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Abstract: Google Earth (GE) provides very high resolution (VHR) natural-colored  

(red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide 

coastal areas. GE is rarely used as a direct data source to address coastal issues despite the 

tremendous potential of data transferability. This paper describes an inexpensive and  

easy-to-implement methodology to construct a GE natural-colored dataset with a submeter 

pixel size over 44 km2 to accurately map the water depth, seabed and land cover along a 

seamless coastal area in subtropical Japan (Shiraho, Ishigaki Island). The valuation of the 

GE images for the three mapping types was quantified by comparison with directly-purchased 

images. We found that both RGB GE-derived mosaic and pansharpened QuickBird (QB) 

imagery yielded satisfactory results for mapping water depth (R2
GE = 0.71 and R2

QB = 0.69), 

seabed cover (OAGE = 89.70% and OAQB = 80.40%, n = 15 classes) and land cover  

(OAGE = 95.32% and OAQB = 88.71%, n = 11 classes); however, the GE dataset 

significantly outperformed the QB dataset for all three mappings (ZWater depth = 6.29,  

ZSeabed = 4.10, ZLand = 3.28, αtwo-tailed < 0.002). The integration of freely available elevation 

data into both RGB datasets significantly improved the land cover classification accuracy 

(OAGE = 99.17% and OAQB = 97.80%). Implications and limitations of our findings 

provide insights for the use of GE VHR data by stakeholders tasked with integrated coastal 

zone management. 
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1. Introduction 

The coastal zone constitutes a beacon landscape because of its rich and abundant ecological  

services [1,2] coupled with its high vulnerability to ocean-climate change and local disturbances [3]. 

Hosting 40% of the world’s population within 100 km of the shoreline [4], the coastal zone is subject 

to profound and ongoing changes, such as sea-level rise [5], loss of crucial ecosystem functions  

(e.g., water filtering, food production, carbon sequestration and tourism generation; see [1]) and 

disruption of the complex socio-ecological fabric [6]. Anticipating the location and extent of coastal 

impacts requires an understanding of the dynamics of the landscape processes that are intricately 

linked with their spatial patterns [7].  

Earth observations have a great potential to investigate coastal features because of their capacity to 

reliably and iteratively represent coastal zone in a spatially explicit way at relatively low costs [8]. The 

largest body of literature has focused on large-scale issues using coarse and medium spatial resolution 

sensors such as Landsat, MODIS, ASTER, RaDARSAT, SeaWiFS or TOPEX/Poseidon instruments. 

As a result, meaningful global and regional variables tied to coastal issues such as land cover [9], land 

elevation [10], coastline [11], sea surface temperature [12], sea chlorophyll concentration [12] or sea 

elevation [13] have been derived from freely available satellite imagery. Although these spatialized 

drivers have significantly contributed to coastal sciences, they are not able to elucidate individual 

processes that shape the complex landscape because of their relatively low spatial resolution [14]. This 

limitation strongly undermines coherent multi-scale management based on large-scale assemblages of 

fine-scale elements. 

With the launch of the IKONOS satellite in 1999, coastal monitoring has leveraged submeter spatial 

information capable of investigating landscape units (e.g., houses, trees, coral colonies, etc.) at the 

meter scale [8]. Since then, three other very high resolution (VHR) multispectral sensors, QuickBird, 

GeoEye-1 and WorldView-2, have joined IKONOS as spaceborne instruments capable of refining the 

texture of features while increasing the signal-to-noise ratio. The technological breakthrough has 

therefore enabled mangrove species [15], saltmarsh invasive species [16], hydrological dynamics of 

peatlands [17] and seamless coastal patches [14] to be accurately mapped. However, a trade-off 

between spatial coverage (≤20 km swath) and resolution (≥0.5 m AND ≤2 m) compounded with a high 

purchase cost (≥12.5 US$·km−2) has heavily impaired the study of large-scale areas.  

In 2005, Google Inc. released Google Earth (GE), a freely available version of Earth Viewer 3D 

that enabled all personal computer users to visualize superimposed landscapes derived from satellite 

and aircraft imageries based on a geographic information system (GIS) environment. GE offers images 

based on VHR satellite data as an open source platform, which has proven to be an asset for 

qualitatively validating global mangrove forests [18] and referencing wetland changes in China [19], 

for example. Excluding a limited number of studies assessing GE horizontal accuracy [20], removing 

shadows from GE [21] and mapping specific land use/land covers [22], GE images have rarely been 
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used as the primary material for VHR coastal mapping. Indeed, a transferrable and easy method of 

exploiting GE images will provide a common and robust framework upon which a large panel of 

scientists and stakeholders might tackle coastal issues. 

A pioneer team endeavored to use VHR GE images as a direct source for mapping [22]; however, 

their methodology suffered from several limitations (i.e., non-English-based software used to 

download GE images, GE altitude-resolution relationship, comparison date of GE images versus native 

images, etc.), which significantly hindered the reproducibility of their results and, therefore, the 

transferability of their method to the community. With the goal of serving as many people as possible 

involved in geospatial management, an easy-to-implement and transparent method should be built so 

that any person equipped with a computer, internet access, a GE professional license and GIS software 

might study the coastal seamless landscapes at VHR. We have attempted to develop such a method and 

apply it to a complex coast provided with coral reefs, seagrasses and mangroves as well as crop fields 

and villages (Shiraho, Ishigaki Island, Japan, Figure 1). Three common issues are addressed: how 

reliable are the GE images for (1) water depth, (2) seabed cover and (3) land cover mapping? The 

reliability will be established based on a comparison between the mapping accuracy derived from GE 

images and their corresponding commercial spaceborne images. 

Figure 1. The study area is located in (A) the Yaeyama Archipelago (Japan), (B) along the 

southeastern coast of Ishigaki Island, which is called Shiraho. The study area is represented 

by (C) a natural-colored (R, band 3; G, band 2; B, band 1) image derived from QuickBird 

imagery collected on 2 July 2007. This specific imagery was purchased because of its 

explicit use in Google Earth and DigitalGlobe databases. 
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2. Materials and Methods 

2.1. Study Site 

Located at the extreme southwest of the Japanese Archipelago, Ishigaki Island lies on the 1200 km 

Ryukyu Arc, which has coasts featuring coral reefs and terraces of emergent coral reefs. Ishigaki 

coastal waters benefit from the strong western boundary Kuroshio Current, which connects the 

Philippine Sea tropical waters to the East China Sea subtropical waters [23]. Specifically, the Shiraho 

area hosts a rich marine biodiversity that includes three pivotal blue carbon ecosystems 

(i.e., mangroves, seagrasses and coral reefs), fish species, and the world’s largest colony of rare blue 

ridge coral (Heliopora coerulea). The area has been in a recovery phase since a severe bleaching 

occurred in 1998 [24] that caused a significant loss of healthy corals in Japan’s reefs, e.g., [25]; this 

ecological hotspot is now coping with soil runoff and sedimentation stemming from the increased 

number of farmlands in the adjacent watershed (Todoroki watershed). In addition to the reefscape with 

a well-developed reef (outer reef, reef crest, channels and moat) that includes intricate patches of 

branching (Acropora spp.) and massive (Porites spp., Heliopora coerulea) coral and seagrass, the 

Shiraho watershed shows a rural landscape composed of human infrastructure (buildings and roads) 

clusters, crop fields (sugarcane, bare soil) and grassland matrices as well as woodland compact areas. 

The high degree of landscape diversity and heterogeneity encountered across Shiraho’s seamless coast 

makes it suitable as the target area of our mapping. 

2.2. Remotely Sensed Datasets 

Unlike the freely available license, the GE professional license ($US 399 per year) authorizes 

displayed RGB images (8-bit radiometric resolution) to be saved in the form of a Premium 

uncompressed JPEG file (4800 × 4153 pixels) with no copyright watermarks precluding any 

informational mapping. The construction of the GE spatial dataset relies on successive steps that can 

be summarized in a flowchart (Figure 2).  

Figure 2. Conceptual flowchart describing the successive steps enabling a Google  

Earth-derived very high resolution mosaic to be created. 
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(1) Once the area of interest (ranging from local to regional scales) has been selected on GE (here, 

44 km2 Shiraho area), an acquisition date should be specified (here, 2 July 2007) using the historical 

imagery button included in the GE toolbar. (2) Embedded at the bottom of the image is the company 

name of the source sensor (here, DigitalGlobe) following “Image © year”. DigitalGlobe provides high 

resolution multispectral satellite images (IKONOS, QuickBird, GeoEye-1 and WorldView-2, launched 

in 1999, 2001, 2008 and 2009, respectively). Although unstated, the sensor can be revealed (here, 

QuickBird, QB) based on the acquisition and sensor launch dates as well as the on-line DigitalGlobe 

and GeoEye archive browsers (browse.digitalglobe.com and geofuse.geoeye.com, respectively). Using 

the acquisition date over the targeted area, a series of image parameters such as the sensor vehicle, area 

maximum and average off nadir angles, average target azimuth, and area minimum sun elevation, can 

be freely retrieved. Because the sun elevation is correlated with the time at a specific date at a specific 

location, it is possible to compute the acquisition time (here, 02:45 Greenwich Mean Time, GMT) 

using a free on-line solar calculator (e.g., http://www.esrl.noaa.gov/gmd/grad/solcalc/), which is 

significant for deducing the tide level. (3) Positioning the virtual GE eye at the proper altitude and 

geometry are the next critical points. A preliminary analysis is based on the pixel measurements of five 

coastal features lying on the 0.6 m pixel size QB image (dotted lines in Figure 3) and the GE images 

gradually saved along an eye altitude gradient ranging from 900–1100 m (solid lines in Figure 3). 

Insofar as the confluence between the dotted and solid lines (see Figure 3) reveals the eye altitude at 

which the GE pixel size matches this of QB for each feature, the 1010 m eye altitude reaches 

consensus for the five features. (4) It is then possible to establish an acquisition plan over the area of 

interest that accounts for the appropriate eye altitude and an overlap of at least 30% between 

contiguous images. (5) Along the flight plan, it is especially important to carefully adjust the eye 

altitude with the drag slider, click “N” on the compass to set the yaw to north and position the field of 

view at nadir using the pitch control on the same compass. (6) After collecting all of the VHR images 

(here, n = 39), a mosaic procedure is performed that is facilitated by the substantial overlap among 

images. The free trial version of the bioimage Mayachitra Imago software (Mayachitra Inc., Santa 

Barbara, CA, USA) enabled the RGB images to be mosaicked based on the rotation-scaling-translation 

(RST) algorithm [26], which aligned the images by transforming the input images (neither stretching 

nor skewing) to optimally match the overlapping three-dimensional data. (7) The resulting VHR RGB 

mosaic is registered (RST warping and nearest-neighbor resampling, RMSE < 0.6) using the freely 

available QGIS software (qgis.org) based on ground control points (GCP) (here, n = 45, see red flags 

in Figure 4C) whose geographic coordinates are directly based on GE geolocations (geographic 

latitude/longitude projection and 1984 World Geodetic System (WGS84) datum) at the lowest eye 

altitude, which provides the greatest accuracy possible (i.e., 7 m) (Figure 4A). Importantly, the 

mosaicking procedure may be carried out freely during the 30 days of the Mayachitra Imago trial 

version, and would then cost from $US 200 to 1500 for a student and an academic license, 

respectively. Alternatively, the step 6 may be skipped and the step 7 may be applied to each image so 

that a final mosaic of registered images can be obtained.  
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Figure 3. Curve plot linking the Google Earth eye altitude and pixel number characterizing 

certain coastal targets of reference. The dotted lines correspond to the actual pixel number 

of each target of reference, measured on the QuickBird image, and the solid lines 

correspond to the targets’ pixel number derived from the Google Earth images saved along 

the 900–1100 m eye altitude range. 

 

To assess the potential of GE for studying VHR coastal mapping, the exactly corresponding QB 

imagery collected on 2 July 2007 at 2:45 GMT over the Shiraho area was purchased. The 8-bit 

imagery is composed of four multispectral images (blue, green, red and infrared) at 2.4 m spatial 

resolution and one panchromatic image at 0.6 m spatial resolution. The spatial resolution of the 

multispectral images can be scaled up to the resolution of the panchromatic using the pixel-level fusion 

technique pansharpening [27]. Based on previous results [14], this procedure was applied using a 

simulation of the 2.4 m panchromatic image that accounts for the optical transmittance of the QB 

sensor, Gram-Schmidt sharpening transformation, and cubic convolution resampling. As a result, the 

source dataset featured RGB images (deletion of the infrared) with 0.6 m spatial resolution, thus 

paralleling those of GE. Initially referencing the UTM 52 N projection, the source dataset was further 

registered (RST warping and nearest-neighbor resampling) based on the previous 45 GCP (RMSE < 0.6) 

under the geographic latitude/longitude projection (Figure 4B).  

Because of concerns regarding transferability, we processed the GE and source datasets directly 

from digital numbers (DN) without radiometric (radiance and reflectance) or sun-glint corrections. 

Clouds and their resulting shadows were masked out using a pre-classification resulting from an 

analysis-based visual delineation (Figure 4C). 
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Figure 4. Natural-colored (RGB) images of the study site stemming from (A) Google 

Earth-derived very high resolution mosaic and (B) QuickBird pansharpened imagery.  

(C) Natural-colored image of the study site overlaid by ground-truth locations: red flags 

symbolize the locations of the 45 ground control points; blue squares (n = 1005) and circles 

(n = 495) represent marine training and validation points, respectively, and green squares 

(n = 737) and circles (n = 363) represent the land training and validation points, 

respectively; yellow dots represent the location of the 22,481 acoustic measurements.  

(D) Mask image of the clouds (in red) and related shadows (in green). 

 

2.3. Coastal Water Depth and Cover Types 

Fieldwork data were collected (Figure 4C) for the water depth retrieval and marine and terrestrial 

mapping from 25–31 January 2013 and used as validation data for the remotely sensed images. 

Because the campaign was conducted five-and-a-half years after the satellite acquisition, a rigorous 

correction of the tide level for both the sonar survey and the satellite image enabled the surveyed and 

image-derived water depth to be compared on the same basis. Since there was no major  

high-energy event, such as a tsunami or strong typhoon, to damage the Shiraho area and no bleaching 

episode threatening the dominance of coral reefs, we may reasonably assume a socio-ecological spatial 

stability (i.e., no critical shifts in both human and natural habitats) during the satellite-to-field period. 

The seasonality effect will be further discussed. 

2.3.1. Bathymetry and Topography  

An acoustic survey was conducted to measure the water depth of the Shiraho lagoon area. Sounding 

was performed from a small fishing boat equipped with a dual frequency (50/200 kHz) transducer 

(single beam) and 12-channel GPS antenna (Lowrance LCX-15MT). Data were recorded at 1 Hz to a 
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multimedia card (MMC), and the boat followed transects across the lagoon at an average speed of  

1 m·s−1 and spanned a large variability of water depth and seabed cover. The horizontal and vertical 

spatial accuracy delivered by the acoustic system were estimated to reach 1 m and 0.03 m,  

respectively [28]. A total of 22,481 individual measurements were recorded and corrected for the tide 

level by coupling the GMT and Ishigaki Port tide prediction heights. (http://www1.kaiho.mlit.go. 

jp/KANKYO/TIDE/tide_pred/index_e.htm). The corrected dataset will assist in the quantification of 

the accuracy of further Digital Relative Depth Models (DRDMs). 

To compute a DRDM using a simple but proficient methodology based only on RGB images, we 

opted for the calibrated ratio transform [29,30], solving for the water depth as follows: = 1
ln ( i)ln ( j) − 0 (1)

where DNi and DNj refer to the digital numbers of the wavebands i and j, respectively; m1 and m0 are 

the slope and intercept of the fitted linear model; n is a fixed constant to ensure that the natural 

logarithm is positive. According to the increasing absorption of light by water from the blue to red 

bands, we tested three possible spectral combinations for each remotely sensed dataset. The resulting  

six DRDM were compared with the water depth measurements and specifically corrected for the tide 

level bound to the satellite acquisition time. The accuracy of the DRDM was determined by computing 

the Pearson product-moment correlation coefficient (r) and coefficient of determination related to the 

fitted linear model (R2). The comparison of the DRDM accuracy was performed to show the 

significance of the differences using the following equation: 

= i × i

i
− j × j

j( i × i + j × j)( i + j) × 1 − ( i × i + j × j)( i + j) × 1
i
+ 1

j

 (2)

where Ri
2 and Rj

2 refer to the linear coefficients (determining the relationships between modeled and 

actual water depths) pertaining to DRDM i and DRDM j, respectively; and Ni and Nj correspond to the 

total amount of soundings over the DRDM i and DRDM j, respectively. Because of the large sample 

size and central limit theorem, the value Z can be confidently used to test the significance level 

between two DRDM because the Z distribution can be approximated by a normal distribution under the 

null hypothesis.  

Topographical data, which were not derived from the remotely sensed datasets, were employed to 

verify whether it improves the mapping results associated with terrestrial cover types. For the sake of 

affordability, freely available elevation data were sourced from the Advanced Spaceborne Thermal 

Emission And Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 2, 

provided at one arcsecond (approximately 30 m at the equator) and 8 m of horizontal and vertical 

resolution (http://www.jspacesystems.or.jp/ersdac/GDEM/E/4.html). A digital elevation model scaled 

up at 0.6 m spatial resolution was created by interpolating to regular grid Delaunay-triangulated 

GDEM data points (Figure 5A). A relevant combination of the GDEM and GE natural-colored 

(Figure 5B) data consists of calculating an elevation-based 3D point cloud (Figure 5C) over which the 

GE image can be draped (Figure 5D).  
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Figure 5. Maps of the (A) elevation and (B) natural-colored (RGB) data over the study site 

stemming from Global Digital Elevation Model Version 2 and Google Earth-derived very 

high resolution mosaic, respectively. Based on xyz data, (C) a 3D point cloud was built, 

over which the RGB image was draped (D).  

 

2.3.2. Coastal Cover Types 

Because of the required level of precision, the collection of marine images was conducted 

simultaneously with the sonar survey and determination of terrestrial cover types was undertaken using 

local knowledge of the area and image inspection. 

Underwater images were acquired from a low-cost compact high resolution video camcorder 

(GoPro Hero 3, 1440 res, 30 fps with wide field of view) placed just underneath the water surface so 

that very shallow seabeds could be monitored. An array of 7h54min50s video recordings that were 

geolocated with 1 m horizontal accuracy (see sonar survey) enabled the extraction and further analysis 

of 166 high-quality images. A grid of 100 evenly distributed cases was superimposed on each image to 

quantify the surface area occupied by various seabed types (n = 15, Table 1). Relying on the 

percentage of dominant seabed type (>90%), 10 so-called pure images by seabed type were selected 

and considered as representatives of their inherent type. By matching the locations of the pure images 

and corresponding pixels, a spectrally even buffer area was grown around each pixel so that a series of 

100 pixels was assigned to each seabed type.  

Land reference data were composed of a mix of in situ georeferencing and image interpretation. 

A panel of 11 land types (Table 1) was selected as the representative cover types in Shiraho. For sparse 

but noteworthy types, such as sugar cane fields and mangrove forests, the geographic coordinates of 

the target perimeter were attained using a handheld Garmin eTrex 20 GPS. For sufficiently contrasted 

spatial and spectral information, the pixels tied to the remaining land types (n = 9, Table 1) were 

assigned through a visual inspection by a single analyst. For each land type, 100 pixels were selected 

either between or around the core pixels (i.e., matching locations of the surveyed and mapped data) to 

determine a dataset that is balanced within a seamless coastal landscape. 
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Table 1. Description of the 26 seamless coastal cover types in Shiraho, which contain  

15 marine and 11 terrestrial classes. 

Realm Cover Type Description

Marine 

Abenthic Optical deep water 

Mud 
Terrigeneous and coralligeneous clastic sediment below 0.0625 mm 

grain size 

Fine sand 
Coralligeneous clastic sediment ranging from 0.0625 to 0.25 mm 

grain size 

Sand Coralligeneous clastic sediment ranging from 0. 25 to 0.5 mm grain size 

Coarse sand Coralligeneous clastic sediment ranging from 0.5 to 2 mm grain size 

Pebble Coralligeneous clastic sediment ranging from 2 to 64 mm grain size 

Cobble Coralligeneous clastic sediment ranging from 64 to 256 mm grain size 

Boulder Coralligeneous clastic sediment ranging above 256 mm grain size 

Blue algae Cyanobacteria communities eroding consolidated coralligeneous sediment 

Brown algae 
Tufts or carpets of macroalgae dominated by Turbinaria spp. and 

Padinae spp. 

Calcareous algae 
Encrusting algae communities (e.g., coralline) eroding consolidated 

coralligeneous sediment 

Seagrass 
Meadows of aquatic phanerogam composed of Cymodocea sp., 

Halodule sp., Halophila sp., Zostera japonica 

Hard coral bommie 
Pseudo-spherical massive coral colony dominated by hexacorallian 

Porites spp. 

Hard coral thicket Field of thicket coral colony dominated by hexacorallian Acropora spp. 

Blue coral 
Pseudo-spherical massive coral colony dominated by octocorallian 

Heliopora coerulea 

Terrestrial 

River Elongated inland water body 

Wet sand 
Intertidal coralligeneous clastic sediment ranging from 0.0625 to 2 mm 

grain size 

Dry sand 
Supratidal coralligeneous clastic sediment ranging from 0.0625 to 2 mm 

grain size 

Soil Various bare substrata devoid of vegetation (if any, very sparse) 

Grass Natural and mowed herbaceous (≤0.5 m) poaceae communities 

Crop field Cultivated herbaceous vegetables and fruits

Sugar cane field Cultivated shrub poaceae (≥0.5 and ≤6 m)

Mangrove forest Natural mix of shrubs and trees (≥6 m) rhizophoraceae 

Dark forest Natural mix of tree aquifoliaceae dominated by Ardisia quinquegona

Road Anthropogenic infrastructure characterized by asphalt-covered curve lines

Roof Anthropogenic infrastructure made of ceramic or metallic tiles 

2.3.3. Classification of Coastal Covers and Accuracy Assessment 

The classification of the study area was performed for each of the remotely sensed datasets to test 

the reliability of GE for coastal mapping. Ground-truth pixels characterizing the 26 classes were 

divided into two independent clusters: the training cluster, which helped define the class-specific 

spectral signatures required for classification, and validation cluster, which was used to assess the 

accuracy of the classification process. Out of the 100 pixels representative of each class, 67 and 33 
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were randomly attributed to the training and validation clusters, respectively. The widely spread 

maximum likelihood (ML) algorithm (QGIS) is a pixel-based, supervised procedure fueled by the  

67 pixels of the 26 classes. Prior to launching the ML classifier, a curve boundary separating the land 

from water was manually delineated over the wet/dry sand demarcation line. The ML procedure was 

conducted over a marine area devoid of land based on the RGB and RGB + bathymetry datasets and 

was also applied over a terrestrial area devoid of sea based on the RGB and RGB + topography datasets. 

The validation cluster was required to construct a confusion matrix so that the accuracy of each 

classification (n = 8) could be quantified. This technique relies on the proportion of pixels that are 

correctly classified in the resulting image based on the match between the class identity of the 

validation and classified pixels. Four indicators synthesize the results of the confusion matrix: the 

overall accuracy (OA), kappa coefficient (κ), producer’s accuracy (PA) and user’s accuracy (UA). OA 

is determined by dividing the total number of correctly classified pixels by the total number of 

validation pixels (i.e., diagonal of the confusion matrix), whereas κ provides a single proportion of 

accuracy agreement above that of a random assignment of classes (i.e., off-diagonal of the confusion 

matrix). PA (omission error) and UA (commission error) determine the percentage of correct 

predictions for each coastal class [31]. A comparison between the classification accuracies was 

conducted to underscore the significance of the differences using the following equation: 

= i

i
− jj( i + j)( i + j) × 1 − ( i + j)( i + j) × 1

i
+ 1

j

 (3)

where Ci and Cj refer to the correctly classified pixels pertaining to Classification i and Classification j, 

respectively; and Ni and Nj correspond to the total amount of validation pixels across the Classification i 

and Classification j, respectively. Because of the large sample size and central limit theorem, the value 

Z can confidently be used to test the significance level between two classifications because the Z 

distribution can be approximated by a normal distribution under the null hypothesis. A two-tailed test 

was used to compute the statistical significance. 

3. Results  

3.1. Comparison of the Water Depth Retrieval  

Using the uncalibrated ratio transform, three Digital Relative Depth Models (DRDM) were 

produced for both the Google Earth (GE)-derived very high resolution (VHR) mosaic and 

pansharpened QuickBird (QB) imagery (Figure 6). For both datasets, the ratio transforms involving the 

blue and red spectral bands (see Figure 6B,E) were closely followed by the green-red combination (see 

Figure 6C,F) and provided satisfactory measures of agreement between the modeled and actual water 

depths (R2 ≈ 0.69). Interestingly, the blue-red combination (most accurate) reached higher measures of 

agreement for GE compared to QB (R2
GE = 0.7134 versus R2

QB = 0.6862, Z = 6.29, αtwo-tailed < 0.002). 

This performance difference between GE and QB occurred systematically in favor of GE across the 

three ratio transforms (Table 2). For both datasets, the blue-red DRDM were calibrated to a digital 

depth model (DDM) using the linear fitting model (associated with the R2 value indicated in Figure 6B,E) 
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to test whether and the extent to which the seabed mapping may be improved by merging the DDM to 

RGB bands. 

Figure 6. Digital Relative Depth Models (DRDM) resulting from the ratio transform based 

on blue-green, blue-red and green-red spectral bands derived from (A, B and C, 

respectively) Google Earth-derived very high resolution mosaic imagery and (D, E and F, 

respectively) pansharpened QuickBird imagery. Scatterplots comparing the relative and actual 

depths as well as the linear coefficient of determination (R2) and Pearson product-moment 

correlation coefficient (r) are embedded for each DRDM. 
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Table 2. Compilation of the Z-values between the three Digital Relative Depth Models 

with respect to the Google Earth-derived very high resolution mosaic and pansharpened 

QuickBird imagery. 

  Google Earth QuickBird 

  Blue/Green Blue/Red Green/Red Blue/Green Blue/Red Green/Red 

Google Earth 

Blue/Green X 69.74 65.10 4.82 NC NC 

Blue/Red 69.74 X 4.92 NC 6.29 NC 

Green/Red 65.10 4.92 X NC NC 4.76 

QuickBird 

Blue/Green 4.82 NC NC X 68.38 65.18 

Blue/Red NC 6.29 NC 68.38 X 3.38 

Green/Red NC NC 4.76 65.18 3.38 X 

Notes: NC means non-computed because of the purpose of the study. 

Mimicking the elevation-related Figure 5, the calibrated DDM (Figure 7A) may be exploited to 

create a 3D point cloud (Figure 7C) over which the GE natural-colored image (Figure 7B) can be 

draped (Figure 7D). 

Figure 7. Maps of the (A) water depth and (B) natural-colored (RGB) data over the study 

site stemming from the Google Earth (GE) blue-red ratio transform and GE-derived very 

high resolution mosaic, respectively. Based on xyz data, (C) a 3D point cloud was 

constructed, over which the RGB image can be draped (D). 

 

3.2. Comparison of the Seabed Cover Mapping  

The marine portion of the study area was classified into 15 classes for both the GE-derived VHR 

mosaic and pansharpened QB imagery, which were devoid of and provided with the associated DDM 

(Figure 8). Satisfactory to very satisfactory overall accuracies (OA) ranging from 80%–90% were 



ISPRS Int. J. Geo-Inf. 2014, 3 1170 

 

 

found for all of the datasets, and the GE-derived seabed maps were better matched to the validation 

data than those stemming from QB (OAGE = 89.70% versus OAQB = 80.40%, Z = 4.10, αtwo-tailed < 0.002). 

Although the GE-derived mapping displayed no UA and a single PA below 60% (i.e., PASeagrass = 57.58%), 

QB-related accuracies below 60% included two UAs (UASeagrass = 58.33% and UABlue coral = 55.56%) 

and two PAs, of which the seagrass attained a very low performance (PAHard coral bommie = 54.55% and 

PASeagrass = 21.21%) (Table 3). Including the water depth data with the RGB datasets, did not modify 

the GE-derived OA (OAGE = 89.70%) and slightly but insignificantly improved the QB-derived OA 

(from OAQB = 80.40% to OAQB_DDM = 81.21%, Z = 0.32, αtwo-tailed = 0.749). Despite the unchanged 

OA, the water depth information produced permutations among the GE-derived UA and PA that were 

beneficial to seagrass (PA = +15.15%) and all three of the coral classes (PAHard coral bommie = +18.18%, 

UAHard coral thicket = +15.25%, UABlue coral = +10.88%) and detrimental to mud (PA = −15.15%) and blue 

coral (UA = −10.22%). The modest improvement of QB mapping by including the water depth data 

appeared to be partly reflected by an enhanced seagrass discrimination (UA = +11.67%) as well as 

pebble discrimination (PA = +9.09% and UA = +9.02%). 

Figure 8. Seabed cover maps (15 classes) resulting from the Google Earth-derived very 

high resolution mosaic (A) without and (B) with an inherent digital depth model (DDM), 

and from the pansharpened QuickBird imagery (C) without and (D) with an inherent 

DDM. For each map, the overall accuracy (OA) and kappa coefficient (κ) are overplotted. 
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Table 3. Producer’s accuracy (PA) and user’s accuracy (UA) of the 15 seabed cover types 

with respect to the RGB Google Earth-derived very high resolution mosaic, QuickBird 

pansharpened datasets, and digital depth model (DDM). 

 Google Earth QuickBird 

 RGB RGB + DDM RGB RGB + DDM 

 PA UA PA UA PA UA PA UA 

Abenthic 100 100 100 100 100 100 100 100 

Mud 90.91 100 90.91 83.33 75.76 92.59 84.85 87.5 

Fine sand 100 100 96.97 100 100 100 96.97 100 

Sand 100 100 96.97 96.97 100 97.06 96.97 94.12 

Coarse sand 100 100 100 94.29 100 100 100 91.67 

Pebble 100 100 75.76 60.98 100 97.06 84.85 70 

Cobble 100 89.19 84.85 90.32 90.91 83.33 84.85 90.32 

Boulder 90.91 100 100 94.29 96.97 94.12 96.97 94.12 

Blue algae 100 97.06 75.76 65.79 100 86.84 75.76 60.98 

Brown algae 100 100 96.97 96.97 96.97 100 90.91 93.75 

Calcareous 

algae 
100 94.29 72.73 77.42 96.97 91.43 78.79 74.29 

Seagrass 57.58 61.29 21.21 58.33 72.73 66.67 21.21 70 

Hard coral 

bommie 
63.64 70 54.55 66.67 81.82 77.14 60.61 68.97 

Hard coral 

thicket 
66.67 68.75 78.79 61.9 63.64 84 78.79 68.42 

Blue coral 75.76 65.79 60.61 55.56 69.7 76.67 66.67 57.89 

3.3. Comparison of the Land Cover Mapping  

The land portion of the coastal area was categorized into 11 classes for both the GE-derived VHR 

mosaic and pansharpened QB imagery that were devoid of and provided with the associated DEM 

(Figure 9). Across the band modalities, the 11 targeted features benefited from a successful 

classification that spanned the highest deciles of both measures of agreement. Once again, the  

GE-based land maps produced better results than the corresponding QB-based maps (OAGE = 95.32% 

versus OAQB = 88.71%, Z = 3.28, αtwo-tailed < 0.002). Contrary to the GE RGB dataset, the QB dataset 

showed six UA and PA performing below 84%, of which one bottomed at 48.48% (PAMangrove forest) 

(Table 4). The combination of elevation information and RGB datasets significantly increased the GE 

and QB classification accuracy by 3.85% (OAGE_DEM = 99.17%, Z = 3.17, αtwo-tailed < 0.002) and 9.09% 

(OAQB_DEM = 97.80%, Z = 4.88, αtwo-tailed < 0.002), respectively. The inclusion of elevation was 

beneficial to the GE-mapped human infrastructure (PARoof = +12.12% and UARoad = +11.35%) and 

considerably improved the distinctness of the QB-related mangrove forest (PA = +51.52% and  

UA = +30.29%), dark forest (PA = +21.21% and UA = +23.53%), road (UA = +17.2%) and river  

(UA = +13.89%). 
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Figure 9. Land cover maps (11 classes) resulting from the Google Earth-derived very high 

resolution mosaic (A) without and (B) with an inherent digital elevation model (DEM) and 

from the pansharpened QuickBird imagery (C) without and (D) with an inherent DEM. For 

each map, the overall accuracy (OA) and kappa coefficient (κ) are overplotted. 

 

Table 4. Producer’s accuracy (PA) and user’s accuracy (UA) of the 11 land cover types 

with respect to the RGB Google Earth-derived very high resolution mosaic, QuickBird 

pansharpened datasets, and digital elevation model (DEM). 

 Google Earth QuickBird 

 RGB RGB + DEM RGB RGB + DEM 

 PA UA PA UA PA UA PA UA 

River 87.88 93.55 96.97 96.97 93.94 86.11 93.94 100 

Wet sand 100 100 100 100 96.97 100 100 100 

Dry sand 93.94 100 100 100 100 100 100 100 

Soil 100 100 100 100 93.94 96.88 96.97 94.12 

Grass 100 97.06 100 100 90.91 90.91 100 100 

Crop field 100 100 100 100 100 94.29 93.94 100 

Sugar cane 

field 
96.97 100 100 100 100 94.29 100 100 

Mangrove 

forest 
96.97 88.89 96.97 96.97 48.48 64 100 94.29 

Dark forest 96.97 91.43 100 100 78.79 76.47 100 100 

Road 90.91 85.71 100 97.06 90.91 76.92 96.97 94.12 

Roof 84.85 93.33 96.97 100 81.82 93.1 93.94 93.94 
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4. Discussion 

4.1. Coastal Shallow Water Depth 

Both GE- and QB-based water depth retrievals within Shiraho marine zones ranging from 0–15 m 

reached a satisfactory measure of agreement with the acoustic survey (R2 ≈ 0.7). It is noteworthy that 

the sounding survey occurred along the lagoon and not along the deeper outer reef (see yellow lines in 

Figure 4C). In addition, the survey coverage contained some along-shore lines which may exaggerate 

the water depth accuracy in overweighting some water depth ranges. The measure of agreement, 

however, corroborates the research works using VHR multispectral spaceborne data and the eight-band 

WorldView-2 sensor [30,32]. Regardless of the data source, the best water depth extraction was 

obtained from a combination of the blue and red bands and to a lesser extent by the green and red 

bands. This result may be explained by the difference in light absorption by water [33]. Although the 

difference in the blue and green coefficients of absorption is approximately 0.045 (= 0.065 − 0.02), the 

differences associated with both the blue-red and green-red coefficients reach 0.35 (= 0.37 − 0.02) and 

0.305 (= 0.37 − 0.065), respectively [33]; greater differences produce a finer discrimination in the  

full-range of water depths. There is a significant lack of global water depth charts of coastal areas 

because their shallowness precludes the application of traditional waterborne surveys. The satisfactory 

water depth retrieval obtained from a combination of an acoustic survey and a GE professional license 

holds great promise for providing failsafe water depths at the submeter scale over local and regional 

extents. As a reflection of the synergistic collaboration between forest researchers and GE scientists [34], 

it would be highly relevant to apply the method described in this paper to coastal areas leveraging GE 

VHR data to assist researchers and stakeholders in addressing urgent coastal issues. 

Based on a substantial sampling (NGE = 22,478 and NQB = 22,481), all of the accuracy measures 

were significantly distinct (αtwo-tailed < 0.002), and the three GE-based DRDM remarkably 

outperformed those of the QB (see Figure 6 and Table 2). These original findings are surprising 

because the GE-derived VHR mosaic is sourced from QB data that are provided with the exact same 

time and location. We previously indicated that the significant differences between the two datasets are 

a result of either a divergence in the image processing technique, such as the pansharpening procedure, 

image assimilation technique, such as the JPEG format conversion, or a combination of both factors. 

The visual examination of both datasets at the highest resolution reveals a segregation in the image 

texture (Figure 10). Although we applied the resampling technique to produce the smoothest results 

(cubic convolution, see [14]) in the QB pansharpening procedure, the variation of GE pixel values with 

distance is obviously lacking high spatial frequency compared to that of QB. Therefore, it is reasonable 

to assume that GE scientists have applied a customized pansharpening algorithm to QB images and 

assimilated the images in the form of JPEG files to yield smoother output VHR images and that this 

smoother image better matched the spatial accuracy of the acoustic survey (e.g., GPS horizontal 

accuracy). Other spectral sharpening methods, such as the Color Normalized or Principal Component 

algorithms, should be tested in order to elucidate the GE products. 
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Figure 10. Natural-colored (RGB) images of the entire study area, red square zoom-in and 

blue square zoom-in stemming from Google Earth-derived very high resolution mosaic (A, B 

and C, respectively) and from pansharpened QuickBird imagery (D, E and F, respectively). 

 

4.2. Seamless Seabed and Land Cover Mapping 

The coastal zone was successfully mapped in a seamless manner at a VHR by both GE and QB 

datasets, with approximately 26 cover types resolved and typified by a lowest OA equaling 80.40% 

(i.e., OAQB_Seabed). The very high classification accuracies have to be contextualized on the basis of the 

proximity of the ground-truth pixels. Although randomly sampled, the training and validation pixels 

may suffer from a spatial autocorrelation, incurring a likely overestimation of the accuracy. Both 

datasets were composed of the three blue, green and red bands (the infrared band was excluded) and 

overarched sufficiently rich spectral information to discriminate primary cover features in a spatially 

complex environment. Consistent with the water depth results, the findings related to the classification 

accuracy showed that the GE dataset produced more reliable coastal cover maps for both marine and 

terrestrial realms than did the QB dataset. Specifically, the hard coral bommie, blue coral, dark and 

mangrove forests were much better classified based on GE data than on QB data. Presupposing the 

GE-driven smoother texture image, we can hypothesize that the pansharpened QB imagery featured a 
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texture sharp enough that the sun glint occurring over very shallow coral colonies and leaf-induced 

speckles over dense tree canopies impeded a robust classification.  

The integration of freely available elevation data into the RGB GE and QB datasets significantly 

enhanced the land cover classification accuracy, particularly for (1) human infrastructure, (2) dark and 

mangrove forests and, to a lesser degree, roads and rivers, respectively. The GDEM is derived from the 

stereoscopic sensor ASTER, which captures and renders 3D landscapes that include cover features [35]. 

Consequently, the GDEM maps the top of the human infrastructure and tree canopies, which explains 

the greater classification consistency for land cover types demonstrated in our study. Despite the initial 

spatial resolution of one arcsecond, we recommend combining the GDEM-nested elevation data that 

are rasterized at the appropriate VHR with the RGB GE-derived mosaic to optimize the land cover 

mapping. However, including the water depth information retrieved from the RGB datasets to either of 

the datasets did not significantly improve the marine cover mapping. This result may be explained by 

the absence of a water column correction to account for the RGB light by water, which is intricately 

linked with the water depth. Ongoing research on the radiometric calibration of GE data that is based 

on the sensitivity of the source sensor and sun-scene-sensor trigonometry has a strong potential to 

provide water-leaving reflectances that are capable of retrieving seabed reflectances when merged with 

calibrated DDMs. 

4.3. Limitations 

The methodology developed and discussed in this study has certain computational, optical and 

data limitations.  

The study area spanned 44 km2 and required 39 individual JPEG Premium files, which amounted to 

slightly less than one image per km2. After designing an ad hoc acquisition plan that may be 

constructed by a permanent visualization onto GE (e.g., 1 km gridlines), the standardized collection 

(see Section 2.2) of the 39 images may be relatively easy and fast. The main challenge resides in 

completing the mosaic, which is intricately linked with the joint capabilities of the inherent software 

and processor. Managing a coastal area greater than 50–100 km2 at VHR will therefore rely much 

more on the computational efforts to achieve a (very) large mosaic rather than on the image collection. 

One solution to this dilemma is to maintain the same number of images to be mosaicked but collect the 

images at higher GE eye altitudes so that the field of view can be extended, which would allow the 

mosaic to cover areas on the order of hundreds of km2. Bridging the values of GE eye altitude with 

those of all of the VHR and HR instruments’ multispectral and panchromatic pixel sizes is an objective 

that is being currently addressed. 

This study directly and indirectly compares the mapping results derived from QB through the GE 

filtering. The infrared band was excluded from the purchased QB for the sake of comparison. Because 

of the significant reflection and absorption of the infrared light by vegetation and water, respectively, 

the discrimination power of QB on land cover is susceptible to be augmented, but very little on seabed 

cover. The radiometric resolution of the purchased QB was resampled at 8 bits to parallel the  

JPEG-converted GE images; this process facilitated the interpretation of the results. Nevertheless, QB 

and new VHR sensors (see Section 2.2) provide spatial data with 11-bit radiometric resolution. 

Because of the exponential increase in the dynamic range (from 256–2048 digital numbers per spectral 
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band), the mapping performance of the purchased images is likely to increase. The well-documented 

GE predominance over source 8-bit images, which was demonstrated in this paper, must be examined 

against 11-bit images. Contrary to QB, the GE images based on digital numbers do not benefit from 

metadata allowing images to be radiometrically calibrated and atmospherically corrected. This lack 

may seriously hinder or jeopardize the water depth and cover mapping over areas featured by, for 

instance, a high level of evaporation. Tackling this paucity of information using freely available  

on-line metadata is a critical ongoing research, as evoked in Section 4.2.  

The Shiraho coastal area located along the southeastern area of the Ishigaki Island embodies a  

well-studied coastal area (mainly because of its coral reefs) in Japan and hosts a high number of 

researchers who can afford commercial VHR images. Consequently, DigitalGlobe has programmed 

image acquisitions over the Shiraho area that now leverage five VHR images from 2007–2012, which 

are available on GE. The availability of VHR images is closely related to the provider’s effort in 

acquiring data, which in turn is dependent on the ability of the customer to pay for such images. This 

assertion is consistent with that of a study of the horizontal positional accuracy over 109 cities 

worldwide, which showed a significant difference between developed and developing countries at the 

expense of the latter [21]. Prior to selecting a study area for analysis by our methodology, it is strongly 

recommended to consult the GE historical imagery to help determine the feasibility of studies on 

coastal landscape dynamics. The very low PA related to the seagrass classification may arouse some 

interrogations about a winter-summer effect. We therefore want to draw attention on a potential seasonality 

likely to bias the classification accuracy of some habitats, especially those provided with chlorophyll. 

5. Conclusions 

Focused on the seamless coastal area of Shiraho (Ishigaki, Japan), we found that both RGB  

GE-derived mosaic imagery and RGB pansharpened QB imagery yielded satisfactory to very 

satisfactory results for the water depth (R2
GE = 0.71 and R2

QB = 0.69), seabed cover (OAGE = 89.70% 

and OAQB = 80.40%, n = 15 classes) and land cover (OAGE = 95.32% and OAQB = 88.71%, n = 11 

classes) mapping. In addition, we showed for the first time that the GE dataset significantly 

outperformed the QB dataset for all three mappings (ZWater depth = 6.29, ZSeabed = 4.10, ZLand = 3.28, 

αtwo-tailed < 0.002). The integration of freely available elevation (GDEM) data into both RGB datasets 

significantly improved the land cover classification accuracy (OAGE = 99.17% and OAQB = 97.80%) 

compared to that of the water depth. Because of the associated easy-to-transfer methodology described 

in this paper, GE data might be an inexpensive alternative for researchers and stakeholders tasked with 

coastal management over worldwide coastal areas that are provided with VHR coverage. 
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