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Abstract: The postures of wheelchair users can reveal their sitting habit, mood, and even predict
health risks such as pressure ulcers or lower back pain. Mining the hidden information of the postures
can reveal their wellness and general health conditions. In this paper, a cushion-based posture
recognition system is used to process pressure sensor signals for the detection of user’s posture
in the wheelchair. The proposed posture detection method is composed of three main steps: data
level classification for posture detection, backward selection of sensor configuration, and recognition
results compared with previous literature. Five supervised classification techniques—Decision Tree
(J48), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Naive Bayes, and k-Nearest
Neighbor (k-NN)—are compared in terms of classification accuracy, precision, recall, and F-measure.
Results indicate that the J48 classifier provides the highest accuracy compared to other techniques.
The backward selection method was used to determine the best sensor deployment configuration of
the wheelchair. Several kinds of pressure sensor deployments are compared and our new method
of deployment is shown to better detect postures of the wheelchair users. Performance analysis
also took into account the Body Mass Index (BMI), useful for evaluating the robustness of the
method across individual physical differences. Results show that our proposed sensor deployment is
effective, achieving 99.47% posture recognition accuracy. Our proposed method is very competitive
for posture recognition and robust in comparison with other former research. Accurate posture
detection represents a fundamental basic block to develop several applications, including fatigue
estimation and activity level assessment.

Keywords: smart wheelchair; posture detection; smart cushion; pressure sensor; activity level assessment

1. Introduction

The continuous progress of ICT (Information and Communication Technology) is rapidly changing
our daily life. Thanks to the high processing capabilities, reduced dimensions and low cost of modern
microelectronics, a plethora of wearable devices are being realized to non-invasively support and
monitor several human daily activities. Such devices play a central role in the so-called ubiquitous
sensing [1], which aims at gathering data from the sensors and mining knowledge from them. Body
Area Networks (BANs) can measure physical activity and biophysical signals [2] and pose the basis for
a wide range of new user-centric applications in the domains of health care [3], remote monitoring [4],
activity measurement [5], activity level assessment [6], user-centric wheelchairs [7], and health care
service security [8].

In order to cope with the problems that elderly and mobility disabled individuals are facing, more
effective care services, especially for wheelchair users, need to be provided. Several supportive devices
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have already been proposed to help such people keep an independent lifestyle. For this purpose,
mobility-assistive devices, including smart wheelchairs, have recently begun to emerge. A smart
wheelchair augments the functionalities of a traditional wheelchair by means of various technologies
such as BANs [9], cloud computing [10,11], and multi sensor fusion [12].

Current research on smart wheelchairs is mainly focused on vital signals and physical activity
monitoring [13], human–machine interface to control the wheelchair [14], obstacle detection and
navigation [15], and wheelchair movement condition estimation [16].

This work is focused on a wheelchair assist system for mobility-impaired individuals that can
recognize postures using a cushion based system. Pressure sensors are used to obtain data of the
wheelchair user’s postures, several classification methods have been compared to determine an
efficient classifier, and former sensor deployment methods have been compared against our proposed
deployment to determine an optimal deployment method. In addition, some practical applications are
discussed in the paper. If dangerous situations such as long-term abnormal posture are detected, the
system can issue an alarm immediately; in addition, posture detection is a basic block towards activity
level assessment.

The main contributions of this work are the following:

• An optimization method of pressure sensor deployment is proposed to more accurately detect
sitting postures.

• An in-depth comparison of several classification techniques has been carried out to identify the
best posture classifier based on pressure sensors’ smart cushion.

• In contrast with previous studies, the Body Mass Index (BMI) is among the considered parameters
to evaluate the generality and robustness of the proposed deployment method across different
body shapes.

The reminder of the paper is organized as follows. Section 2 discusses the related work on posture
recognition using smart cushion; we describe and analyze the two main production technologies
of smart cushions for pressure detection, the first is based on pressure sensor array and the second
relies on the use of a few individual sensors deployed on the seat and backrest. Section 3 describes
the architecture of the proposed system. Section 4 reports the system evaluation; data collection and
experimental settings as well as optimal sensor selection methods are discussed here. Section 5 is
about the results and performance analysis; we compared several classifiers and the results of our
optimal sensor deployment are analyzed in comparison with the state-of-the-art. Finally, Section 6
concludes the paper and some future directions are anticipated.

2. Related Work

Most previous studies focused on monitoring physical activities of wheelchair users.
Postolache et al. [17] proposed a system for monitoring activities performed on wheelchairs by
analyzing inertial data. Hiremath et al. [18] developed a similar system but used gyroscopes for
capturing wheelchair overturn and a wearable accelerometer to detect physical activity.

Interestingly, although wheelchair users spend most of their time sitting in the wheelchair, and it
would be therefore important to analyze sitting postures and behaviors, fewer works have been devoted
to these aspects. Wu et al. [19] proposed using ultrasound sensors to measure the distance between
the user and wheelchair in order to recognize a number of sitting postures. Nakane et al. [20] focused
on fatigue assessment based posturography and developed a pressure sensor sheet. Ding et al. [21]
were interested in monitoring the status of the wheelchair including seat tilt, backrest recline, and
seat elevation. In a previous work [22], we proposed a cloud-computing infrastructure based on the
BodyCloud platform [23,24], and a pressure sensor cushion was used to monitor body postures of
wheelchair users.

Due to its unobtrusiveness, several literature works adopted a pressure sensor-based cushion
to recognize physical activity, posture and fatigue of individuals sitting on standard chairs or on
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wheelchairs [25]. Specifically, there are two main production technologies of smart cushions for
pressure detection: the first one is based on a pressure sensor array, whereas the second one relies on
the use of fewer individual sensors deployed on the seat and backrest.

2.1. Cushion with Pressure Sensor Array

Xu et al. [26] proposed a textile-based sensing system called Smart Cushion used for user’s sitting
postures. Binary pressure distribution data was collected and the data model can be interpreted as
binary representation of a gray scale image. Dynamic time warping has been applied to pressure
distribution in order to recognize postures. There is also a representative sensor matrix called an I-Scan
System developed by Tekscan [27]. The versatile I-Scan tactile pressure mapping system consists of over
2000 pressure sensors. It is a powerful tool that accurately measures and analyzes interface pressure
between two surfaces. Tan et al. [28] used the commercially available pressure distribution sensor
called a Body Pressure Measurement System (BPMS), also manufactured by Tekscan. Using principal
components analysis to analyze a pressure distribution map as a gray scale image, sitting posture
classification was successfully processed. Mota et al. [29] also used Tekscan; posture features were
extracted using a mixture of four Gaussians and served as input to a three-layer feed-forward neural
network. Nine different postures were recognized with 87.6% accuracy on average. Meyer et al. [30]
presented their own capacitive textile pressure sensor array cushion to measure pressure distribution
of the human body. They used a Naive Bayes classifier to identify 16 different sitting postures on
the chair, with results similar to Tan. Multu et al. [31] proposed a robust low-cost non-intrusive
seat; compared to the commercially-available Tekscan ConforMat system (over 2000 sensors) used
in [28,30], they managed to reduce the number of sensors, and an optimal sensor deployment with
19 pressure sensors was adopted to recognize sitting postures. Kamiya et al. [32] used an 8× 8 pressure
sensor matrix inserted inside the foam filling of the chair to recognize sitting postures. Radial basis
function and SVM algorithms have been used to recognize various postures. Xu et al. [33] presented
the design and implementation of a low-cost smart cushion equipped with sensor array. Binary value
of pressure distribution (i.e., when the pressure applied to a sensor is higher than a given threshold,
its value is 1; otherwise, it is 0) was analyzed to recognize recognize nine postures in real time.
Fard et al. [34] proposed a system for preventing pressure ulcers based on an 8× 8 pressure sensor
matrix for continuous monitoring of surface pressure of the seat.

All of the literature works analyzed, summarized in Table 1, detect and analyze pressure
distribution on the cushion/mattress to recognize the postures. On the one hand, pressure sensor array
technology allows for accurately measuring multiple pressure points on the seating surface; on the
other, however, it leads to costly solutions.
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Table 1. State-of-the-art on smart cushions based on pressure sensor arrays

Author Sensor Array Type Placement of the Sensors Detected Postures Classification
Technique/Method

Accuracy

Xu et al. [26] E-textile cushion on the seat
Sit up, forward, backward, lean

left/right, right foot over left,
left over right

Gray scale image 85.9%

Tekscan [27] E-textile cushion on the seat and backrest N/A Pressure mapping N/A

Tan et al. [28] E-textile cushion on the seat and backrest N/A PCA, Grayscale image 96%

Mota et al. [29] E-textile cushion on the seat and backrest
Lean forward/back, lean

forward right/left, sit
upright/on the edge, etc.

Neural Network 87.6%

Meyer et al. [30] textile pressure sensor cushion on the seat
Seat upright, lean right, left,

forward, back, left leg crossed
over right etc.

Naive Bayes 82%

Multu et al. [31] pressure sensor on the seat
and backrest 19 pressure sensors

Left leg crossed, right leg
crossed lean left, lean back, lean

forward etc.
Logistic Regression 87%

Kamiya et al. [32] 8× 8 sensor array cushion on the seat

Normal, lean forward, lean
backward, lean right, right leg

crossed, lean right with right leg
crossed etc.

SVM 98.9%

Xu et al. [33] Seat 6× 8, backrest 2× 8 Cushion on the seat and backrest
Lean left front, lean front, lean

right front, lean left, seat
upright, lean right etc.

Binary pressure distribution,
Naive Bayes

82.3%

Fard et al. [34] 8× 8 sensor array cushion on the seat
Sitting straight with bent keens,

crossed legs left to right and
right to left, stretched legs

pressure mapping technology N/A



Sensors 2017, 17, 719 5 of 18

2.2. Smart Cushions Based on Fewer Individual Pressure Sensors

Hu et al. [35] proposed PoSeat, a smart cushion equipped with an accelerometer and pressure
sensors for chronic back pain prevention using a hybrid SVM classifier. Benocci et al. [36] proposed a
method using five pressure sensors and k-Nearest Neighbour (kNN) was used to classify six different
postures. Bao et al. [37] used a pressure cushion to recognize sitting postures by means of a
density-based clustering method. Diego et al. [38] proposed a non-invasive system for monitoring
pressure changes and tilts during daily use of the wheelchair. Pressure sensors have been deployed on
the seat to detect pressure relief tilts and provide reminders to change posture to reduce the long-term
risk of causing pressure ulcers. Min et al. [39] proposed a real-time sitting posture monitoring system
based on measuring pressure distribution of the human body sitting on the chair. A decision tree is
used to recognize five sitting postures; when a user deviates from the correct posture, an alarm function
is activated. Zemp et al. [40] developed an instrumented chair with force and acceleration sensors to
identify the user’s sitting posture by applying five different machine learning methods (Support Vector
Machines, Multinomial Regression, Boosting, Neural Networks and Random Forest). Sixteen force
sensor values and the backrest angle were used as the features for the classification, and the recognition
results reached average accuracy of 90.9%. Barba et al. [41] used the postural changes of users to detect
three kinds of affective states in an e-learning environment. Sixteen pressure sensors were placed on
the chair, half on the seat and the other half on the backrest. Fu et al. [42] proposed a robust, low-cost,
sensor based system that is capable of recognizing sitting postures and activities. Eight force sensing
resistors (FSRs) were placed on chair backrests and seats, and a Hidden Markov Model approach
was used to establish the activity model from sitting posture sequences. Kumar et al. [43] designed
Care-Chair with just four pressure sensors on the chair backrest. The proposed system can classify
19 kinds of complex user sedentary activities, and it can also detect user functional activities and
emotion based activities. Our former research [44] used three pressure sensors, two on the seat and one
on the backrest to detect user’s postures in smart wheelchairs. We were able to recognize six different
postures; results obtained with experimental evaluation showed high classification accuracy.

There are also two commercial smart cushions called DARMA [45] and SENSIMAT [46] that
can monitor posture and sitting habits. Both of them are composed of six sensors and have similar
deployment. DARMA is a general-purpose cushion equipped with fiber optic sensors that are much
more sensitive and accurate than pressure sensors. It can track user’s posture and sitting time as well
as heartbeat and respiration. Based on user’s particular behavior and habits, DARMA provides several
functionalities such as actionable coaching, stand-up reminders, and posture advice. SENSIMAT
is instead specifically designed for wheelchairs. The proprietary PressureRisk algorithm allows for
monitoring sitting pressure and pushing data to the mobile device. It can send reminders to the user
when it is time to move and can track movements and progress over time.

Each analyzed literature work, as shown in Table 2, proposes its own sensor deployment,
achieving relevant results. However, to the best of our knowledge, a systematic study on the selection of
the optimal sensor deployment on the cushion, and which classifier is most suitable for cushion-based
posture recognition, is still lacking. In the following, we will introduce an optimal sensor deployment
method to detect wheelchair user’s posture; in addition, we evaluate several classification techniques
to identify the most effective ones for sitting posture recognition.
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Table 2. Smart cushions based on fewer individual pressure sensors

Author Number of Sensors Placement of the Sensors Postures Recognized Classification Techniques Accuracy

Hu et al. [35] 6 2 on the seat and 4 on the backrest Sit straight, lean left, lean right,
lean back SVM N/A

Benocci et al. [36] 5 4 on the seat and 1 on the backrest
Normal posture, right side, left

side, right/left/both legs
extend forward

kNN 92.7%

Bao et al. [37] 5 5 on the seat
Normal sitting, forward,

backward, lean left, lean right,
swing, shake

Density-based cluster 94.2%

Diego et al. [38] 4 4 on the seat N/A Threshold-based N/A

Min et al. [39] 6 4 on the seat and 2 on the backrest

Crossing left leg, crossing right
leg, forward buttocks, bending

down the upper body,
correct posture

Decision Tree N/A

Zemp et al. [40] 16
10 on the seat, 2 on the armrests

and 4 on the backrest

Upright, reclined, forward
inclined, laterally right/left,

crossed legs, left over right/ right
over left

SVM, Multinomial Regression,
Boosting, Neural Networks and

Random Forest
90.9%

Barba et al. [41] 16 8 on the seat and 8 on the backrest

Standard, lying, forward, normal
position, sitting on the edge, legs

crossed, sitting on
one/two foot etc.

N/A N/A

Fu et al. [42] 8 4 on the seat and 4 on the backrest N/A Decision Tree N/A

Kumar et al. [43] 4 4 on the backrest N/A Extremely Randomized Trees 86%

Ma et al. [44] 3 2 on the seat and 1 on the backrest Upright sitting, lean left, right,
forward, backward Decision Tree 99.5%

Darma [45] 6 6 on the seat N/A N/A N/A

Sensimat [46] 6 6 on the seat N/A N/A N/A



Sensors 2017, 17, 719 7 of 18

3. System Design

In the following, we describe our method for monitoring postures of smart wheelchair users.
In particular, we designed a smart cushion to monitor sitting postures. The method serves as a
basis for the development of a smart wheelchair system that can e.g., warn the user of long-term
wrong/dangerous postures and, in case of emergency situations, alert relatives and caregivers to help
the assisted user on time. In the following sections, we will describe the system in detail.

3.1. System Architecture

A layered architecture of the proposed posture detection system is depicted in Figure 1.
The posture detection layer represents the core of the proposed system and it has been already
implemented; several application services—outside the scope of this work—can be easily developed
on top.

Pressure sensors data

Pre-processing of pressure data

1. Sensing Subsystem 2. Recognition Subsystem

Alarm message of 

abnormal state
Posture display

3. Application Service Layer

Activity Level 

Assessment

Posture recognition

Posture detection results

...

Mobile Applications

Posture Detection

Figure 1. Architecture of the proposed system.

It is composed of two main layers:

• Posture Detection Layer: it includes two subsystems, (i) the Sensing subsystem, which uses pressure
sensors deployed on the wheelchair to collect data generated by the weight of the body and
(ii) the Recognition subsystem that, based on the Arduino platform (see Section 3.2), runs the posture
recognition algorithm on the collected pressure sensor data. Posture detection results can therefore
be fed to the application service layer.

• Application Service Layer: several (mobile and cloud-based) applications can be developed on top
of the posture recognition subsystem and exploit the geo-location from dedicated mobile device
services (such as GPS, WiFi, or cellular tower signal strength) to locate the user. Applications
can display the sensing results, perform activity level assessment, alert the user of dangerous
postures and, if necessary, send his/her geo-location and make emergency automatic voice calls
to caregivers.

3.2. Hardware Design of the Smart Cushion

The smart cushion is composed of three main modules:

• data sensing (cushion equipped with pressure sensors);
• data processing (Arduino-based unit);
• data transmission (Bluetooth shield for Arduino).

The hardware design of the smart cushion is shown in Figure 2.
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Power Management

Arduino Bluetooth

Cushion Using

Pressure Sensors

Smart End Devices

(Smartphone, Pad 

etc.)

Figure 2. Hardware design of the smart cushion.

The data sensing module is based on Force Sensitive Resistor pressure sensors (Interlink
FSR-406) [47]. The resistance value is inversely proportional to the pressure applied on the sensing
patch. Such sensors can be easily embedded into the chair textile or foam filling. We chose Arduino
DUE [48] to construct the data processing module for its low energy consumption, high sampling
rate and processing capabilities. After sensor data collection and processing, results are sent to
the smartphone in wireless, using an Arduino Bluetooth HC-06 shield [49] that is attached to the
processing module.

As previously mentioned, we deployed 12 pressure sensors on the wheelchair (as shown in
Figure 3) to evaluate our system. The list of required components along with its market price has been
reported in Table 3. The total price of our prototype is $228. In comparison, the commercially available
Body Pressure Measurement System (BPMS) using the sensors array developed by TekScan [27] has
a sensor matrix of 42× 48, and it is sold for over ten thousand US dollars. PoSeat [35] was reported
at a price of $460; another marketed smart wheelchair cushion called SENSIMAT [46] is currently
sold at $599.

Table 3. List of the components required by the prototype system.

Part Name Description Price (USD)

Arduino DUE board Data Processing Unit 30
FSR 406 pressure sensor 12 pressure sensors applied to the seat and backrest 180
Bluetooth shield (HC-06) Bluetooth module to connect the cushion to mobile devices 8

Seat Cover A seat cushion 10
Total 228

4. System Evaluation

Instead of using sensor arrays, we chose to design our cushion with fewer pressure sensors
individually connected to the processing unit; this has advantages in terms of economic cost and
power consumption.

In Section 2.2, we provide an overview of different kinds of pressure sensor deployment methods.
Most of the works listed in Table 2 did not systematically analyzed (or at least described) the
deployment methods. In this study, we adopt two systematic principles to determine the sensor
deployment; one uses empirical analysis to find the most significant sensors and the other tries to take
into account all of the analyzed literature sensor deployment methods.

Here, we adopt a sensor deployment configuration as shown in Figure 3. The deployment is
suitable for the body mass distribution. Actually, using the pressure sensors on the seat is enough to
detect most of the sitting postures; however, we decided to apply pressure sensors on the backrest too,
as a supplementary tool to more comprehensively monitor users’ postures.

Assuming a conventional size for the seat and backrest of 40 cm × 40 cm, we split the seat and
backrest into 5 × 5 square zones. We performed a preliminary empirical analysis to exclude the least
significant pressure points and found that the most effective initial deployment configuration to detect
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pressure changes due to different postures is the one depicted in Figure 3. It is worth noting that FSR2
and FSR4 have been deployed to the left and right sides of the seat to better deal with individual
physiognomy differences.

In our previous studies [44], we used two pressure sensors on the seat and one pressure sensor
on the backrest. However, we noticed that if the user does not sit perfectly at the center of seat, some
posture transitions are not correctly detected. Therefore, with the aim of finding a better deployment
to cope with different sitting positions, the smart cushion we designed in this work can record up
to 12 pressure points simultaneously (the limitation is due to the number of analog inputs of the
Arduino DUE platform). All of the FSR sensors (marked as FSR0, ..., FSR11) were sampled at a
frequency of 2 Hz (i.e., sampling rate of two samples per second) because it is enough to capture
posture transitions and has the property of low energy consumption [44].

FSR0FSR1

FSR2FSR3FSR4

FSR5FSR6

FSR7FSR8

FSR9

FSR10FSR11

(a)

FSR1 FSR0

FSR4 FSR3 FSR2

FSR6 FSR5

FSR8 FSR7

FSR9

FSR11 FSR10

(b)

Figure 3. Sensor deployment: (a) schematic diagram of the sensor deployment; (b) sensors deployed
on the real wheelchair.

The electrical circuitry highlighting the connections of the FSR sensors to the Arduino platform is
shown in Figure 4.

Figure 4. Electrical circuitry of the pressure sensor system.
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4.1. Posture Definition and Data Collection

We carried out experimental tests in our laboratory involving 12 participants (seven males and
five females) with ages in the range of [22, 36] and BMI in the range of [16, 34]. The BMI, whose
distribution in our experiment sample is shown in Table 4, is an important parameter to consider in
order to realize a user-independent posture recognition system.

Table 4. Body Mass Index (BMI) distribution of the subjects participating in the experiments

Description Underweight Normal Overweight and Obese

BMI <18.5 [18.5, 25) >25
Number of subjects 4 4 4

To simulate a real-life setting, we asked each participant to perform five different postures that are
typical for wheelchair users, as listed in Table 5. When the user sits on the wheelchair, the embedded
sensors can measure multiple pressure points due to body weight. The posture data were manually
labeled during the experiments; we asked to keep each posture for three minutes; in addition, at the
beginning of the experiment and between each posture, we allow 30 s for the participant to adjust the
posture in the wheelchair.

Table 5. Wheelchair user postures of interest

Posture Description Samples of Posture

Proper Sitting (PS) User seated correctly on the wheelchair 7200
Lean Left (LL) User seated leaning to the left 7200

Lean Right (LR) User seated leaning to the right 7200
Lean Forward (LF) User seated leaning forward 7200

Lean Backward (LB) User seated leaning backward 7200

The participants were free to choose their favorite seating position and each subject performed
the experiment only once. The final dataset, consisting of data collected from all 12 of the test subjects,
counts a total of 36,000 different posture recordings (see Table 5).

Pressure sensors signals are marked as {P0, P1, ..., P11}. At the time t, we obtained the instance
vector Pt = {Pt0, Pt1, ..., Pt11}. Using this instance vector, we will recognize the sitting postures
defined before.

4.2. Classification

Studies have shown that a lot of different algorithms can be used for the classification of sitting
postures with satisfactory accuracy ranging from 90.9% to 99.5% [36,37,40,44]. Since the performance
of the classification results is highly dependent on the used data, we compared the five algorithms
as referred to before. In order to choose the best classifier for the classification, we analyzed five
supervised machine learning algorithms applied for the recognition of sitting postures. Specifically,
we compared J48 decision tree, Support Vector Machine, Multilayer Perceptron, Naive Bayes and
k-Nearest Neighbors, respectively, briefly described in the following.

J48 [50] is a specific decision tree implementation of the well known C4.5 algorithm using the
concept of information entropy. The classifier model is generated by a training procedure that uses a
set of pre-classified samples. Each sample is a p-dimensional vector also known as a feature vector.
Each node of the tree represents a decision (typically a comparison against a threshold value); at each
node, J48 chooses the feature (i.e., an attribute) of the data that most effectively splits its set of samples
into distinct subsets according to the normalized information gain (NIG). In particular, the algorithm
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chooses the feature with the highest NIG to generate the decision node. The main parameters used to
tune the classifier generation are the pruning confidence (C) and the minimum number of instances
per leaf (M), as summarized in Table 6.

Support Vector Machine (SVM) [51] is a supervised learning model used for both classification
and regression analysis with associated learning algorithms that analyze data to recognize patterns.
Given a set of training instances, new samples will be classified with one of the defined categories.
The standard SVM builds a model that assigns new instances into one of two possible categories, so the
SVM is a type of non-probabilistic binary linear classifier. The key parameters of the SVM classifier are
reported in Table 6. In our analysis, we used a specific type of SVM model called regularized support
vector classification (C-SVC) and we set the C parameter to 1. We used Radial Basis Function (RBF) as
the kernel type with its degree set to 3.

Multilayer perceptron (MLP) [52] is a feed-forward artificial neural network model that maps sets
of input data onto a set of appropriate outputs. An MLP typically involves three or more layers. MLP
adopts a supervised learning technique called back propagation for network training. Except for the
input nodes, each node is a neuron (or processing element) with a nonlinear activation function. Nodes
are connected with weight values. The network output will be decided by node connection, weight
values and activation function. The main parameters of the MLP classifier are reported in Table 6.
For our purpose, we need 12 attributes and five classes (corresponding to the five sitting positions),
so the model is composed of nine hidden layers. Default Momentum Rate and Learning Rate have
been selected for the back-propagation algorithm.

Table 6. Tested machine learning algorithms.

No. Classifier Parameters

1 J48 C = 0.25, M = 2
2 SVM SVM Type: C-SVC, Kernel Type: RBF, C = 1, Degree = 3
3 MLP 9 hidden layer neurons
4 Naive Bayes default
5 Naive Bayes BayesNet
6 kNN k = 1
7 kNN k = 5

Naive Bayes [53] is a simple technique for constructing classifiers: models that assign class labels to
problem instances, represented as vectors of feature values, where the class labels are drawn from some
finite set. It consists of a family of algorithms based on the assumption that the value of a particular
feature is independent from the value of any other feature, given the class variable. An advantage
of Naive Bayes is that it only requires a small amount of training data to estimate the parameters
necessary for classification. Using different parameters, we trained two classifiers, one using default
parameters and the other is BayesNet.

k-Nearest Neighbors algorithm (k-NN) [54] is a simple supervised learning method method used for
classification and regression. In both cases, the input consists of the k closest training examples in the
feature space. The parameter k plays the role of a capacity control. If k = 1, it means that the object is
simply assigned to the class of that single nearest neighbor.

The five classifiers were set up with various configurations resulting in seven classifier
configurations; each classifier was evaluated using the same dataset.

4.3. Sensor Deployment Optimization Using the Backward Selection Method

Our goal is to investigate the contribution of each individual sensor to the recognition accuracy
and determine the best sensor deployment. This study was performed using the backward selection
procedure [55]. It starts with fitting a model with all the variables of interest (i.e., all the 12 pressure
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sensors active). Then, sensors are excluded one at a time from the base configuration; we choose
the best configuration, and the least significant variable is dropped. We iterate this procedure by
successively re-fitting reduced models and applying the same rule until only one sensor is left.

5. Performance Evaluation

In this section, we present and discuss the results obtained from each classifier and choose the
best sensor configuration using the backward selection method. To accurately study the performance
evaluation, five relevant metrics (Accuracy, Precision, Recall, F-measure, and Model Build Time) have
been compared.

5.1. Performance Evaluation of Each Classifier

We analyzed the seven classifiers as in Table 6 using WEKA (Waikato Environment for Knowledge
Analysis) data mining toolbox [56] with the dataset described in Section 4.1. Data from all of the
12 pressure sensors are therefore taken into account in this phase. In this work, 10-fold cross validation
was used to separate the training from the test set. The classifier models were obviously trained using
the training set, while, in the test step, the estimated classes were compared to the true classes in order
to compute the classification accuracy.

The Accuracy measure is used to evaluate the classifiers performance; specifically, it measures the
proportion of correctly classified instances. In the case of binary classification, the formula of accuracy
can be expressed as follows:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

where Tn (true negatives) is the correct classifications of negative examples, Tp (true positives) is
the correct classifications of positive examples. Fn (false negatives) and Fp (false positives) are,
respectively, the positive examples incorrectly classified into the negative classes and the negative
examples incorrectly classified into the positive classes.

For evaluating the classifiers, F-measure accuracy (overall accuracy) of the test data has been
computed to evaluate recognition performance. F-measure represents the combination of precision and
recall, defined, respectively, as follows:

precision =
Tp

Tp + Fp
(2)

recall =
Tp

Tp + Fn
(3)

F-measure =
2 · recall · precision
recall + precision

(4)

Table 7 summaries the results of our comparison. We recorded the same amount of samples for
each different posture. The class imbalance problem was not taken into account for these classifiers.
However, the main idea of this paper is to determine which classifier is more suitable for our system.

J48 shows better performance than other classifiers. It is a classifier that predicts the posture
classes of a new sample based on the threshold feature values. Furthermore, it is lightweight and easy
to implement in embedded devices. We will eventually choose a J48 pruned tree for the implementation
on the Arduino platform.

The SVM shows the worst performance among the analyzed classifiers; while it is very effective
for binary classification, setting its key parameters for multi classification is much harder. In addition,
it is computatively demanding and therefore not easily implemented in embedded and mobile devices.
The MLP takes a longer time to build the train model than the J48 and its performance results are
lower than J48. MLP also requires high processing resources, making it not ideal on embedded
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and mobile devices. We did not achieve good results with the Naive Bayes either, especially with
configuration No. 4 (see Table 6), and it shows the worst performance among the classifiers we took
into consideration. kNN achieved slightly worse accuracy than J48. We observed that different k
values did not affect the recognition accuracy: our hypothesis is that the clusters identified by our
feature set are internally consistent and well separated among each other. kNN requires less time to
build the model (essentially the time required to split the dataset to obtain the training set), but it
requires high computation load for classification, so it does not fit lightweight requirements imposed
by embedded platforms.

Table 7. Summary of classifiers’ performance

No. Classifier Accuracy Precision Recall F-Measure Model Build Time (s)

1 J48 99.48% 0.995 0.995 0.995 1.98
2 SVM 79.08% 0.880 0.736 0.760 320.34
3 MLP 95.5% 0.926 0.926 0.926 265.46
4 Naive Bayes 49.09% 0.585 0.491 0.427 0.24
5 BayesNet 94.06% 0.945 0.941 0.941 0.93
6 kNN (k = 1) 98.53% 0.995 0.995 0.995 0.04
7 kNN (k = 5) 98.52% 0.995 0.995 0.995 0.08

5.2. Sensor Selection Using the Backward Selection Method

Given the results described in Section 5.1, we choose J48 as our classifier in the following. It is
worth mentioning that the accuracy reported in the table refers to a configuration with all 12 pressure
sensors. As described in Section 4.3, sensors were excluded one at a time from the base configuration
and accuracy of the recognition was evaluated by a 10-fold cross-validation; then, the configuration
with highest accuracy in this step became the base configuration. The procedure then iterates until
only one sensor is left. The testing has been performed with a decimation factor d = 1.

Results of the backward selection of various sensor configurations are shown in Table 8.
The column represents the number of active sensors in a given configuration. The row represents
the ID excluded sensor in a given configuration (let us mention here that once excluded from
a configuration, with the backward selection that sensor cannot be re-added to any following
iteration). The initial configuration has 12 active sensors achieving an accuracy of 99.48%,
as shown in Table 7. At the first iteration of the backward selection procedure, the least
significant sensor is FSR10 because the best accuracy that can be achieved with 11 sensors is
99.50% and corresponds to the exclusion of FSR10. Then, the sensors’ configuration during the
second iteration is {FSR0, FSR1, FSR2, FSR3, FSR4, FSR5, FSR6, FSR7, FSR8, FSR9, FSR11}; this time,
the best configuration can be achieved excluding FSR6, with a maximum possible accuracy of
99.51% (see the bold value in column 10). The procedure continues to iterate excluding, sequentially,
FSR8, FSR9, FSR2, FSR5, and FSR0. At this point, the current best configuration has five sensors
({FSR1, FSR3, FSR4, FSR7, FSR11}) with an accuracy of 99.47% as shown in Figure 5. We can conclude
that this is the most effective sensor deployment configuration in terms of tradeoff between posture
recognition accuracy and number of required sensors (which influences the system complexity and its
economic cost). Excluding a further sensor, in fact, would decrease the accuracy below 99%.
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Figure 5. Selected sensors of the best configuration.

Table 8. Backward selection of the best sensor configuration. Bold font highlights the best accuracy for
each number of active sensors.

Number of Active Sensors

11 10 9 8 7 6 5 4 3 2 1

Se
ns

or
ID

0 99.48% 99.49% 99.50% 99.49% 99.50% 99.49% 99.47%
1 97.06% 97.05% 97.11% 97.11% 97.11% 97.13% 96.51% 92.32% 90.54% 81.23% 63.98%
2 99.49% 99.49% 99.49% 99.50% 99.51%
3 99.46% 99.50% 99.50% 99.50% 99.50% 99.42% 99.41% 98.99%
4 99.46% 99.49% 99.50% 99.50% 99.50% 99.46% 99.44% 98.84% 94.36% 87.93% 48.72%
5 99.48% 99.49% 99.49% 99.49% 99.49% 99.50%
6 99.49% 99.51%
7 99.48% 99.49% 99.49% 99.49% 99.49% 99.44% 99.42% 95.80% 92.28% 89.51%
8 99.48% 99.50% 99.51%
9 99.49% 99.50% 99.51% 99.51%

10 99.50%
11 99.48% 99.30% 99.32% 99.33% 99.27% 98.98% 98.98% 98.90% 98.01%

LSS 1 FSR10 FSR6 FSR8 FSR9 FSR2 FSR5 FSR0 FSR3 FSR11 FSR7 FSR1
1 Least Significant Sensor.

5.3. Comparison of Recognition Results with Different BMI Values

Using the best sensor configuration determined in Section 5.2, we analyzed the recognition results
grouped by the three weight categories classified by BMI (see Section 4.1). In addition, we analyzed
the possible advantage of taking the BMI value as one of the features in the dataset.

The results grouped by BMI category obtained without considering the BMI as a feature of the
dataset are shown in Table 9 while Table 10 depicts the result of classification accuracy using the
dataset with the added BMI feature. Given that we obtained similar results, we can conclude that
our sensor deployment can successfully fit different body physiognomies without the need to include
user-dependent information (such as his/her BMI) into the classifier model.
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Table 9. Results with different BMI values without considering the BMI feature.

Accuracy Precision Recall F-Measure

Underweight 99.92% 0.999 0.999 0.999
Normal 98.67% 0.987 0.987 0.987

Overweight and Obese 99.82% 0.998 0.998 0.998
All 99.47% 0.995 0.995 0.995

Table 10. Results with different BMI values using the BMI feature in the J48 tree.

Accuracy Precision Recall F-Measure

Underweight 99.93% 0.999 0.999 0.999
Normal 98.67% 0.987 0.987 0.987

Overweight and Obese 99.83% 0.998 0.998 0.998
All 99.50% 0.995 0.995 0.995

5.4. Comparison of the Proposed Method with Previous Studies

To compare our current work with the state-of-the-art, we applied the J48 classifier to datasets
generated using sensor deployment configurations proposed in other literature works, and we
summarized the results in Table 11.

Table 11. Recognition results of different sensor deployment.

Author Sensor Deployment Accuracy

Hu et al. [35] 6 FSRs (0,1,7,8,10,11) 98.70%
Benocci et al. [36] 5 FSRs (0,1,5,6,9) 97.58%

Bao et al. [37] 5 FSRs (0,1,2,3,4) 99.16%
Diego et al. [38] 4 FSRs (0,1,5,6) 97.11%
Min et al. [39] 4 FSRs (0,1,5,6,10,11) 98.5%
Ma et al. [44] 3 FSRs (2,4,9) 87.25%

Darma [45], Sensimat [46] 6 FSRs (0,1,2,4,5,6) 99.14%
Novel proposed method 5 FSRs (1,3,4,7,11) 99.47%

Using the same J48 classifier, we compared the quality of different sensor deployments. It can be
clearly seen that our novel proposed deployment method allows to achieve the highest accuracy.

6. Conclusions

In this paper, we have proposed an Arduino-based pressure cushion to detect sitting postures
of wheelchair users and a sensor selection method to obtain optimal deployment on the wheelchair.
We extracted pressure data and performed initial offline analysis using WEKA. Laboratory experiments
were run over a diversified sample of subjects (in terms of BMI category) with different sitting habits.
Using the obtained dataset, we compared five different machine learning approaches (Decision Tree
(J48), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Naive Bayes, and k-Nearest
Neighbor (k-NN)) and selected the most effective sensor deployment among the possible configurations
given by our smart cushion. We evaluated seven different classifiers to recognize five sitting postures.
Results showed that the lightweight J48 algorithm can efficiently and accurately (99.47%) be used
for posture recognition of seated users. An advantage of the decision tree-based approach is that
trained models are very lightweight and easily implemented on embedded devices. Ongoing efforts
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are focused on improving current end-user applications based on posture detection. For example,
activity level assessment can be achieved based on the analysis of posture transitions. Future research
will be devoted to acquiring more data from heterogeneous sensors deployed on the chair, applying
multi sensor fusion techniques [57] to better detect the postures, and assessing user activity on a smart
wheelchair more accurately.

Finally, we plan to improve our BodyCloud-based Wheelchair System [10,24,58] with the work
presented in this paper.
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