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Abstract: Cloud computing is a base platform for the distribution of large volumes of data and
high-performance image processing on the Web. Despite wide applications in Web-based services
and their many benefits, geo-spatial applications based on cloud computing technology are still
developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing
of virtual servers in a cloud computing environment. This study investigates the applicability of
auto-scaling to geo-based image processing algorithms by comparing the performance of a single
virtual server and multiple auto-scaled virtual servers under identical experimental conditions. In this
study, the cloud computing environment is built with OpenStack, and four algorithms from the Orfeo
toolbox are used for practical geo-based image processing experiments. The auto-scaling results
from all experimental performance tests demonstrate applicable significance with respect to cloud
utilization concerning response time. Auto-scaling contributes to the development of web-based
satellite image application services using cloud-based technologies.
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1. Introduction

Currently, cloud computing is considered an important paradigm in Information Technology (IT).
The key features for cloud computing capabilities can be summarized as: on-demand self-service,
broad network access, resource pooling, measured service and rapid elasticity. The cloud service
model uses virtual servers for managing, scheduling, communicating, networking and auto-scaling
as the common layer to fulfill a cloud computing scheme [1]. Among the proven benefits of cloud
computing and applications, elasticity is the primary feature for both service providers and users.
Elasticity, which refers to the extent to which resources provisioned by service providers change in
relation to the changing user demand, allows service providers to maintain a high level of performance
quality for application services.

Cloud-based application cases have been reviewed and we considered unresolved issues related
to cloud platforms [2]. With regard to auto-scaling schemes, related concepts and taxonomy were
surveyed [3]. A technical review of auto-scaling for elastic cloud-based applications was provided,
and the Gartner group describes auto-scaling as an automatic expansion or contraction of system
capacity, and indicated that such a capacity is a commonly desired feature in cloud infrastructure as
a service and platform as a service offering [4]. In other words, auto-scaling refers to the significant
capability of a cloud computing environment to utilize virtualized computing resources automatically.
In this scheme, virtualized resources can be increased or decreased dynamically by adapting resource
utilization to satisfy the given requirements. Auto-scaling contributes to cost control. The key features
of auto-scaling are the ability to scale-out, i.e., automatic addition of resources during increased
demand, and scale-in, i.e., automatic termination of unused resources when demand decreases.
Scale-out and scale-in schemes are referred to as horizontal scaling. Unlike horizontal scaling, vertical
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scaling increases computation resources in existing nodes. Auto-scaling at the service level is important
because services run on a set of connected virtual machines. The optimal model-driven configuration
of cloud auto-scaling infrastructure was studied [5]. It was implemented an open-source cloud
environment with auto-scaling to access resources for a flexible period with varying requirements
in bioinformatics and biomedical workflows [6], and was implemented an auto-scaling model in
simulation experiments using the Amazon Elastic Compute Cloud (EC2) to reduce resource costs and
test the quality of service in terms of response time and availability [7]. Three features of auto-scaling
from a technical perspective were described [8]: covering variable demands, web application
architecture, and distributing instances across availability zones. Cloud-based data-processing services
in a geospatial web were pointed out as a very important issue in the area of remote sensing [9].
Cloud computing contributes to remote sensing applications for maximizing imagery resources,
disseminating on-demand insight to end users globally, and improving efficiency while reducing
cost and risk [10]. Advantages of remote sensing image processing within a cloud environment were
discussed [11]. The auto-scaling performance test using a concurrent user number and an average
response time of a spatial web portal based on a cloud-enabled framework implementation by Amazon
EC2, Microsoft Azure, and NASA Nebula was carried out with respect to the dynamic workload [12].
Auto-scaling is a feature of OpenStack [13,14], where Heat is a template-based service that manages the
lifecycle of OpenStack applications and defines the relationships among resources. The purpose of this
study is to investigate the applicability of auto-scaling schemes to geo-based image processing services
through performance tests with respect to some practical remote sensing algorithms, in an OpenStack
cloud computing environment.

2. Auto-Scaling Concept

In a cloud computing environment, a practical methodology that elastically modifies and
automatically adjusts the amount of used resources is called an auto-scaling scheme. However,
the concept of auto-scaling has been defined from many perspectives.

Figure 1 shows a conceptual view of auto-scaling in a cloud computing environment. State 1
is a type of ready state implemented with two types of virtual servers, i.e., servers A and B,
which are subject to an auto-scaling scheme. This represents the basic concept; however, cloud
computing environments with two or more multiple servers are also possible. Increasing or decreasing
computing resources for a particular application can be achieved by horizontal and vertical scaling.
Horizontal scaling is a resource distribution scheme that adds or removes expansible server nodes
to an application system. Vertical scaling is a scale-up and/or scale-down process that adds capacity
to a single server node in an application system or removes capacity from that system. This study
does not consider scale-up and scale-down schemes because mobile operating systems applied in this
study are in a persistent state without intermediate interruptions for system upgrading. The client
system in this application was designed with user interface components running on an iPad mini,
a mobile tablet. Cases 1 and 2 are examples of scale-out and scale-in at the horizontal level depending
on an application rule for auto-scaling. Auto-scaling represents one of the core services of a cloud
computing environment. The number of virtual servers is monitored and controlled automatically
according to the rules or conditions established by the cloud system manager. For example, if more
than 50% of a virtual server’s CPU resources are used for more than 10 min, additional servers are
applied. Similarly, if less than 10% of the virtual servers are accessed for more than 30 min, the number
of servers is reduced automatically.
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Figure 1. Basic concept of horizontal auto-scaling, edited from Reference [4]. 
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The test system implementation in this study was based on fully open sources and comprised 
the separate parts of the object storage component, the management instance server, and the 
processing instance server, which was designed in a satellite image processing system running in a 
cloud computing environment as shown in Figure 2. The object storage component is a computing 
environment based on Ceph [15] that stores geo-based satellite image sets in a scene unit for further 
analysis processing. In object storage processing using Ceph, which supports management functions 
of a large volume of data sets in a distributed computing environment, image sets formatted as geotiff 
were used. Stored objects, as data sets for image processing, in Ceph were imported into MariaDB in 
a cloud environment. 

The management instance server is a Web-based system that is accessible to users and provides 
user interfaces for image analysis processing functions. This is for general management processing 
regarding user requests. The processing instance server is for practical geo-based image analysis 
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OpenStack consists of several separate and closely interconnected projects, such as Cinder, 
Neutron, Keystone, Glance, Ceilometer, Horizon, Nova, and Heat [16]. 

The cloud environment in this study was composed of three types of servers: system controller, 
network, and compute. To build a cloud computing environment for geo-based image processing 
services, a server with an Intel® Core™ i5-3470 CPU, 8 GB memory, and 500 GB of storage was used 
for the system controller and network server. The controller server was utilized with Keystone, 
Glance, Cinder, Nova, Ceilometer, Heat, Horizon, and Neutron services in OpenStack. The network 
server used Neutron. The controller server was utilized with Keystone, Glance, Cinder, Nova, 
Ceilometer, Heat, Horizon, and Neutron services in OpenStack. The network server used Neutron. 
These two virtual servers were located between the internal network accessing the compute servers 
and the external network to Internet for the client system of cloud services. The compute server, 
which comprised Nova, Neutron, and Ceilometer, was implemented on a server with an Intel® 
Core™ 2 Q9550 CPU, 4 GB memory, and 500 GB of storage. By exploiting the virtualization functions 
provided by OpenStack, 10 virtual servers were implemented to build the cloud computing 
environment. As for a virtual machine for two types of instance servers, the virtual machine 
specifications for the geo-based image processing management instance server were four virtual 
CPU(VCPU)s, 4 GB RAM, and 120 GB storage, and those of the geo-based image processing instance 
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3.1. Example Case for Auto-Scaling Application for Geo-Based Image Processing Service

The test system implementation in this study was based on fully open sources and comprised the
separate parts of the object storage component, the management instance server, and the processing
instance server, which was designed in a satellite image processing system running in a cloud
computing environment as shown in Figure 2. The object storage component is a computing
environment based on Ceph [15] that stores geo-based satellite image sets in a scene unit for further
analysis processing. In object storage processing using Ceph, which supports management functions
of a large volume of data sets in a distributed computing environment, image sets formatted as geotiff
were used. Stored objects, as data sets for image processing, in Ceph were imported into MariaDB in a
cloud environment.
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The management instance server is a Web-based system that is accessible to users and provides
user interfaces for image analysis processing functions. This is for general management processing
regarding user requests. The processing instance server is for practical geo-based image analysis
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processing with scale-out or scale-in horizontal auto-scaling. Virtual servers in these parts are built
from fully open source stacks, and message processing is applied for communication between servers.

OpenStack consists of several separate and closely interconnected projects, such as Cinder,
Neutron, Keystone, Glance, Ceilometer, Horizon, Nova, and Heat [16].

The cloud environment in this study was composed of three types of servers: system controller,
network, and compute. To build a cloud computing environment for geo-based image processing
services, a server with an Intel® Core™ i5-3470 CPU, 8 GB memory, and 500 GB of storage was used
for the system controller and network server. The controller server was utilized with Keystone, Glance,
Cinder, Nova, Ceilometer, Heat, Horizon, and Neutron services in OpenStack. The network server used
Neutron. The controller server was utilized with Keystone, Glance, Cinder, Nova, Ceilometer, Heat,
Horizon, and Neutron services in OpenStack. The network server used Neutron. These two virtual
servers were located between the internal network accessing the compute servers and the external
network to Internet for the client system of cloud services. The compute server, which comprised Nova,
Neutron, and Ceilometer, was implemented on a server with an Intel® Core™ 2 Q9550 CPU, 4 GB
memory, and 500 GB of storage. By exploiting the virtualization functions provided by OpenStack,
10 virtual servers were implemented to build the cloud computing environment. As for a virtual
machine for two types of instance servers, the virtual machine specifications for the geo-based image
processing management instance server were four virtual CPU(VCPU)s, 4 GB RAM, and 120 GB storage,
and those of the geo-based image processing instance server were four VCPUs, 4 GB RAM, and 10 GB
storage. The latency time to start virtual machines influences the cloud computing environment
including the network status and the size of virtual image. The latency time applied in this study was
established as conditions that the virtual machines were generated and image processing preparation
was finalized within 2 min.

3.2. Experimental Condition for Auto-Scaling

Table 1 shows a summary of the specifications for the auto-scaling experiment for the open-source
cloud computing environment. Table 2 shows a summary of the auto-scaling experiment for the
cloud-based geo-based image processing. Table 2 also shows the number of users and processing
requests and the types of processing algorithms. It is assumed that a single user makes 60 processing
requests in 30 min. Thus, the total number of processing requests delivered to the virtual server in
the cloud computing environment is 6000 by 100 users. The number of users can be considered the
concurrent user access in the same period or the total number of users who want to use a certain
algorithm. Here, a spatial coverage of 1 km × 1 km is an example for the experiment; however, this
can be changed. The algorithms applied in the geo-based image processing instance server have
four functions or filters provided by the open-source Orfeo Toolbox (OTB) [17].

The binary threshold image processing is aimed at transforming an input image into a binary
image by substituting new pixel values according to the user definition of two thresholds and two
intensity values. The binary thresholding is based on the Image Adaptor filter to perform pixel-wise
computations on a geo-rectified image dataset. The cloud detection processing using a single image
is based on a Gaussian factor and a spectral angle that is newly computed, to obtain a thresholding
binary image. The cloud detection function in the OTB performs chained processing using the
Spectral Angle Functor, the Cloud Estimator-Functor, and the Cloud Detection Filter. The maximum
autocorrelation factor (MAF) is a kind of spatially extensive factor of the principal component
analysis to maximize auto-correlation between neighboring pixels. For this factor, the Maximum
Autocorrelation Factor Image Filter in the OTB computes a set of orthogonal linear transforms to
maximize the spatial auto-correlation between a component and a unitary shifted version of that
component. The normalized difference vegetation index (NDVI) is a well-known index to extract areas
containing a dense vegetation canopy using multispectral image data. The OTB provides the NDVI
function the Rand NIR Index Image Filter to compute the difference between the near-infrared (NIR)
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channel and the red channel. On a mobile device in cloud computing, the system implementation
model for satellite image processing based on OTB algorithms has been studied [18,19].

Table 1. System specifications for the auto-scaling experiment.

System Component Specification and Version

Server operating system Ubuntu server 64 bit/14.04 LTS
Cloud computing OpenStack Juno/2014.2.3

Database management system MariaDB/5.5.44
Storage Ceph Hammer/0.94

Storage access library librados(python)/0.94.2
Web server Apache/2.4.7

Web framework Django/1.6.1

Table 2. Summary of the auto-scaling experiment.

Experimental Condition

Number of users 100
Number of processing requests 60

Ramp-up duration 30 min
Applied algorithms Binary thresholding, NDVI, Cloud Detection, MAF

Spatial coverage 1 km × 1 km

Figure 3 shows tiled pieces of auto-scaling experiment data and the results obtained by OTB-based
algorithms in a cloud computing environment. Figure 3a shows a tiled part of the data image set, and
Figure 3b–d show the results of the binary thresholding, MAF, and NDVI, respectively. Figure 3e shows
a tiled part of the data image set for a cloudy scene and Figure 3f shows the cloud detection result.
Two high-resolution satellite image sets provided by the Korean Aerospace Research Institute were
used as the processing datasets, i.e., Korea Multi-Purpose Satellite-2 (KOMPSAT-2; ground sample
distance of 1 m panchromatic data and 4 m multispectral data) and KOMPSAT-3 (0.70 m panchromatic
data and 2.8 m multispectral data). A total of 20 full-sized scenes per experiment were used for the
test algorithm.

Table 3 summarizes the virtual server rules for the auto-scaling experiment and gives information
about average CPU utilization, the scale-out and scale-in conditions, and the maximum or minimum
number of instances. Apache JMeter was used for this experiment. The measurement results were
obtained as the total time from the start point of the user’s request for the management server to the
task termination time stamp of the processing server. Many types of performance metrics are available
in the OpenStack compute environment.

In telemetry measurement [20], the telemetry metric named cpu_util, which possesses the type of
gauge and the unit of %, is used for average CPU utilization in this experiment. In the performance
test experiment, response time is used as the metric, which comprises the total time for the first user
request for a certain algorithm, parsing that request, pre-processing for image partitioning relative to a
pre-set ortho-rectified full scene, delivering the message and its parsing, actual image processing using
the algorithm on the geo-based image processing instance server, sending the results to the geo-based
image processing management instance server, and finalizing the result message. These experimental
conditions are an example to check the practical auto-scaling applicability under the same conditions
and computing environment. Note that the scale-out and scale-in conditions with cpu_util and the
processing time are changeable to unlimited cases.
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85°19′27″E); and (f) shows the cloud detection result. 
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exploit within those that are in the available state. Auto-scaled virtual servers mean those that are 
elastically evoked as the compute servers among pre-set virtual servers. The number of virtual 
servers in the processing state varies depending on the type of user requests, the number of 
concurrent users or instances and other workloads depending on the auto-scaling scheme applied. It 
contributes to load balance for the stabilization of Web-based application services. 

The response time with auto-scaling is faster than that of the single server in a cloud computing 
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and the rules in Tables 1 and 2. Figures 5 and 6 show the results obtained with the cloud detection 
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Figure 3. Example data for auto-scaling experiments and one case from OTB-based algorithms in
a cloud computing environment: (a) tiled part of KOMPSAT 3 data image set (10 September 2014;
40◦25◦52◦N, 3◦42◦20◦W); (b–d) show the results of binary thresholding, MAF, and NDVI, respectively;
(e) shows a tiled part of the KOMPSAT 3 image set for a cloudy scene (2 May 2015; 27◦41◦54◦N,
85◦19◦27◦E); and (f) shows the cloud detection result.

Table 3. Virtual server rules for auto-scaling experiment.

Applied Condition

Measurement Average CPU load check (name: cpu_util, type: gauge, unit: %)
Interval 60 s

Scale-out conditions cpu_util > 40% and 180 s
Scale-in conditions cpu_util < 5% and 3600 s

Maximum number of instances 5
Minimum number of instances 1

4. Experimental Results and Discussion

The experimental results for auto-scaling are as follows. Figure 4 shows the results for
the performance measurement with the binary thresholding algorithm in a cloud computing
environment. Figure 4a,b show a single virtual server without auto-scaling and auto-scaled virtual
servers, respectively.

Auto-scaling in the cloud environment controls the optimized number of virtual servers to exploit
within those that are in the available state. Auto-scaled virtual servers mean those that are elastically
evoked as the compute servers among pre-set virtual servers. The number of virtual servers in the
processing state varies depending on the type of user requests, the number of concurrent users or
instances and other workloads depending on the auto-scaling scheme applied. It contributes to load
balance for the stabilization of Web-based application services.

The response time with auto-scaling is faster than that of the single server in a cloud computing
environment. Scale-out processing is applied automatically according to the experimental conditions
and the rules in Tables 1 and 2. Figures 5 and 6 show the results obtained with the cloud detection
algorithm and the MAF algorithm in the cloud computing environment, respectively. Figure 5a shows
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an application on a single server and Figure 5b shows the auto-scaling result. Figure 6a shows a pattern
similar to that shown in Figures 5a and 6b can be compared to Figure 5b.

Figure 7 shows the performance measurement results obtained with the NDVI algorithm in a cloud
computing environment. Compared to the previous case using a binary thresholding algorithm,
the total processing time is longer and the response time is slower. With practical auto-scaling
processing for NDVI, more virtual server resources are required; thus, the auto-scaling rules and
conditions can be adjusted by a cloud computing environment system manager to take advantage of
high-performance features.

An elapsed time of over 30 min under the auto-scaling conditions is caused by different starting
and finishing processing times with a virtual server of 100 users. Some are finished just in 30 min,
while others may be delayed at the starting and intermediate processing.

Figure 8 summarizes the average response time and total processing time by the virtual servers
rule applied in this study. As shown in Figure 8a, binary thresholding, cloud detection, and MAF
demonstrate high performance with the auto-scaling scheme. However, NDVI shows a different
average response time (24 s) despite using the same auto-scaling conditions and rules as the other
algorithms. For the total processing time from initiating the first user request to responding to the final
processed results (Figure 8b), the binary thresholding, cloud detection, and MAF algorithms terminate
in approximately 30 min. This result is on the satisfactory level for 60 processing requests, within
30 min for 100 users. Due to relatively long average response times, the NDVI algorithm requires more
than 49 min compared to the other three algorithms because the NDVI algorithm requires infrared and
red bands, unlike the other algorithms, which use only a single image set. If two or more bands are
necessary for a certain algorithm in an online environment, more processing time is required.
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5. Conclusions

Auto-scaling schemes realize automatic scalability in cloud computing environments. By comparing
the performance of a single virtual server to that of auto-scaled virtual servers, this study focuses
on the applicability of auto-scaling to geo-based image processing algorithms. In both cases, other
conditions during data request and result generation are the same in this experiment. OpenStack,
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an influential open-source cloud computing environment, was used in this study. In addition, four
algorithms—binary thresholding, cloud detection, MAF, and NDVI in the OTB, which is an open-source
remote sensing library—were used for satellite image processing experiments.

The auto-scaling results demonstrate prominent cloud utilization features relative to response
time for all experiments. In the future, criteria and optimal conditions for applying auto-scaling to
remote sensing and practical case studies are required. They include consideration points such as
setting of the number of virtual servers, the size of the spatial coverage, and scale-out or scale-in
conditions for separate processing algorithms or schemes. Conclusively, the proposed scheme and
experimental results contribute to the development of web-based satellite image application services
and their load balancing tasks using cloud-based technologies.
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