products provide the raw waveform for each laser. The waveforms were recorded
in 544 bins with a bin size of 1 ns or 15 cm for the land surface. GLA14 data provide surface elevation,
latitude and longitude of the footprints, acquisition time, laser range offsets for the signal beginning
and end, location, amplitude, and width of up to six fitted Gaussian peaks. Using the record index
and shot number, the location of each GLAS footprint from GLA14 data was related to the individual
waveform extracted from GLA01 data.

Since waveforms are greatly affected by atmospheric scattering and signal saturation, the
cloud-contaminated and abnormal waveforms where identified and discarded before extracting
waveform variables. Cloud-free waveforms were chosen using the cloud detection flag
(FRir_qaFlag = 15 in the GLA14 product). Saturated signals were identified using the GLAS flag
(SatNdx> 0). A maximum tree height of 40 m was set for filtering GLAS waveform data because trees
higher than 35 m are very rare in the Changbai Mountain region. Since each 65-m diameter footprint
is likely to intersect with as many as nine TM pixels, to reduce the impact of potential errors that
are caused by geographical position mismatch between the TM image and GLAS data, as well as
heterogeneous land cover within nine TM pixels, GLAS footprints are retained when all nine of the
TM pixels are delineated as a 100% homogeneous forest cover (i.e., only GLAS footprints fell within a
100% homogeneous forest cover) in the land cover map derived from Landsat data. After screening,
there were 16,114 GLAS shots left for extracting waveform variables.

Identifying the position of the signal beginning and the signal end was crucial for extracting
waveform variables from waveforms. We, first, estimated the noise levels before the signal beginning
and after the signal end from the raw waveform separately using a method based on the histogram
of the waveform bins [38]. Then, waveforms were smoothed using a Gaussian filter with a width
similar to the transmitted laser pulse, and the signal beginning and end were identified using a noise
threshold [38]. The signal beginning was identified by searching downwards from the highest bin of
the waveform until the location where the return signal was larger than three standard deviations
of the estimated noise level. Searching backward from the signal ending, if the first peak was more
significant than the others, i.e., the distance from signal end to the peak was notably larger than the half
width of the transmitted laser pulse, this peak was considered as the ground peak. The total waveform
energy was calculated by summing all of the return energy from the signal beginning to end. Starting
from the signal end, the positions of 25% (h25), 50% (h50), and 75% (h75) of the accumulated return
energy were located [38]. In addition, the heights at which the waveform energy reached 10% (h10),
20% (h20), . . . , 90% (h90) of the total energy were also calculated. Finally, the GLAS data (referenced to
TOPEX/Poseidon) were converted to WGS84. We used method described by Sun et al. [38] to develop
AGB estimates because the method was appropriate for AGB estimation at GLAS footprint-level.
The GLAS waveform variables, along with other GLAS metrics from waveforms that captured the
characteristics of the canopy structure used in the study, are given in detail in Table 2. Furthermore, as
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the terrain is complex in the Changbai Mountain region, the waveform variables usually used in flat
areas were not adequate to obtain AGB estimates with high accuracy. Several variables (e.g., leading
edge extent, trailing edge extent [56], and hslope terrain index [8]) that were sensitive to topography
were used for estimating the AGB in GLAS footprints.

Table 2. Definition of GLAS waveform variables.

GLAS Waveform Variables Definition

meanh, medh Mean and median canopy height calculated from waveform [57]

wflen, h14 Waveform length and top tree height from GLA14 product

eratio Vegetation to surface energy ratio from waveform as calculated by [38]

h10, h20, . . . , h100 Decile heights for waveform energy to reach 10%, 20%, . . . ,100% of the
total energy starting from signal end [38]

h25, h75 Quartile heights for waveform energy to reach 25% and 75% of the total
energy starting from signal end [38]

lead, trail Leading edge extent and trailing edge extent calculated from the
waveform [56]

hslope
A terrain index calculated from a function of waveform length, footprint
size, and slope [8]

2.4. Landsat Data and Its Processing

Due to frequent cloud cover, we compiled a mosaic of two cloudless Landsat-5 TM images (path
116/row 30 and path 116/row 31) for two different years (23 September 2004 and 2 October 2007)
from United States Geological Survey [58] during the peak growing season in Changbai Mountain.
Landsat ETM+ data for the time of acquisition lacked high quality because the scan line corrector
(SLC) failed on 31 May 2003. All four of the images were calibrated to top-of-atmosphere reflectance
using calibration coefficients (e.g., gains and offsets) provided by USGS. Then, a MOTRAN4-based
algorithm, which was embedded in the ENVI/FLAASH module (ITT Visual Information Solutions,
2009), was applied to the atmospheric correction for Landsat images in order to obtain the surface
reflectance. Some input parameters were set, such as the scene center location, sensor type and altitude,
date and time of the acquired image, ground weather conditions observed on the day, etc. All of four
Landsat images were co-registered using ground control points to attain improved geometric accuracy,
while topographic correction was implemented for all images using a C-correction method, which was
demonstrated to be appropriate for Landsat images [59].

We used two temporal Landsat images and selected the image acquired in 2007 as the base image
because: (1) most deciduous forests would be in leaf-off season during the end of September in the
Changbai Mountain region [60], so deciduous forests and evergreen forests could be delineated using
only two-temporal images; (2) when the TM image acquired in 2007 was referred to as base image,
inter-annual variation in acquisition time among field data, GLAS data, and Landsat images could be
neglected; and (3) cloud coverage of the TM image acquired on 2 October 2007 was less than 5%, while
cloud coverage of another TM image was about 15%.

2.5. Land Cover Classification

Eight land cover classes were defined based on the characteristics of the regional vegetation. The
land cover sub-classes that were not related to forest AGB were merged. Since training data was
required for supervised classification, field data combined with local expert knowledge were used to
generate a calibration/validation dataset. About 70% of these data served as a calibration dataset, while
the remaining 30% were used as a validation dataset. The maximum likelihood classification (MLC)
for supervised classification was employed in land cover classification because sufficient reference
data to be used as training samples were available and the spectral signatures of land cover classes
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were significant. The identification of at least 10 polygons totaling 1000–2000 pixels in each land cover
class were used for training. The spectral signatures generated from the training samples were then
used to train the classifier to classify the spectral data into a land cover map. Approximately 30% of
field data were used as test samples to assess the classification accuracy. As the Changbai Mountain
region is characterized by its contiguous biodiversity-rich altitudinal vegetation zones, in order to
identify the characteristics and evaluate the classification result, we set two profiles in the direction
of north–south and west–east, from one side of Changbai Mountain Tianchi Lake at an elevation of
~700 m, to the opposite side of Tianchi Lake at a similar elevation.

2.6. Estimating LAI from Landsat Data

LAI is an important vegetation structural parameter for quantitative analysis of many physical
and biological processes related to vegetation dynamic change [61]. We estimated LAI from the canopy
spectral reflectance for the forested pixels using a radiative transfer model based on the inversion
approach. Canopy spectral reflectance was simulated using the PROSAIL model [62] in conditions
of various LAI, and zenith and azimuth angles. The spectral reflectance simulated accorded with six
Landsat-5 TM bands’ spectral response functions. The next step was inversing the LAI from the lookup
tables (Table 3). Based on land cover maps, the corresponding lookup tables were selected according
to the class of forested pixels, and the reflectance of each band was compared using the minimum
distance method to obtain one LAI value for each angle image.

Table 3. Parameters of the look up table in LAI estimation

Parameter Range Step of Chance No. of Simulations

Solar zenith 0◦–90◦ 5◦ 16
View zenith 0◦–65◦ 5◦ 13

Bands 6 1 6
Leaf area index 0.1–8 0.1 80
Canopy cover 0–1 0.5 20

2.7. Estimating Canopy Closure in Forested Areas from Landsat Data

Canopy closure is an ecological indicator that is commonly used in characterizing the canopy
structure because of its dependence of canopy height [63]. It has often been measured using
hemispherical canopy images or optical instruments with an angular field of view (FOV) in the
field [64]. In order to obtain optimal measured results, field measurements must be taken under
uniformly overcast skies to ensure evenly diffuse light conditions [65]. These restrictions on field
data collection make it difficult to collect large numbers of observations, particularly in remote areas.
Therefore, it is necessary to link remotely-sensed data with field observations. Airborne LiDAR sensors
are increasingly used for estimation of canopy closure [57,64,66]. However, the associated large data
volume and high acquisition costs to observe remote areas limit their application at regional scales.
In this study, an alternative method using Landsat data was used to extract canopy closure. At first,
forest canopy cover of forested areas was estimated from the NDVI (normalized difference vegetation
index) with the help of commonly used spectral mixture analysis (SMA). Then, the ratios between
canopy cover and canopy closure (RCC) of the main species [67] were employed to covert canopy
cover to canopy closure.

The NDVI-SMA method for canopy cover (fc) estimation is assumed that each pixel signal of the
satellite data results from a mixture of two endmembers: bare soil and vegetation. NDVI of a given
pixel is then taken as a linear combination of NDVI values of bare soil and vegetation according to
their proportion. Vegetation in the above assumption was referred to forest in this study, i.e., NDVI of
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a given TM pixel was estimated from a linear mixture of NDVI values of pure pixels with bare soil
(NDVIsoil) and forest (NDVIforest):

NDVI = (1− fc) ×NDVIsoil + fc×NDVIforest (1)

which can be rewritten as:

fc = (NDVI −NDVIsoil)/(NDVIforest−NDVIsoil) (2)

The NDVI value of the pixel has no subscript. Since NDVI depends on soil and vegetation types
as well as soil moisture and chlorophyll content [68–70], the NDVI value of bare soil and forest is
site-specific. Therefore, we randomly selected 100 bare soil pixels from the study site and took the
averaged NDVI values of these pixels as NDVIsoil. The NDVIforest values represented the maximum
value of fully-forested pixels. Due to the effect of tree species on NDVI, NDVIforest of four main
forest types were calculated, respectively. For each forest type, thirty 100% forest covered pixels were
identified and the corresponding NDVI values were calculated and averaged as the NDVIforest. Then,
fc of each forested pixel was estimated from Equation (2) in terms of forest types. Specifically, RCC
of fir/spruce (16 plots), larch (eight plots) and beech (eight plots) in their study were averaged and
used for estimating the canopy closure of evergreen coniferous forest, deciduous coniferous forest,
and deciduous broadleaved forest in our research. Due to a lack of a tree species stand for mixed
forest, we averaged the RCC of larch and beech to estimate the canopy closure of mixed forest because
mixed forest in the Changbai Mountain region were mainly composed of Korean pine and broadleaved
forest [48].

2.8. Relating Ground-Based AGB to GLAS Waveform Variables

All of the GLAS footprints in the Changbai Mountain region were filtered, as stated above (see
Section 2.3), and masked to remove records that were not in the forest areas according to the TM
land cover map. A total of about 2600 GLAS footprints were overlaid onto NFRI AGB to extract
observed AGB within the footprints so as to link AGB estimates from field data to GLAS waveform
metrics. About 70% of LiDAR footprints were randomly selected for training, and the remaining 30%
were reserved for verification. Due to the effect of forest type on GLAS waveforms, models of AGB
estimation were developed separately for different forest types. These AGB prediction models were
used for all GLAS footprints that were not co-located with field data.

Stepwise regression was performed to predict AGB in GLAS footprints using S-PLUS (Insightful
Corp. Seattle, 2007). Compared with other machine learning methods (such as decision tree or neural
networks), the regression method was not limited to the range of data, and showed the ability to
yield reasonable results, similar to complex methods [4,57]. Correlation analyses were conducted
between every two explanatory variables. When any two explanatory variables show high correlation,
the two variables were not imported into the regression models at the same time. To infer GLAS
metrics that had high correlation with AGB, and to discard variables that had less effect on AGB
estimation, t-tests and F-tests were conducted to identify the predictive waveform variables and the
overall correlation of regression models. Neter and Wasserman [71] described how to use the two
methods to make comparisons of regression parameters and test whether any two regression lines
were identical. The coefficient of determination (R2) is widely used to evaluate the goodness of fit
for regression models. As the number of explanatory variables increases, the R2 values also increase.
However, the additional explanatory variables may not be significant, and do not substantially improve
R2. Therefore, R2 is not appropriate for a comparison between models having different numbers of
explanatory variables [72]. Adjusted R-square (R2-a) was adopted for these comparisons. The root
mean square error (RMSE) was used to assess the predicted AGB versus the AGB estimated from field
observations at the footprint level.
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In addition to some waveform variables that remain sensitive to topography being used, a
stratified regression strategy was adopted to improve AGB estimation in GLAS footprints. Previous
studies have shown a promising prospect for the strategy. Nelson et al. [40] used GLAS footprints
falling on slopes ≤10◦ and all GLAS footprints regardless of slope to predict timber volume separately
in Siberia. Chi et al. [8] used GLAS footprints on slopes less than 20◦ and slopes ≥20◦ to develop the
models of AGB estimates, respectively. They compared the estimated AGB with field measurements
and concluded that the stratified regression models were better than the models based on GLAS
footprints, regardless of slope. In the Changbai Mountain region, slope distribution of GLAS forest
footprints shows that 82.5% of the footprints occur on slopes less than 10◦. Therefore, GLAS footprints
on GDEM (Version 2 ASTER Global Digital Elevation Model) slopes <10◦ and ≥10◦ were considered
separately in this study.

GLAS footprints co-located with forest stand data that were not used to train GLAS-derived
biomass models were used to validate. As, perhaps one or more footprints were dropped into one
forest stand, footprints were sorted according to their biomass values. If several footprints shared the
same biomass value, they were randomly chosen. We kept at least one sample from every 10 Mg·ha−1

in the range from 20 Mg·ha−1 to 220 Mg·ha−1 for two slope groups with four forest types.

2.9. Extrapolating GLAS-Derived AGB Estimates to A Continuous AGB Map and Accuracy Assessment

Since AGB is closely related to vegetation density and greenness [11], vegetation indices that
maintain sensitivity in middle to high AGB were derived from Landsat data. These vegetation indices
were developed from both empirical methods, such as NDVI, DVI (Difference Vegetation Index),
SR (Simple Ratio), PVI (Perpendicular Vegetation Index), and mathematical models, e.g., SAVI (Soil
Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), and TVI (Triangular Vegetation Index).
All of the TM-derived variables used to develop models for generating the AGB map are listed in
Table 4 [73–78]. Due to difference of pixel size between a GLAS footprint and a TM pixel, all TM pixels
whose center points were within 65 m of a GLAS footprint were used to derive the mean values of
LAI, canopy closure, ASTER GDEM2 data, and vegetation indices for each footprint. Models linking
AGB estimates from GLAS footprints with these variables were developed to estimate the AGB of the
Changbai Mountain area using Random Forest (RF) regressions.

Table 4. Vegetation indices derived from TM data.

Vegetation Indices Formula Reference

NDVI (bandNIR−bandRED)/(bandNIR + bandRED) Tucker [78]

DVI bandNIR − bandRED Tucker [78]

SR bandRED/bandNIR Colombo et al. [74]

PVI (bandNIR− a×bandRED− b)/(1 + a2)0.5

where a = 0.96916, b = 0.084726
Richardson and Everitt [77]

SAVI 1.5 × (bandNIR − bandRED)/(bandNIR + bandRED + 0.5) Huete [75]

EVI 2.5 × (bandNIR − bandRED)/(bandNIR + 6bandRED
−7.5bandBLUE + 1) Huete et al. [76]

TVI 0.5 × (120(bandNIR−bandGREEN) −
200(bandRED−bandGREEN)) Broge and Leblanc [73]

The predicted AGB was compared with forest stand data in accuracy assessment. The forest
stands that were not co-located in GLAS footprints were randomly selected for validation. Since forest
stands had irregular boundaries, the forest stands that covered at least two map pixels were selected
in order to reduce the contingency in the comparison. Predicted AGB values of all pixels within one
forest stand were averaged to compare with the observed AGB value of the forest stand.
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In recent studies, the regression tree method Random Forest (RF), a non-parametric
machine-learning algorithm, has been successfully used in AGB estimation and proved to better
describe the spatial variability in AGB from the regional to the national scale [4,8,79,80]. Random
Forest is an algorithm based on ensemble techniques for classification and regression analysis [81]. The
main principle in RF is the combination of various decision trees (the default value is 500 trees) using
several bootstrap samples and selecting a subset of explanatory variables at every node. About two
thirds of the original observations (referred to as in-bag samples) within a bootstrap sample are used
to train the trees, with the remaining one third observations (referred to as out-of-the bag samples,
OOB) are used in an internal cross-validation technique for assessing how well the resulting RF model
performs [81]. Each decision tree is independently produced without any pruning and a random
subset of the predictor variables (mtry) is used to find the best split [80]. The best split is defined by
identifying the predictor variable and the split point that results in the largest reduction in the residual
sum of squares between the sample observations and the node mean. When all trees are grown to
the maximum extent, the algorithm creates trees that have high variance and low bias, where the
final predictions are derived by averaging the predictions of the individual trees [81]. RF generates an
internal unbiased estimate of the generalization error as the forest building progresses and overcome
the overfitting habit of decision tree algorithms [81]. One of the main advantages of RF is that it does
not require an assumption to be made regarding the normality of covariables, which is often violated
when complex ecological systems and environmental variables are introduced [4].

We used the R software [82] with the “randomForest” [83] package for our analysis. In this study,
1000 “RF trees” (ntree) were included and four variables (mtry) were tried at each split. The parameter
nodesize was set to the default value of 1. In order to evaluate the contribution of remote sensing
variables in modeling the AGB, we explored the variable importance of all prediction metrics using
OOB samples and assessed the optimal variables for forest AGB mapping. The variable importance
measured in this study took into account the difference in mean squared error between a dataset
obtained through random permutations of the values of the different variables and the original OOB
predicted dataset [81]. A larger OOB error rate indicates greater importance of the variable. All
of these remote sensing variables were grouped and reported in four AGB ranges (<50 Mg·ha−1,
50–100 Mg·ha−1, 100–150 Mg·ha−1, and ≥150 Mg·ha−1).We grouped 10 variables in four types of
observations or features that related to vegetation greenness (seven vegetation index metrics), leaf area
index (LAI), canopy construction (canopy closure), and surface elevation (DEM).

3. Results

3.1. Land Cover Map

The land cover map classified by Landsat data was used to delineate ranges of four forest types
from the TM imagery. The four forest classes were evergreen coniferous forest, deciduous coniferous
forest, deciduous broadleaved forest, and mixed forest. The overall classification accuracy of the
Landsat land cover map was 88.3%, and the Kappa coefficient was 0.86. The main peak of Changbai
Mountain was primarily surrounded by evergreen coniferous forest and deciduous coniferous forest.
Some of the other evergreen coniferous forest were distributed in the southeast of the region. Forests
in the northern and southern portions of this area were dominated by deciduous broadleaved forest
and deciduous coniferous forest. Mixed forest was mainly spread across the western region of the
study area.

The topography on the north slope of Changbai Mountain was gentle and moderate, with an
elevation ranging from ~700 m to ~2000 m (Supplementary Figure S2). There was rarely forest growing
at altitudes above 2100 m a.s.l. (above sea level).Mixed forest was dominant at an elevation ranging
from ~700 m to ~1150 m. The main forest type on altitude from ~1150 m to ~1800 m was coniferous
forest. Deciduous coniferous forest was primarily located at elevations from ~1150 m to ~1650 m,
and evergreen coniferous forest prevailed from ~1650 m a.s.l. to ~1800 m a.s.l. Forest in the area
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above ~1800 m a.s.l. was characterized by deciduous broadleaved forest. The terrain on the south
slope of Changbai Mountain was steep and the elevations changed frequently. Forest at an elevation
ranging from ~1550 m to ~1700 m was dominated by evergreen coniferous forest. Mixed forest was
preponderant from ~1100 m a.s.l. to ~1400 m a.s.l. The topography on the west slope of Changbai
Mountain was gentle and moderate with an elevation ranging from ~750 m to ~1800 m. From ~800 m
to ~1650 m, land cover was dominated by mixed forest and grass. Above ~1650 m a.s.l., the forest
distribution in three profiles were different. In profile IV, evergreen forest was dominant at altitudes
from ~1650 m a.s.l. to ~1750 m a.s.l. In profile V, deciduous broadleaved forests were mainly located at
elevations ranging from ~1650 m a.s.l. to ~2200 m a.s.l., but narrowly scattered in three discontinuous
elevation intervals. In profile VI, forest areas at elevations from ~1650 m to ~1750 m were dominated
by mixed forest, and deciduous broadleaved forest was preponderant from ~1850 m a.s.l. to ~1950 m
a.s.l. The terrain on the east slope of the mountain was relatively moderate with an elevation ranging
from ~1000 m to ~1900 m. Forest areas in this range were dominated by mixed forest and deciduous
coniferous forests in profiles V and profile VI. In profile IV, besides mixed forest and deciduous
coniferous forest, evergreen coniferous forest prevailed from ~1700 m a.s.l. to ~1800 m a.s.l.

3.2. Leaf Area Index Map

The predicted LAI of forests in the study area ranged from 0 to 7.2, and it was between 3.5 and
5.5 for most forests. The LAI of forests greater than 5.5 appeared mainly in the northeastern and
southern parts of this region (Figure 2). In terms of species, LAI of mixed forest showed the maximum
value, and the mean LAI of deciduous broadleaved forest was larger than that of other three species.
The range and mean value of the estimated LAI of four forest types were illustrated in Table 5. The
predicted LAI of forests were compared with LAI measured from 40 field plots. An R2 of 0.82 and an
RMSE of 0.12 indicated overall high consistency.
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Table 5. LAI estimation of four forest types.

Forest Types LAI Range Mean LAI

Evergreen coniferous forest 1.1–7.0 3.8
Deciduous coniferous forest 0–6.8 3.6

Deciduous broadleaved forest 0–6.9 4.0
Mixed forest 1.2–7.2 3.7

3.3. Canopy Closure Estimates

The predicted forest canopy closure (Figure 3) was in the range from 25.0 to 99.5% (Table 6). The
maximum canopy closure(99.5%) and the mean canopy closure (89.2%) of deciduous broadleaved
forest were the largest among the four forest types. The canopy closure ranges of deciduous forests
were significantly greater than the ranges of two other forest types. In terms of spatial distribution in
canopy closure, the percentage larger than 80% was primarily showed in the northeastern, western,
and southern part of the region. Canopy closure of the forest that was around the main peak of
Changbai Mountain was relatively lower in the range between 40% and 70%. Since canopy cover was
one of the records in NFRI data and RCCs were used to convert canopy cover into canopy closure, the
validation of the predicted canopy closure could be transformed into the validation of the predicted
canopy cover. The predicted canopy cover was compared with the field canopy cover measured from
80 plots in the NFRI data. The assessment indicated high correlation with an R2 of 0.81 and an RMSE
of 0.16.
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Table 6. Canopy closure estimation of four forest types.

Forest Types Canopy Closure Range (%) Mean Canopy Closure (%) Stand Deviation

Evergreen coniferous forest 40.2–98.5 86.8 7.12
Deciduous coniferous forest 27.1–99.1 88.3 9.85

Deciduous broadleaved forest 25.0–99.5 89.2 10.24
Mixed forest 32.6–98.7 86.5 9.06
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3.4. AGB estimates from GLAS Waveform Variables

Logarithm function models were fitted to evergreen coniferous forest, deciduous coniferous
forest, deciduous broadleaved forest, and mixed forest with GLAS waveform variables as explanatory
variables. The stratified regression equations for AGB estimation from GLAS data are shown and
evaluated in Table 7. The results indicated that the adjusted R2-a of AGB estimation models were
greater than 0.75 for all of four forest types, exceeding 0.8 for models of evergreen coniferous forest and
deciduous coniferous forest when GLAS footprints fell on slopes <10◦. The R2-a of AGB estimation
models for GLAS footprints on slopes <10◦ were greater than the adjusted R2 of AGB estimation
models when GLAS footprints fell on slopes ≥10◦ for the four forest types.

Table 7. Stratified regression models of AGB estimated from GLAS waveform data. Adjusted R2 were
the Goodness of Fit for four forest types (B = AGB, N = number of GLAS footprints sampled by forest
plots used in each model).

Forest Types Model R2-a N

Evergreen
coniferous

forest

ln(B) = 0.5128 meanh+ 0.0918trail − 0.7033h25 + 0.8597h50 + 0.3184h100 +
4.0624 (slope <10◦) 0.804 327

ln(B) = 0.6243 medh + 0.2471 lead − 0.1918 trail − 0.7836 h25 +1.0716 h50 +
0.3441 h100 + 4.8015 (slope ≥10◦) 0.787 184

Deciduous
coniferous

forest

ln(B) = 0.2778 wflen + 0.1034trail−0.3609 h50 + 0.5466 h75 + 0.2989 h100 +
4.1116 (slope <10◦) 0.813 234

ln(B) = 0.5846 h14 + 0.2613 lead −0.2089trail−1.0773 h50 + 0.2122 h75 +
0.2989 h100 + 4.0624 (slope ≥10◦) 0.786 116

Deciduous
broadleaved

forest

ln(B) = 0.3358 lead + 0.3749 h75 + 0.1516 h100 − 0.0889 eratio− 0.3196 h20−
1.4819 ln(h25) + 6.8414 (slope <10◦) 0.793 472

ln(B) = 0.8283 lead − 0.3189 trail + 0.1668 h75 + 0.3292 h100 − 0.1173 eratio−
0.3724 h40 − 0.8618 ln(h50) + 0.2159 hslope+ 3.0177 (slope ≥10◦) 0.772 163

Mixed forest

ln(B) = 0.5735 h75 − 0.2833eratio − 0.1981 h25 + 0.2264 h100 + 3.6923
(slope <10◦) 0.798 355

ln(B) = 0.4763lead − 0.1587trail − 0.1007h25 + 0.0819h100 + 0.6691 hslope +
3.4732 (slope ≥10◦) 0.765 128

More than 500 footprints were randomly selected from the validation dataset. The validation
results are shown in Table 8 in terms of forest type. The results showed that AGB estimated from GLAS
waveforms and AGB converted from forest inventory data are very consistent. R2 values of all of the
models estimated from GLAS footprints on all slopes remained higher than 0.8 for all forest types,
except R2 (0.796) for evergreen coniferous forest models estimated from GLAS footprints on slopes
≥10◦. RMSE values ranged from 9.85 Mg·ha−1 for evergreen coniferous forest to 18.62 Mg·ha−1 for
mixed forest. R2 values of the models estimated from GLAS footprints on slopes <10◦were larger than
the R2 of the models estimated from GLAS footprints on slopes ≥10◦. On the contrary, the RMSE of the
estimation models for GLAS footprints on slopes <10◦ were smaller than the RMSE of the estimated
models for GLAS footprints on slopes ≥10◦.
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Table 8. AGB predicted from GLAS data on slopes <10◦ and ≥10◦ were compared with AGB converted
from forest inventory data for four forest types. R2 and RMSE (in parentheses) values correspond to
each forest type.

Forest Types R2 and RMSE (Mg·ha−1) in AGB Model Validation
<10◦ ≥10◦

Evergreen coniferous forest 0.811(9.85) 0.796(13.97)
Deciduous coniferous forest 0.825(10.34) 0.825(10.34)

Deciduous broadleaved forest 0.829(12.29) 0.807(17.93)
Mixed forest 0.878(11.40) 0.823(18.62)

3.5. AGB Estimation in the Changbai Mountain Area

The integration of GLAS-derived AGB and TM-derived variables, as well as DEM data, were
modeled by an RF algorithm to generate a continuous AGB map in the Changbai Mountain region.
To better show the general spatial characteristics of AGB distribution in this region, the AGB map was
converted into five ranges (Figure 4).The estimate of total AGB for Changbai Mountain region forests
for 2007 was about 402.65 Mt (millions tons). The AGB of most forests in this region ranges from
100.1 Mg·ha−1 to 150 Mg·ha−1 (Figure 5), accounting for 43.6% of the total AGB. The second largest
AGB is in the range between 150.1 Mg·ha−1 and 200 Mg·ha−1, approximately one third of the total
AGB. Forest AGB less than 50 Mg·ha−1 and AGB greater than 200 Mg·ha−1 are at the same magnitude,
in that the total AGB values for these two ranges are less than 10 Mt. The total AGB in the highest
(AGB greater than 200 Mg·ha−1) and lowest (AGB less than 50 Mg·ha−1) AGB classes account for only
a very small part of the total AGB.
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More than 800 forest stands derived from NFRI data with AGB values ranging from ~30 Mg·ha−1

to ~260 Mg·ha−1 were used to validate the AGB map generated from GLAS-derived AGB and TM
data. As it is possible that more than one map pixel to fall into one forest stand, the AGB value of a
forest stand was compared with the averaged AGB value of two or more pixels. As many as 18 pixels
were located in one forest stand. An R2 with 0.72, and RMSE of 25.24 Mg·ha−1 show overall high
consistency (Figure 6).
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4. Discussion 

A method to predict AGB in the Changbai Mountain area was developed by combining large 
footprint LiDAR data, field measurements, and Landsat TM data. GLAS footprint data, as a method 
of sampling, was important for linking field plot data to TM data because they could extrapolate the 
AGB of limited field plots to a large area. The LiDAR waveform records the interaction of a laser 
beam with trees in a footprint, starting from the crown. The crown shape of a coniferous tree is 
similar to a cone. Therefore, to estimate the AGB of the coniferous forest within a GLAS footprint, 
some waveform variables reflecting the characteristics of the canopy vertical structure were used in 
the regression model, such as the mean canopy height or h50. The structure of a broadleaved tree or 
a mixed forest stand is more complex, and cannot be described by one type of tree crown. More 
variables reflecting the overall structure of canopies were used in the models. We found quartile and 
decile heights for waveform energy reaching 75% (h75) and 100% (h100) were positively correlated 
with AGB estimates for deciduous coniferous forest and deciduous broadleaved forest. Other 
researchers have also found that both h50 and h75 were good indicators of forest vertical structure 
[38,84]. For example, Lefsky et al. [84] found that the mean canopy height was highly related to the 
AGB of Douglas-fir and western hemlock in Oregon, OR, USA. We also discovered that h50 (similar 
to mean canopy height) were useful for AGB estimation of coniferous in the Changbai Mountain 
areas, which is located at a latitude similar with Oregon. Based on our results and those of 
researchers listed above, we suggest that GLAS variables closely related to mean canopy height or 
total waveform length, quartile and decile heights (h75 and h100) be included in the list of 
candidate predictors in GLAS variable selection performance aimed at estimating AGB. Since the 
GLAS-based models tend to overestimate GLAS footprint AGB with increasing slope[38], some 
researchers used stratified regression models to analyze the impact of slopes on AGB estimates 
[8,40]. The strategy was adopted in this study by combining several terrain index variables that were 
sensitive to topography. We also suggest consideration be given to the leading edge extent, trailing 
edge extent, and hslope. The results have proved the stratified strategy with R2-a values of all 
regression models were greater than 0.76 and R2 values in AGB model validation were higher than 
0.79. 

We used forest inventory stands data for calibration and assessment AGB models based on the 
assumption that this dataset were reliable. However, some issues should be paid more attention. 
First, due to lack of sufficient field measurements, forest inventory stands maps were adopted. We 
should be very careful when using the AGB from forest inventory stands maps because they were 
estimated from optical and topographic extrapolation models, and if used for calibration of RF 
models the results might end up being artificially good. Although forest stands maps were spatially 
limited to a small area, they could provide sufficient AGB samples that were co-located with GLAS 
footprints. Second, to use more representative samples for training models, all GLAS-derived AGB 
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For coniferous forest, canopy closure was the most important metric in four AGB ranges.
In addition, it was the most important metric in AGB ranges ≥150 Mg·ha−1, with the largest
contribution in estimating high-density AGB (≥150 Mg·ha−1) for all forest types (Figure 7).
Its importance was significantly increasing along with the increase of AGB range for coniferous
forest and mixed forest. The metric was more important in AGB models of coniferous forest than the
importance in AGB models of broadleaved forest. LAI was the most important metric in AGB ranges
<100 Mg·ha−1 for mixed forest and in AGB ranges <150 Mg·ha−1 for deciduous broadleaved forest.
Additionally, it was the second most important metric in AGB models of deciduous coniferous forest
and the evergreen coniferous forest (in AGB ranges ≥50 Mg·ha−1). Its importance in AGB models of
broadleaved forest was greater than the importance in AGB models of coniferous forest. Comparing its
importance in AGB models of evergreen coniferous forest and deciduous forest respectively, the former
was lower than the latter. Among the vegetation index metrics, NDVI was the most important metric
in AGB models of four forest types. The importance of NDVI was gradually decreased, along with
the increase of the AGB from low-range (<50 Mg·ha−1) to high-range (≥150 Mg·ha−1) for coniferous
forest and mixed forest. The VI was the second important metric in AGB ranges <50 Mg·ha−1 for
mixed forest, evergreen coniferous forest, and deciduous broadleaved forest. The importance of DEM
data was keep in a stable level compared to other metrics in modeling AGB, being relatively high for
deciduous coniferous forest.
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4. Discussion

A method to predict AGB in the Changbai Mountain area was developed by combining large
footprint LiDAR data, field measurements, and Landsat TM data. GLAS footprint data, as a method
of sampling, was important for linking field plot data to TM data because they could extrapolate the
AGB of limited field plots to a large area. The LiDAR waveform records the interaction of a laser
beam with trees in a footprint, starting from the crown. The crown shape of a coniferous tree is similar
to a cone. Therefore, to estimate the AGB of the coniferous forest within a GLAS footprint, some
waveform variables reflecting the characteristics of the canopy vertical structure were used in the
regression model, such as the mean canopy height or h50. The structure of a broadleaved tree or a
mixed forest stand is more complex, and cannot be described by one type of tree crown. More variables
reflecting the overall structure of canopies were used in the models. We found quartile and decile
heights for waveform energy reaching 75% (h75) and 100% (h100) were positively correlated with AGB
estimates for deciduous coniferous forest and deciduous broadleaved forest. Other researchers have
also found that both h50 and h75 were good indicators of forest vertical structure [38,84]. For example,
Lefsky et al. [84] found that the mean canopy height was highly related to the AGB of Douglas-fir and
western hemlock in Oregon, OR, USA. We also discovered that h50 (similar to mean canopy height)
were useful for AGB estimation of coniferous in the Changbai Mountain areas, which is located at a
latitude similar with Oregon. Based on our results and those of researchers listed above, we suggest
that GLAS variables closely related to mean canopy height or total waveform length, quartile and
decile heights (h75 and h100) be included in the list of candidate predictors in GLAS variable selection
performance aimed at estimating AGB. Since the GLAS-based models tend to overestimate GLAS
footprint AGB with increasing slope [38], some researchers used stratified regression models to analyze
the impact of slopes on AGB estimates [8,40]. The strategy was adopted in this study by combining
several terrain index variables that were sensitive to topography. We also suggest consideration be
given to the leading edge extent, trailing edge extent, and hslope. The results have proved the stratified
strategy with R2-a values of all regression models were greater than 0.76 and R2 values in AGB model
validation were higher than 0.79.

We used forest inventory stands data for calibration and assessment AGB models based on the
assumption that this dataset were reliable. However, some issues should be paid more attention. First,
due to lack of sufficient field measurements, forest inventory stands maps were adopted. We should
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be very careful when using the AGB from forest inventory stands maps because they were estimated
from optical and topographic extrapolation models, and if used for calibration of RF models the results
might end up being artificially good. Although forest stands maps were spatially limited to a small
area, they could provide sufficient AGB samples that were co-located with GLAS footprints. Second, to
use more representative samples for training models, all GLAS-derived AGB were used for calibration
models. The forest inventory stands data that were not used for calibration were used for validation of
the AGB map. This was also based on the assumption that forest inventory stands data were reliable,
however, the validation just evaluated at the aggregated units (the forest stands used in validation were
varied from ~0.3 ha to ~3 ha in size) which were spatially limited to small areas. In future research, we
plan to use two methods to improve the processing of validation process: (1) the use of GLAS-derived
AGB for validation, which have similar spatial resolution with TM data and represent a relative even
sampling spatial distribution; and (2) the use field measurements matched with pixel size of AGB map
as much as possible.

When AGB was estimated from the GLAS footprints, the GLAS-derived AGB can serve as a
calibrated inventory dataset for the whole region, overcoming the dependency on a large amount
of forest inventory data. Extrapolating a large number of GLAS-derived AGB to a continuous map
required widespread surface coverage. MODIS images had been used for extending the forest AGB
from plots to sub-continental scales. However, its coarser spatial resolution and mismatch with field
observations in spatial resolutions limited its application in local regions. Landsat TM data with 30-m
spatial resolution matched well with most field observations, and its rich spectral information was
sensitive to forest cover and forest stand structure. Similar to MODIS images, TM data was prone to
saturation in high-AGB forest. Fortunately, good results in GLAS-derived AGB models could offer
reliable AGB samples with the greatest ranges in spatial distribution for developing AGB models.

Forest canopy closure, also called angular canopy cover (ACC), is the proportion of covered sky at
some angular range around the zenith, and can be measured with a field of view instrument [64]. As it
is dependent of canopy height, it will become a useful indicator that is used in estimating AGB (see the
discussion in the next paragraph). Due to the requirement of proper weather and a strong tendency
in the sampling error, in situ methods become time-consuming and labor-intensive for large areas.
As canopy cover (CC) was prone to estimations from optical remote sensing data and the relationship
between canopy cover and canopy closure had been assessed in [67], canopy closure could also be
estimated from optical remote sensing data. The relationship between CC and ACC was assessed
by four techniques of field observation. We chose the relationship derived from the hemispherical
photographs technique, which is one of the most popular methods still in use [64]. The relationship
between CC and ACC is a ratio (RCC) less than 1. Moreover, CC and ACC are both less than 100%
according to their definitions. As a result, CC divided by RCC could obtain ACC, and its value may be
more than 100%. The potential primary reason was the selection of the FOV used in the field estimation
of ACC. Paletto and Tosi [67] estimated ACC using a spherical densitometer and fisheye images with a
FOV of 60◦. Frazer et al. [85] extracted the canopy structure using fisheye photographs with a FOV
of 150◦. Parent and Volin [66] obtained digital hemispherical photographs using a maximum FOV of
120◦ for closed forest sites and a maximum angle of 150◦ for open sites. Jennings thought it was best to
use an angle of view of 180◦ to estimate ACC by its definition. Obviously, different options of FOV
caused biased ACC observations. In addition, tree species in the research of Paletto and Tosi was not
completely consistent with species in the Changbai Mountain region. It was inevitable to bring errors
in ACC estimation from the use of the RCC derived from their study. In a future study, we will focus
on the development of accurate method for the field observation of canopy closure in the local area.

The importance of all prediction metrics (e.g., TM-derived variables and DEM) was evaluated.
These importance cannot be explained in terms of physical relationships between the remote sensing
variables and the AGB; they simply represent the relative significance of the remote sensing variables
and their spatial characteristics to stratify forest types in the estimation of AGB. Despite the lack of
explanation from the perspective of the physical mechanism, we attempted to illustrate the relationship
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between prediction variables and AGB from the perspective of vegetation and ecological remote
sensing. Although canopy closure was estimated from canopy cover in our study, it is actually a
variable dependent on canopy height, which is closely correlated to AGB. As we can see in Figure 8,
A is the canopy gap fraction (CGF) that is used to refer to the proportion of canopy gaps in an angular
field of view [64]. Canopy closure equals 1 − CGF. For different canopy heights, canopy cover (B in
Figure 8) can be a constant, but CGF is not. Therefore, canopy closure contains information on the
canopy height that can be used in AGB estimation. As the crown shape of a coniferous tree is regular
and the interval between adjacent trees is relatively constant, the vertical structure of coniferous forest
stands is more significant than broadleaved forest stands. This can explain why canopy closure is more
important in AGB models of coniferous forests than the importance in AGB models of broadleaved
forests. Most forests in the AGB range ≥150 Mg·ha−1 were mature forest or over-mature forest,
and spectral reflectance was becoming saturated in middle-to-high AGB forest, so the importance of
canopy closure in AGB prediction was highlighted. LAI is a key biological and physical parameter in
most ecosystem because: (1) it defines the area that interacts with solar radiation and provides much
of the remote sensing signal; and (2) it is the surface that is responsible for carbon absorption and
exchange within the atmosphere [86]. As an important indicator of foliage AGB, LAI showed relatively
low importance in models of AGB estimation in the study. It was consistent with the knowledge
that foliage AGB accounts for a small proportion of AGB in a forest stand. Since vegetation spectral
reflectance contains information on the vegetation chlorophyll absorption bands in the visible region
(especially in the blue band and the red band), and sustained high reflectance in the near-infrared
and shortwave infrared regions, a few vegetation indices were created using the inverse relationship
between red (or blue, green) and near-infrared reflectance associated with healthy green vegetation.
Through normalizing or modeling external effects (e.g., the sun angle, viewing angle, and atmosphere
condition) and internal effects (e.g., topography variations and soil variations), these vegetation indices
(VIs) maximize sensitivity to vegetation biophysical parameters, such as tree abundance, basal area,
stem density, and crown size, which are correlated to some degree with AGB. As can be seen in
Figure 7, for four forest types, VIs showed overwhelming importance in an AGB range less than
100 Mg·ha−1. In addition to the reason mentioned above, TM data were closer to vegetation density
than to its vertical structure, which leads to their saturation, starting from 100 to 150 Mg·ha−1 [16].
DEM data contributed less than other variables in modeling AGB, with relatively higher contribution
in AGB estimation of deciduous coniferous forest due to its specific distribution ranges and extensive
topographic features in the ranges.

Profile analysis was used to indicate continuous forest-richness in altitudinal vegetation zones.
Good agreement between our findings and a previous study [48] implied that the classification accuracy
of the land cover map was acceptable. As the Changbai Mountain region lies across two countries
(China and North Korea) and there is a lack of forest inventory data in North Korea, AGB estimates
were only validated in the Chinese region. As much as possible, forest stands with the greatest ranges
in spatial and quantity distribution of AGB were selected. AGB with large R2 and relatively lower
RMSE showed good agreement between AGB estimates and forest inventory data. The forest AGB
map would be useful for depicting and quantifying the distribution of forest AGB over the Changbai
Mountain region.
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5. Conclusions

We used large footprint LiDAR data, Landsat TM data, and field measurements to generate an
accurate forest AGB map of the Changbai Mountain region. Four main forest types were exacted
from TM data and identified in altitudinal vegetation zones by profile analysis. The characteristics
of altitudinal vegetation zones were significant on the north slope, south slope, and west slope of
Changbai Mountain. On the north slope, mixed forest, coniferous forest, and deciduous broadleaved
forest were dominant at three altitudinal zones (from ~700 m a.s.l. to ~1150 m a.s.l., from ~1150 m
a.s.l. to ~1800 m a.s.l., and above ~1800 m a.s.l.), respectively. Mixed forest is dominant on the west
slope at an elevation ranging from ~800 m to ~1650 m. On the east slope, mixed forest and deciduous
coniferous forest are dominant at an elevation ranging from ~1000 m to ~1900 m. A stratified regression
strategy was adopted to develop regression models linking field AGB estimates and GLAS metrics
according to forest types. The R2-a values of AGB models estimated from GLAS waveform data are
greater than 0.76. TM-derived vegetation indices, LAI, canopy closure and DEM data were modeled to
the extrapolated GLAS-derived AGB of the Changbai Mountain region by use of the RF method. An R2

of 0.72 showed the overall high consistency between the estimated AGB and the forest inventory data.
The contribution of remote sensing variables in modeling AGB was evaluated in four AGB ranges
(<50 Mg·ha−1, 50-100 Mg·ha−1, 100-150 Mg·ha−1, and ≥150 Mg·ha−1). The canopy closure was the
most important variable when AGB ≥150 Mg·ha−1, while vegetation index metrics accounted for large
amount of contribution when AGB <150 Mg·ha−1. Canopy closure acquired from field observations
should include all sizes of gaps in the FOV. DEM data were the least important of all variables in
modeling AGB.

In general, we combined GLAS and TM data to estimate forest AGB in the Changbai Mountain
region. GLAS footprints, as a method of sampling, can be extrapolated to generate a continuous AGB
map of Changbai Mountain at a spatial resolution of 30 m. Although we attempted to explain the
importance of remotely-sensed variables from the viewpoints of vegetation and ecological remote
sensing, there is need to further quantify the relationship between these variables and AGB under
different conditions, from the perspective of the physical mechanism. The relatively fine-scaled
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forest AGB map provides spatially-explicit AGB information for forest carbon cycle studies and forest
resource management in the East of Eurasia.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/9/7/707/s1.
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