
 International Journal of

Geo-Information

Article

A GIS-Based Fuzzy Decision Making Model for
Seismic Vulnerability Assessment in Areas with
Incomplete Data

Mansoureh Sadrykia 1, Mahmoud Reza Delavar 2,* and Mehdi Zare 2,3

1 GIS Department, School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran 14174-66191, Iran; m.sadrykia@ut.ac.ir

2 Center of Excellence in Geomatics Engineering in Disaster Management, School of Surveying and
Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14174-66191, Iran;
mzare@iiees.ac.ir

3 Seismology Research Center, International Institute of Earthquake Engineering and Seismology (IIEES),
Tehran 19537-14453, Iran

* Correspondence: mdelavar@ut.ac.ir; Tel.: +98-21-6111-4257 or +98-21-8833-4430

Academic Editor: Wolfgang Kainz
Received: 24 January 2017; Accepted: 10 April 2017; Published: 14 April 2017

Abstract: Earthquakes are one of the natural disasters that threaten many lives every year. It is
important to estimate seismic damages in advance to be able to reduce future losses. However,
seismic vulnerability assessment is a complicated problem, especially in areas with incomplete data,
due to incorporated uncertainties. Therefore, it is important to use adequate methods that take into
account and handle the associated uncertainties. Although different seismic vulnerability assessment
methods at the urban scale have been proposed, the purpose of this research is to introduce a new
Geospatial Information System GIS-based model using a modified integration of Analytical Hierarchy
Process (AHP), fuzzy sets theory, and Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) in a vector-based environment. The proposed method emphasizes handling one
of the important uncertainties in areas with incomplete data, namely the ‘vagueness’ of the existing
knowledge about influences of the criteria on seismic vulnerability, which is handled using fuzzy
sets theory in this research. The applicability of the proposed method is tested in a municipality
district of Tabriz, which is in a near vicinity to the fault system. It can be concluded that the proposed
method contributes to a pragmatic and efficient assessment of physical seismic vulnerability under
uncertainty, which provides useful information for assisting planners in mitigation and preparation
stages in less-studied areas.

Keywords: GIS; Multi-Criteria Decision Making; seismic vulnerability assessment; uncertainty;
fuzzy sets; AHP; damage; earthquake mitigation; risk

1. Introduction

An earthquake is one of the major natural disasters that causes severe physical, social, and financial
damages around the world every year. Seismic risk in urban areas is defined as the convolution
of ‘seismic hazard’ and ‘seismic vulnerability’ [1,2]. While studies on the seismic hazard analysis
(SHA) provide a conceptual framework for evaluating the probability of the occurrence of the hazard,
the ‘vulnerability assessment’ is used to determine the likely effects of hazards on human beings
and property within a particular area [3]. Seismic vulnerability can have physical, social, economic,
and political aspects [4,5]. This study focuses on ‘physical seismic vulnerability assessment (PSVA)’;
that is, the estimation of expected damages to buildings at the urban scale caused by a hypothetical
earthquake or a set of likely earthquakes. Considering that cities are more vulnerable to disasters due
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to the large population, huge building stock, and infrastructures, the importance of physical seismic
vulnerability assessment (PSVA) in urban areas is more highlighted [6]. Several methods have been
proposed by researchers for PSVA at the urban scale.

There are some studies that use existing analytical relations or vulnerability indices in a Spatial
Decision Support System (SDSS) framework (e.g., [7–14]). These approaches are applicable solely
when there are predefined relations or indices elucidated particularly for the studied area, though there
are many highly vulnerable urban areas all around the world that lack the required well developed
building inventory and/or damage statistics from the previous earthquakes required for developing
such relations/indices. Insufficient attention has been given to the implementation of seismic
vulnerability assessment methods in areas with data scarcity [15].

Considering the inadequacy of available data on one hand and the necessity of assessing physical
seismic vulnerability on the other, it would be an appropriate solution to think of PSVA at the urban
scale as a spatial decision making problem [2,16]. In this regard, some researchers have used Geospatial
Information System GIS-based Multi Criteria Decision Making (MCDM) methods (e.g., [16–20]).

Although the intrinsic uncertainties associated with PSVA using MCDM methods can influence
the results of the assessment considerably, a few studies considered and handled the incorporated
uncertainties. For instance, fuzzy logic was used for handling the vague uncertainties associated with
an MCDM method for a seismic vulnerability assessment of the buildings in Los Angeles County by
Rashed and Weeks [2]. Intuitionistic fuzzy logic was applied to produce human loss maps for some
parts of Tehran metropolitan area [21]. A seismic vulnerability model was proposed for Tehran by
deriving decision rules using a granular computing method [22]. The ordered weighted averaging
operator (OWA) was used to provide the vulnerability map of the statistical units of Tehran [23]. In the
mentioned approaches to study the seismic vulnerability of Tehran, experts address the vulnerability
of each statistical unit individually. In other words, experts rank the selected sample statistical units
according to their seismic vulnerability; thus, in those studies, the defined rules are dependent on
case study units. Fuzzy-IHWP (Inverse Hierarchy Weight Process) was applied for decision-making
on seismic vulnerability of Zanjan, Iran in a raster-based environment using relevant software [24].
The robustness and reliability of the results were not validated.

Although there are several studies on seismic vulnerability assessment briefly mentioned in the
literature, this paper suggests a modified method independent of case study area using fuzzy MCDM in
a vector-based environment to reduce the vagueness uncertainty in physical seismic vulnerability (PSV).
This study proposes a customized model for PSVA using a new combination of existing methods and
new datasets. In this study, a modified use of fuzzy rules in areas with incomplete data is introduced
to handle the incorporated ‘vagueness’ uncertainty in ‘influences of the adopted sub-criteria on PSV’.
The proposed method uses Analytic Hierarchy Process (AHP) to weigh the importance of the selected
criteria and a TOPSIS [25] method to estimate the overall PSV of the studied units concerning the
selected criteria. The method proposed is GIS-based because most of the needed data have spatial
characteristics. The preparation of datasets, executing analyses on the spatial data and representation
of the outputs of the model are handled using GIS.

This paper contributes to the PSVA literature in the following ways: (A) revealing the necessity
and efficiency of applying MCDM methods for PSVA in areas with incomplete data to treat the
inadequacy of the existing knowledge; (B) proposing a new GIS-based MCDM method for PSVA,
which is independent of the study area due to introducing seismic vulnerability rules so that the
fuzzy rules applied treat the existing ‘vagueness’ uncertainty; (C) proposing a new insight into
the adopted criteria. In that respect, seismic risk indicators are considered in two main categories,
i.e., the indicators that influence ground motion intensity and the indicators pertinent to structural
properties that influence buildings’ vulnerability. (D) The proposed method is implemented in
a real case study in Tabriz, a seismic hazard-prone metropolis in the northwest of Iran with data
scarcity for previous seismic damages and a few studies on the seismic vulnerability assessment of
the city [12,26,27]. The authors are not aware of any study on PSVA (physical seismic vulnerability



ISPRS Int. J. Geo-Inf. 2017, 6, 119 3 of 16

assessment) of Tabriz using a vector-based MCDM method emphasizing considering and reducing
associated knowledge-based uncertainties. (E) Sensitivity analyses are performed to examine the
robustness and reliability of the proposed model.

The main goal of this paper is to identify urban statistical units with higher building damage
estimates in Municipality District One in Tabriz. The mentioned units, which are mostly used for
decision-making by local and governmental planners in urban areas, are like sub-districts defined by
the Statistical Center of Iran (SCI). Including around 400 families, as described by the SCI in the year
2011, the mentioned urban statistical units are used as the base units for spatial analyses in this research.
The most devastating earthquake magnitude that Tabriz has undergone, based on the historical records,
is as large as Ms ~7.7 (1780 A.D), which was due to the movement of the North Tabriz Fault (NTF) [28].
This was hypothesized as the earthquake scenario of the present study. Furthermore, damages caused
by the secondary disasters such as liquefaction, landslides, fire, and explosions are not included in
this study. This paper concludes that the proposed method can be a pragmatic model for a quick and
efficient PSVA in urban areas with incomplete data to handle the incorporated uncertainties.

The remaining parts of the paper are organized as follows: Section 2 describes the study area;
Section 3 discusses the methods used and the proposed model; and Section 4 provides data analyses
and results. Section 5 explains sensitivity analyses implemented, and Section 6 provides discussions
and concluding remarks.

2. The Study Area

The capital of the Eastern-Azerbaijan Province in the North West of Iran, Tabriz is one of the
metropolitan cities in Iran (Figure 1a), with a population of over 1.6 million people, it is ranked fourth in
urban population in the country. The city has many old historically and culturally significant buildings.
There is a high seismic risk in Tabriz due to its adjacency to the North Tabriz active faults (NTF).
These faults caused devastating historical earthquakes in Tabriz in the years 858, 1042, 1721, 1780,
and 1965 A.D [28]. The historical earthquakes caused tens of thousands of casualties and extensive
physical and social destruction in the city. A recent time series analysis of RADAR images in the area
between 2004 and 2010 supports a probable earthquake of M ~7 as a result of strain accumulation
across the NTF [29]. There are some limitations in the availability of useful data for assessing PSV
(physical seismic vulnerability) in Tabriz. For example, there is lack of proper region-specific fragility
curves or pre-defined seismic vulnerability codes/indices for the existing structures. Therefore, it is
crucial to propose a pragmatic and quick seismic vulnerability assessment model to be used by local
policy makers for mitigation and preparation activities.

Figure 1. (a) Study area; (b) Tabriz Municipality Districts and some dense parishes near active faults.
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There are several densely populated districts and towns built in the hazardous areas adjacent to
the NTF in Tabriz (Figure 1b). As represented in Figure 1b, one of the districts adjacent to the active
part of the NTF is District One, which is approximately 1900 hectares, containing over 63,300 dwellings
and more than 250,000 inhabitants. The statistical data referred to and used in this study was based on
2011 census data conducted by the SCI, which is the last census data announced officially in Iran.

There are also several old buildings in this district that have not been constructed/renewed based
on standard construction regulations. District One consists of 156 urban statistical units selected as the
study area in this research.

3. Methods

This research aims to propose a parametric approach to build a new physical seismic vulnerability
assessment model for earthquake prone urban areas that lack predefined seismic damage relations
and/or vulnerability codes for existing structures. In this regard the ‘incompleteness’ of essential input
data can be compensated by taking advantage of expert judgments.

The main methods used in this study are briefly described in this section. A detailed explanation
of combination of AHP, fuzzy sets, and TOPSIS methods in the proposed methodology is presented
in Section 4.

3.1. AHP

One of the widely adopted techniques for weighing the criteria is the Analytic Hierarchy Process
(AHP) developed by Saaty (1977) [30]. AHP breaks the problem into smaller simpler decisions and
then asks respondents to rank them using pairwise comparisons, giving an organizational tool to
criticize the larger problem [31]. AHP calculates the required weights, assigning a weight to each
criterion against each of the other criteria [32], as shown in Table 1. The higher the weight of a criterion,
the more important it is in the decision.

Table 1. Saaty’s scale for pairwise weight assignment.

Weight Definition

1 Equal
2 Equal to moderate
3 Moderate
4 Moderate to strong
5 Strong
6 Strong to very strong
7 Very strong
8 Very strong to extreme
9 Extreme

AHP was first employed in spatial MCDA (Multi Criteria Decision Analysis) by Malczewski
(1999) [33]. Subsequently, it has been used consecutively by researchers for assessing vulnerability to
natural disasters via spatial MCDM methods. Examples can be seen in [34–39].

The final results of AHP include the weight of each criterion and an inconsistency measure
indicating whether the judgments are consistent. When experts are confused about the criteria or don’t
fully understand the problem, their preferences may not be consistent [31]. The maximum acceptable
level of inconsistency measure is 0.1; if consistency ratio (CR) exceeds 0.1, the preferences assignment
needs to be revised [40]. In this study, AHP is used to weigh the selected criteria and the inconsistency
score is computed for the criteria weights obtained through the AHP approach.
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3.2. Fuzzy Set Theory

The fuzzy set theory [41] focuses on representing and managing vague information. A fuzzy set is
essentially a set whose members have degrees of membership between 0 and 1; this is the opposite of
a crisp set, in which each member must have a membership degree of either 0 or 1. Linguistic variables
represented as words or sentences can be modeled by triangular fuzzy numbers (TFN). These variables
are useful to describe the ill-defined situations that cannot be reasonably described quantitatively.
A TFN can be defined by a triplet (a, b, c), as shown in Figure 2.
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In this study, due to the vagueness or imprecision of the vulnerability of the study units due to
contributing criteria, fuzzy set theory is used [42]. It is difficult to precisely express the relationship
between adopted sub-criteria and PSV (Physical seismic vulnerability) quantitatively using crisp values.
Therefore, the relationships are given by experts as fuzzy rules using linguistic variables [41,43].

Defuzzification is an important step in fuzzy modeling that involves converting fuzzy values
into crisp values. Many defuzzification techniques are introduced [43]. The graded mean integration
technique [44] is used as the defuzzification method in this research (Equation (1)).

P (Ã) = 1/6 (a + 4 × b + c) (1)

3.3. TOPSIS Method

TOPSIS is a simple and efficient MCDM method. It has been used successfully by researchers in
decision-making problems for disaster management, e.g., [45–48]. TOPSIS is a simple, highly trustable,
and appropriate method for earthquake vulnerability assessment among MCDM methods [49,50].
In the TOPSIS model, given the features and criteria, two positive and negative ideal points are selected
regarding each criterion. The best alternative will have the minimum distance from the positive ideal
point and maximum distance from the negative ideal point. This method can be suitable for this
research due to the following advantages:

(i) It has a sound logic that represents the rationale of human choice.
(ii) It is intuitive and easy to understand; it can be modeled and solved by decision makers and

managers using simple computer codes or Excel worksheets [47].
(iii) It considers both the best and the worst alternatives simultaneously.

In this study, defining ideal points and negative ideal points with respect to each of the employed
sub-criteria, the TOPSIS method is used to obtain the overall vulnerability ratings of the study units.

3.4. Proposed Method

The proposed method in this study aims to model physical seismic vulnerability in urban areas
with data scarcity, emphasizing assessing the incorporated ‘vagueness’ uncertainties. Such areas need
pragmatic and quick PSVA (physical seismic vulnerability assessment) methods to provide proper
information on expected building damages for disaster mitigation and preparation phases. To this
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end, a new GIS-based fuzzy MCDM method using a modified combination of AHP, fuzzy sets theory,
and TOPSIS is proposed, as shown in Figure 3. The proposed methodology consists of seven main
steps; Step 1 is to define a set of qualitative criteria as the main indicators of seismic risk that are
mainly spatial criteria. Step 2 is using AHP to weigh the selected criteria. In Step 3, the effect of each
sub-criterion on the severity of the expected damages to the buildings is defined as a fuzzy rule.
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In Step 4, a Decision Matrix (DM) is constructed. The fuzzy decision rules are assigned to the
statistical units concerning their attributes, which are available using GIS analysis capabilities.

Step 5 is to use fuzzy TOPSIS method. Regarding each sub-criterion, the statistical unit with the
lowest physical seismic vulnerability (PSV) is considered the positive ideal point (IP), and the unit
with the highest PSV is considered the negative ideal point (NP). Step 6 is to rank the given statistical
units based on the studied units’ physical seismic vulnerability (or priority for taking action in disaster
mitigation activities). As shown in Equation (2), the ranking of each statistical unit is calculated based
on the overall closeness to the ideal solution (D+) and negative ideal solution (D¯).

R = D¯/(D¯ + D+) (2)

Step 7 is to represent the calculated PSV of the statistical units on a map using GIS
visualization capabilities.

4. Data Analysis and Results

In this research a new combination of AHP, fuzzy sets, and TOPSIS methods for physical seismic
vulnerability assessment is proposed and implemented on real data of statistical units of a municipality
district in Tabriz.

Step 1. The set of main criteria, which should sufficiently represent the problem domain,
were defined through literature review and local experts’ judgments. After gathering the necessary
information on the available data and their metadata such as the scale, data type, and the date of
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production, the set of the main contributing criteria was finalized. The adopted datasets and the
providing organizations are illustrated in Table 2. All data were collected for the 156 urban statistical
units in Tabriz Municipality District One.

Table 2. The acquired data and the stakeholder organizations.

Prepared Data Source data Source Scale Organization

Tabriz Districts layer Tabriz county map 1:2000 Statistics and IT organization/
Municipality of Tabriz

Slope layer Topographical map 1:2000 Iran National Cartographic
Center (NCC)

Lithology layer Geological map 1:2000 Geological Survey of Iran (GSI)

Faults layer Active faults of Iran map 1:2,500,000
International Institute of

Earthquake Eng. and
Seismology (IIEES)

statistical units layer District One statistical units map 1:2000 Statistical Center of Iran (SCI)

Age of the buildings Year of the construction
(Excel worksheet) - Statistical Center of Iran (SCI)

Structural types Frame types of the buildings
(Excel worksheet) - Statistical Center of Iran (SCI)

Ground water layer (UTM) X,Y,Z of wells of East
Azerbaijan (Excel worksheet) - Water Resources Management

Company/Ministry of Energy

Number of floors Land use map (attribute table) 1:2000 Ministry of Roads and Urban
Development

The criteria were categorized into two main categories; namely hazard indicators, related to micro
zonation, and structural indictors, pertaining to the buildings’ structural characteristics. These criteria
were classified into sub-criteria based on existing data conditions and local experts’ suggestions
(see Figure 4). The created maps pertinent to the sub-classes of ‘ground motion intensity’ indicators
in the study area are shown in Figure 5. Regarding sub-classes of the indicator ‘distance to faults’,
taking into account the width of municipality District One, which is less than 5 km, and its very near
vicinity to the North Tabriz faults, the whole area was considered a near-field, concerning the distance
between site and faults (e.g., [51,52]).

Figure 4. The criteria and sub-criteria used for seismic vulnerability assessment.
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Figure 5. Input map layers regarding adopted ground motion intensity indicators.

Step 2. The responses of experts on the pairwise comparison between the selected criteria
importance regarding their influence on physical seismic vulnerability were gathered in an AHP
approach (Table 3).

Table 3. Comparative weights of the criteria due to Saaty’s preference scale.

Slope Ground-
Water

Dist. to
Faults Lithology Struct.

Age
Floor
No.

Struct.
Type

slope 1 2 1/6 1/4 1/5 1/2 1/3
groundwater 1/2 1 1/7 1/5 1/6 1/3 1/4
dist to faults 6 7 1 4 2 5 4

lithology 4 5 1/4 1 1/2 3 2
lithology 5 6 1/2 2 1 4 3
floor no. 2 3 1/5 1/3 1/4 1 1/2

struct. type 3 4 1/4 1/2 1/3 2 1

The comparative weights then were analyzed for determining each criterion weight. The results
are illustrated in Table 4. The inconsistency was 0.03, which is acceptable in comparision to the value
of CR = 0.1, identified by Saaty (1990) [37].

Table 4. Calculated importance weights of the criteria.

Criterion Weight Criterion Weight

lithology 0.152 struct. age 0.235
dist. to faults 0. 369 No. of floors 0.067

slope 0.044 struct. type 0.102
groundwater level 0.031 Inconsistency = 0.03
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Step 3. Seven experts from seven backgrounds, namely ‘engineering seismology’, ‘earthquake
engineering’, ‘geology’, ‘geotechnical engineering’, ‘structural engineering’, ‘soil mechanics’,
and ‘foundation engineering’, were asked to give their opinions on the impacts of the adopted
sub-criteria on PSV (physical seismic vulnerability). It is not practical to provide exact numerical
ratings, due to the lack of (sufficient) knowledge. The uncertainty, which stems from lack of knowledge,
is called epistemic (or subjective) uncertainty [53]. This research focuses on treating one of the sources
of epistemic uncertainty called ‘vagueness’.

Thus, in this research, the rules were defined using linguistic variables, e.g., ‘the vulnerability
is very high if ‘buildings age’ is more than 40 years’. The fuzzy seismic vulnerability rules can be
applied to different areas, and thus the proposed method is independent of the study area. Table 5
demonstrates the fuzzy numbers used to represent the linguistic variables employed in this paper.

Step 4. A multi-criteria decision-making (MCDM) problem can be concisely expressed in a matrix
format, in which the rows are decision cases and columns are the criteria against which the studied
cases are evaluated. In this study, the rows of DM are the statistical units and the columns are the
adopted sub-criteria. Thus DM contains 156 rows and 9 columns. Due to the fuzzy rules expressed with
linguistic terms (described in Step 3) regarding each cub-criterion, the members of DM are presented as
TFNs (see Table 5). For determining the attributes of each statistical unit, ArcGIS 9.3 software was used.

Table 5. Triangular fuzzy numbers (TFN) for the ratings of the sub-criteria.

Vulnerability Triangular Fuzzy Number

Very Low (VL) (0,0.1,0.3)
Low (L) (0.1,0.3,0.5)

Moderate (M) (0.3,0.5,0.7)
High (H) (0.5,0.7,0.9)

Very High (VH) (0.7,0.9,1.0)

Step 5. The fuzzy ratings in the DM were defuzzified using the graded mean integration technique
(see Equation (1)). The TOPSIS method was programmed in MATLAB in this study. First, the ideal
point (IP) and negative ideal point (NP) in each column of DM were determined. Thereupon Euclidean
distances from IP and NP were calculated in each column. The criteria weights obtained from the AHP
method were implemented to the calculated distances of each column. Finally, the distances from both
IPs and NPs for each statistical unit were aggregated.

Step 6. Using Equation (2), the rankings of the statistical units were calculated based on their
overall closeness to the IPs and NPs, which were obtained in Step 5. As a result, 52 ranks were attained
for the studied statistical units.

Step 7. In order to have a quick view of physical seismic vulnerability in the study area,
the obtained ranks were categorized to five classes, namely ‘Very High: VH’, ‘High: H’, ‘Moderate: M’,
‘Low: L’, and ‘Very Low: VL’ (e.g., [2,21,22,54]). As shown in the legend of Figure 6, the ranks 1 through
11 were categorized in the vulnerability class ‘VH’ and the ranks 12 through 22 were categorized as ‘H’
class and so forth. The vulnerability classes were represented on a map layer (Figure 6).

The sum of the statistical units categorized in each vulnerability class is illustrated in Figure 7.
The results of this research reveal that 14% of the 156 studied statistical units have very high physical
seismic vulnerability (PSV) considering the predicted damages to the buildings, and almost 21% of the
studied statistical units have high PSV (see Figure 7).
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Figure 6. The physical seismic vulnerability (PSV) ranks of Tabriz District One statistical units.

Figure 7. The percentage of the categorized statistical units.

5. Sensitivity Analysis

In the AHP-based MCDM methods considering the expert judgments in giving weights, a degree
of subjectivity is allowed [55]. Sensitivity Analysis (SA) is performed to investigate how changes
in the criteria weights influence the outputs of the model. A common SA method which is based
on the variation of the employed criteria weights was used in this study [56]. For this purpose,
the weights of the criteria derived by applying the AHP method were exchanged with each other
one at a time. For example, the 1st and the 2nd criteria weights have changed (the rest of the criteria
weights were invariable) and were named ‘criteria weights Set 1’. The next criteria weights set is
calculated by changing the 1st criterion weight with the 3rd one (the weights of the 2nd, 4th, 5th,
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6th, and 7th criteria remained the same), and the new set is named ‘Set 2’. Therefore, 21 sets were
obtained, and, accordingly, 21 computations for re-estimating the physical seismic vulnerability (PSV)
of the study units were performed. The calculated PSV ranks using the 21 sets of the criteria weights
were compared with the PSV ranks obtained from the proposed methodology. The results indicate
that the vulnerability class of 136 units out of the 156 study units remained the same in more than
62% of the re-estimations. Therefore it can be approved that changing the criteria weights did not
significantly impact the model outputs. Figure 8 shows the vulnerability classes and the frequency of
each vulnerability class in different 21 computations regarding some of the statistical units of Tabriz
District One.

Figure 8. Sensitivity analysis results for a random set of the statistical units.

In order to validate the approach and ensure the reliability and transferability of the proposed
method to a general case (considering near-vicinity of the case study to the fault system in this study),
a sensitivity analysis was carried out, removing the ‘distance to the fault’ from the criteria. The weights
of the criteria were recalculated using Saaty’s preference scale [30]. The obtained weights are illustrated
in Table 6.

Table 6. Calculated importance weights of the criteria removing ‘dist. to faults’.

Criterion Weight Criterion Weight

lithology 0.250 struct. age 0.382
slope 0.064 no. of floors 0.101

groundwater level 0.043 struct. type 0.160
Inconsistency: 0.02

The physical seismic vulnerability of the statistical units was assessed using the weights illustrated
in Table 6. The obtained physical seismic vulnerabilities for the statistical units in the study area are
illustrated in Figure 9.

The results were compared to the outputs of the proposed model. As shown in Figure 10, it was
observed that all of the units that were categorized in the ‘VH’ and ‘H’ seismic vulnerability classes
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remained in the same vulnerability classes. However, 12 units (i.e., around 7% of the statistical units of
District One) were categorized in different vulnerability classes; seven units that were categorized in
the ‘L’ class were ranked as ‘M’ vulnerability class (Unit IDs 34, 36, 54, 98, 120, 122, and 125) using the
new criteria weights, and five units that were in the ‘VL’ class (namely unit IDs 29, 70, 72, 88, and 117)
were classified into the ‘L’ vulnerability class. Thus the results of this analysis concerning the influence
of ‘dist. from faults’ confirm the robustness of the outputs of the proposed model.

Figure 9. Statistical units IDs vs. physical seismic vulnerability classes after removing ‘dist to faults’.
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Figure 10. The sum of the categorized statistical units based on physical seismic vulnerability.
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6. Discussion and Conclusions

Revealing the necessity and benefit of using MCDM methods for physical seismic vulnerability
assessment (PSVA) in earthquake prone urban areas with incomplete data, this paper proposed a new
easily applicable PSVA method using a combination of AHP and fuzzy TOPSIS methods. Although
the methods applied are already used in different studies, a new modified combination of AHP,
fuzzy sets, and TOPSIS is proposed and implemented in this research, which emphasizes treating one
of the important uncertainties in PSVA in areas with incomplete data, called ‘vagueness’. The validity
and accuracy of the input data is improved by treating the incorporated ‘vagueness’ uncertainties
associated with ‘influences of the sub-criteria on physical seismic vulnerability’ by using fuzzy sets
theory in this research.

Against related works, this paper proposes a new rational approach independent of the studied
area, using a trustable MCDM method, which attempts to treat the incorporated epistemic uncertainties.
A new insight on the influencing criteria was introduced, which concerns the influencing criteria in two
main categories; namely, the building vulnerability indicator, which considers the building structural
properties, and the criteria which influence ground motion intensity, which takes into account the
properties of the ground on which the building is constructed. The datasets pertinent to each category
are introduced and implemented in a real case study, which was an earthquake prone municipality
district with high seismic risk. The study area had a serious lack of proper forms of datasets to be used
in pre-disaster mitigation activities, and this research addressed how to prepare the needed datasets
and implement a simple and easily applicable assessment of physical seismic vulnerability despite
the data scarcity in the region. The mitigation priority of the studied units was obtained using the
proposed method. The results of this study suggest that the proposed method is arguably a pragmatic
and quick approach to solve the complex problem of PSVA under the vagueness uncertainty of the
criteria influences on physical seismic vulnerability. The results of the implementation also indicated
that the proposed model has acceptable robustness concerning the weights of the criteria defined using
the AHP method.

It is observed that the existing buildings of 156 urban statistical units in Tabriz District One are
categorized into ‘very high’, ‘high’, ‘moderate’, ‘low’, and ‘very low’ vulnerability classes with 14%,
21%, 29%, 21%, and 15% vulnerability, respectively, against the most probable devastating earthquake.
The produced vulnerability map shows that the higher vulnerable areas are mostly in the northwestern
and western parts of District One of Tabriz. Considering that the case study in this paper was in a near
vicinity to the fault system, a sensitivity analysis was undertaken to study the influence of the ‘distance
from fault’ criterion on the outputs of the model. The results of sensitivity analysis indicated that
the mitigation priorities of the statistical units assessed by the proposed model were not significantly
modified, which may confirm the transferability of the model to other cases.

The outputs of this research help urban planners and administrators in planning and
prioritizing the actions needed in mitigation and preparation phases for municipality districts
(e.g., population propagation and settlement, future urban expansions, retrofit and strengthening
programs, and insurance schemes), providing necessary information concerning the severity of
expected building damages. Those pre-disaster mitigation stages lead to reducing future building
damages and human/property losses in high seismic risk areas.

The proposed method can be applied in urban areas other than the case study of this research
considering that the framework proposed in this study is independent from the study area or adopted
criteria. The buildings’ vulnerability indicators (see Figure 4) were available from Ministry of Roads
and Urban Development (MRUD) or SCI census data (see Table 2) in this research. The mentioned
criteria were similarly used by Japan International Cooperation Agency (JICA) for the Tehran
municipality [11]. However, in areas in which data on structural properties are not available,
ground-based observations may be used to gather the needed data on buildings using rapid visual
screening (e.g., [57]) or remote sensing imagery (e.g., [20]).
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The present model can be applied in higher spatial resolutions than the considered urban statistical
units, such as urban parcels, in future studies. In this research, only a number of important criteria were
considered, future applications might expand or modify the criteria/sub-criteria used. For instance
concerning the ‘structural type’ indicator, future studies may use the Global Earthquake Model (derived
from the World Housing Encyclopedia [58]) or another international taxonomy for classifying the
indicator to sub-classes.

Developing a GIS-based software for modelling physical seismic vulnerability is the other
plan for future works in order to assist decision-makers with an automated and interactive tool
for understanding seismic risks quickly. The next step of the research is investigating and analyzing
other types of incorporated epistemic uncertainties in assessing physical seismic vulnerability at the
urban scale using MCDM methods and attempting to reduce them.
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