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Abstract: The large deployment of plug-in electric vehicles (PEVs) challenges the operation of the
distribution network. Uncoordinated charging of PEVs will cause a heavy load burden at rush hour
and lead to increased power loss and voltage fluctuation. To overcome these problems, a novel
coordinated charging strategy which considers the moving characteristics of PEVs is proposed
in this paper. Firstly, the concept of trip chain is introduced to analyze the spatial and temporal
distribution of PEVs. Then, a stochastic optimization model for PEV charging is established to
minimize the distribution network power loss (DNPL) and maximal voltage deviation (MVD).
After that, the particle swarm optimization (PSO) algorithm with an embedded power flow program
is adopted to solve the model, due to its simplicity and practicality. Last, the feasibility and efficiency
of the proposed strategy is tested on the IEEE 33 distribution system. Simulation results show that
the proposed charging strategy not only reduces power loss and the peak valley difference, but also
improves voltage profile greatly.

Keywords: plug-in electric vehicles; coordinated charging; distribution network; trip chain; particle
swarm optimization; national household trip survey data

1. Introduction

The intensification of environmental pollution has drawn people’s attention to renewable energy
generation, electric vehicles (EVs) and some other energy scavenging technologies [1]. As a clean,
efficient and eco-friendly means of transportation, plug-in electric vehicles (PEVs) are widely used
throughout the whole world. However, the high penetration of PEVs will lead to large amount of
power consumption, which will increase the load burden of the distribution network [2]. Meanwhile,
the uncoordinated charging of PEVs will also bring negative impacts on the distribution network,
such as overloading, increased power loss, voltage drop and so on [3]. In [4], the specific impacts
including power loss and voltage deviation have been discussed under uncoordinated and coordinated
charging scenarios, the results showed that the uncoordinated charging of plug-in hybrid electric
vehicles (PHEVs) reduces the efficiency of the distribution network. The potential impacts from various
levels were investigated in [5], where simulation results illustrated that the uncontrolled charging of
EVs could also result in levels of unbalance. The power quality impact assessment was conducted
in [6], which considered the random operating characteristics of PHEVs. A stochastic approach based
on actual measurements and survey data was proposed in [7] to analyze the voltage and congestion
impacts of electric vehicles (EVs), the conclusion was that the security problems caused by EVs can be
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mitigated by smart charging. Therefore, the proper control of PEVs is critical to ensure the safe and
economical operation of the distribution network.

Much research has focused on the coordinated charging of PEVs. In [8], a centralized control
charging method has been proposed to maximize the total power that could be transmitted to EVs
by controlling the charging rates. In [9], a decentralized charging strategy was proposed to fill
load valleys, whereby the charging profile of each EV was updated according to the delivered
control signals. In [10], an intelligent pricing scheme was proposed to coordinate PEV charging,
in which the price and quantity information were sent to the load aggregators by the system operator.
In [11], a new application system was designed for EV management in a smart distribution network.
Environmental issues, economic issues and various driving patterns of EVs owners were all considered
in the proposed multi-objective optimization model. The benders decomposition technique was
adopted to solve the problem, and results showed that this method has good convergence. In [12],
EV charging was formulated as a linear optimization problem taking distribution network constraints
into account, which was suitable for charging large numbers of EVs. In [13], two charging pricing
mechanisms under non-cooperative and cooperative scenarios were presented to guide the charging
schedules of EV owners. The coordinated charging strategies for different scenarios were designed
according to different requirements, which reduced the computational complexity and guaranteed
quick convergence. In [14], a novel valley-filling strategy for large-scale EVs was proposed to mitigate
negative impacts on the power grid. It defined two important indexes to select proper target time slots
and determine the charging priority of EVs. The results showed that the centralized charging strategy
was highly efficient. In [15], coordination of PEVs was proposed to achieve valley filling and charging
cost reduction, coupling the customer and grid-based objectives prominently.

Although these charging strategies are effective for solving the corresponding problems,
the changing characteristics that lead to the random charging behavior of PEVs are more or less
ignored. Compared with previous research, this paper proposes a novel charging strategy which
considers the moving characteristics of PEVs to mitigate impacts on distribution network. First,
the spatial-temporal distribution of PEVs is discussed based on trip chain and national household trip
survey (NHTS) data. Second, for both economic and power quality concern, a stochastic optimization
model for PEV charging is established to minimize the distribution network power loss (DNPL)
and maximal voltage deviation (MVD). Then, the particle swarm optimization (PSO) algorithm with
an embedded power flow program is adopted to solve the model by shifting the charging load of PEVs
to different locations. Finally, simulations are conducted to verify the proposed model and strategy.

The rest of this paper is organized as follows: Section 2 describes the spatial and temporal
distribution of PEVs. Section 3 presents the optimization model and solving method of the proposed
charging strategy. In Section 4, the simulation results and discussions are presented. Finally, Section 5
draws the conclusions.

2. The Spatial and Temporal Distribution of PEVs

2.1. PEVs’ Daily Movement

Due to the mobility of PEVs and users’ travel habits, the charging behavior of PEVs is full of
randomness. To obtain the spatial and temporal distribution of PEVs, the concept of the trip chain is
introduced here to analyze users’ travel behavior [16]. According to national household trip survey
(NHTS) data [17], the trip destinations of PEVs can be classified into four types: Home (H), Work (W),
Public leisure (P) and Other transactions (O). The typical daily movement of PEVs based on trip chain
is shown in Figure 1.
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Figure 1. The typical daily movement of PEVs based on trip chain. 
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2.2. Construction of Trip Chain and the Transition Probability

Studies reveal that drivers usually both start and end all their trips at home. In addition, for private
cars, the average length of trip chain is 3.02 [18]. Therefore, no more than three trip destinations are
considered in this paper and the starting and terminal point is specified as home. Therefore, the trip
chains of PEVs are constructed only between these four zones, as shown in Table 1.

Table 1. Trip chains of PEVs.

Type Trip Chain

2 trips H-W-H H-P-H H-O-H

3 trips
H-W-P-H H-P-W-H H-P-P-H
H-W-O-H H-O-W-H H-O-P-H
H-W-W-H H-P-O-H H-O-O-H

In Table 1, a trip represents the movement between the original and final locations. For example,
a trip from home to public place is defined as H-P. It is assumed that the movement of PEVs between
different zones conforms to the discrete markov process [19], then transitional probability from state
Di to state Dj is given by (1):

p(EDi → EDj) = p(EDi

∣∣EDi ) = pDi Dj (1)

Correspondingly, the transition probability matrix of PEVs between zones in this paper can be
obtained as:

H
P
W
O

H P W O
pHH pHP pHW pHO
pPH pPP pPW pPO
pWH pWP pWW pWO
pOH pOP pOW pOO

 (2)

where the transition probability of each trip can be obtained by NHTS data.

2.3. Charging Load of PEVs

The charging load of PEVs depends on many important factors, such as charging location,
charging mode and the number of PEVs. As mentioned in Sections 2.1 and 2.2, the trip destination
appearing in a trip chain indicates that users may stay and charge at the corresponding charging
location. However, it is unreasonable to assume that PEVs could be charged anywhere, because of
limited charging facilities. Therefore, the charging location is specified as the charging station in
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different zones, including residential charging station (RCS), working area charging station (WCS),
public leisure area charging station (PCS) and other regional charging station (OCS).

Generally, the PEV charging mode can be divided into slow charging mode and fast charging
mode [20]. The slow charging mode is usually adopted at home or the workplace, with low charging
power and long charging duration. It is assumed that slow charging mode is used at RCS and WCS.
The fast charging mode provides a high charging power, which is also called urgent charging. In fast
charging mode, PEVs can be fully charged in a short time. Therefore, the fast charging mode is adopted
in PCS and OCS.

After the determination of charging location and charging mode, the charging load can be obtained
by (3):

PZ,t =
NZ

∑
ne = 1

PChsne,t (3)

where PZ,t is the load of charging station Z at time t, Z ∈ {RCS, WCS, PCS, OCS}; NZ is the number of
PEVs in charging station Z; PCh ∈ {PChF, PChS} is the charging power, PChF is the fast charging power,
PChS is the slow charging power; Sne,t is the charging state of the ne th PEV at time t, if charging,
Sne,t = 1,else, Sne,t = 0.

In this paper, the number of PEVs in each charging station is not deterministic, it varies in a range,
and depends on the demand of users. Its formula is as follows:

NZ = NEV pZ, pZ,min ≤ pZ ≤ pZ,max (4)

where NEV is the total number of PEVs in the distribution network; pZ is the parking probability
for charging station Z; pZ,max and pZ,min are the maximum and minimum value of pZ, which can be
obtained through the analysis of historical information and the transition probability.

The charging condition of PEVs is set as follows:{
Ta < t < Ta + Tc, sne,t = 1
else, sne,t = 0

(5)

where Ta is the arrival time, and the arrival time for each charging station is different, but each follows
the normal distribution [21] denoted by Ta~N (µT, σ2

T), µT is the average value and σT is the standard
deviation. In this paper, it is assumed that PEVs can be charged immediately when arriving at the
station. Therefore, the initial charging time of PEV is the arrival time. Tc is the charging duration,
which can be calculated by (6):

Tc =

(
SOC f − SOCs

)
Bc

λPCh
(6)

where SOCs and SOCf are the initial and final state of charge (SOC), respectively; Bc is the battery
capacity, λ is the charging efficiency.

On this basis, the spatial-temporal load model of PEVs that can be directly applied in the
coordinated charging procedure is established, and the flow chart is shown in Figure 2.
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3. Problem Formulation and Methodology

In this paper, the specific spatial and temporal optimal charging strategy of PEVs is proposed
to mitigate impacts on distribution network, including power loss reduction and voltage profile
improvement. It considers the moving characteristics of PEVs and expands the charging location from
a single residential charge to a full-area charge. Based on the analysis of the spatial and temporal
distribution of PEVs, the optimal strategy is achieved by adjusting the number of PEVs to shift charging
load to different areas.

3.1. Objective Function

Power loss is an important economic concern of distribution networks, and occupies more than
40% of the total network loss [22]. It is necessary to minimize power loss for the economic operation of
the distribution network. The expression of DNPL is as follows:

DNPL =
Tt

∑
t = 1

Nbranch

∑
l = 1

Rl I2
l,t (7)

where Tt is the total number of charging periods, and is set as 24; Nbranch is the total number of branches;
Rl is the resistance of branch l; Il,t is the current of branch l at time t.

From the distribution network operator, the voltage deviation partly represents the power quality
concern, which is essential to the safe operation of the distribution network [23]. It is important to
avoid large voltage deviations. The expression of MVD is as follows:

MVD = max
i = 1,2,...,Nnode

( max
t = 1,2,...,Tt

(

∣∣∣∣Ui,t −UN

UN

∣∣∣∣)) (8)
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where Nnode is the total number of nodes; Ui,t is the voltage of node i at time t; UN is the rated voltage.
The problem involves multi-objective optimization, and two optimization targets are considered

in the proposed model. Although some algorithms, such as the Pareto solution set method [24]
and the lexicographic method [25], are efficient for solving multi-objective optimization, the linear
weighting-sum method [26] is used here for its better practicability and convenience. The two
optimization goals are first normalized to the same range and then processed into a single objective
function. The total objective function is formulated as follows:

minF = min(α f1 + β f2) (9)

where f 1 is the normalized maximal voltage deviation; f 2 is the normalized power loss; α and β are the
weight coefficients.

3.2. Determination of Weight Coefficient

The judgment matrix method is a reliable quantification method to determine the weight
coefficients [27]. It classifies all objectives into different scales according to importance, and then
form a square matrix based on standardized scores. Usually, the scales 1, 2, 3, · · · , 9 and their
reciprocals are used to represent the relative importance. The meanings are shown in Table 2 [28].

Table 2. The rule of constructing the judgment matrix.

Scale Meaning

1 The two goals are of equal importance
3 One is slightly more important than the other
5 One is obviously more important than the other
7 One is strongly more important than the other
9 One is extremely more important than the other

In this paper, the DNPL is considered slightly more important than the MVD. Therefore,
the judgment matrix is formed as:

J =

[
1 1/3
3 1

]
(10)

By solving the eigenvalues and characteristic vectors of the matrix [29], the weight coefficients of
each subgoal can be obtained α = 0.75, β = 0.25.

3.3. System Constraints

The first equality constraint is set for the power flow, which is as follows:
Pi,t = Ui,t

Node
∑

j = 1
Uj,t
(
Gij cos δij,t + Bij sin δij,t

)
Qi,t = Ui,t

Node
∑

j = 1
Uj,t
(
Gij sin δij,t − Bij cos δij,t

) (11)

where Pi,t is the active power of node i at time t; Qi,t is the reactive power of node i at time t; Ui,t and Uj,t
are the voltage amplitude of node i and node j at time t, respectively; δij,t is the voltage angle between
node i and node j at time t; Gij is the conductance between node i and node j; Bij is the susceptance
between node i and node j.

The second constraint is set for the node voltage, which is as follows:

Umin ≤ Ui,t ≤ Umax (12)



Energies 2018, 11, 1373 7 of 16

where Umin is the minimum value of node voltage, which is set as 0.9 pu; Umax is the maximum value
of node voltage, which is set as 1.1 pu.

The third constraint is set for PEVs:{
pz,minNEV ≤ NZ ≤ pz,maxNEV
NPCS + NWCS + NOCS ≤ NRCS

(13)

3.4. Solving Method

The coordinated charging of PEVs is a complex nonlinear optimization problem, which can be
solved by many kinds of modern heuristics algorithm, such as ant colony algorithms [30], genetic
algorithms [31] and PSO algorithms [32]. Due to its simplicity and convenience, the PSO algorithm
with an embedded power flow program is applied to solve the optimization problem. The inner-layer
power flow calculation is carried out by back/forward sweep method, which is widely used in power
systems. According to the calculated fitness function, the outer PSO algorithm constantly searches for
the optimal results until the termination condition is satisfied. The specific steps are as follows:

Step 1: Input raw data, including parameters of the distribution network and PEVs.
Step 2: Specify some parameters associated with PSO, such as the population size NS,

the dimension of particle D, the maximum number of iterations M.
Step 3: Randomly generate the initial particle swarm. In the optimization model of this paper,

once the parking probability of PEVs in area Z is determined, the number of PEVs parked at different
charging stations is also obtained. Therefore, the parking probability of PEVs is set as unknown
quantity X in the PSO algorithm. Every particle has D dimensions, each dimension represents the
number of PEVs parking at the corresponding charging station besides RCS. Because for all PEVs in
this paper, the last trip destination is specified as home, the parking probability in RCS is a constant.

Step 4: Carry out the power flow calculation to initialize the fitness function. In the inner-layer
program, set the sample array of the charging load of different charging stations including Ppcs [T],
PRcs [T], POcs [T], PWcs [T] and perform the power flow calculation, T = 24. During the calculation,
the power flow equation and voltage constraint would be satisfied automatically. In addition, the load
distribution of PEVs is also initialized.

Step 5: Update the inertia weight and learning factors of particle swarm by (14):
ω = ωmax − (ωmax −ωmin)m/M
ca = caini + (ca f in − caini)m/M
cb = cbini + (cb f in − cbini)m/M

(14)

where ω is the inertia weight, ωmax is the maximum value of ω, ωmin is the minimum value of ω;
ca and cb are two learning factors; caini is initial value of ca and cafin is the final value of ca; cbini and cbfin
are the initial and final value of cb, respectively.

Step 6: Update the velocity and position of particle swarm by (15):
vnd(m + 1) = ωvnd(m) + caranda

(
xpn(m)− xnd(m)

)
+ cbrandb

(
xg(m)− xnd(m)

)
xnd(m + 1) = xnd(m) + vnd(m + 1)

(15)

where xnd(m) and vnd(m) are the position and velocity along dimension d of particle n in iteration
m, respectively; xpn(m) is the best position of each particle; xg(m) is the best position among all the
particles in the population; randa and randb are random numbers within a range of [0,1].
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Step 7: To avoid the particle flying beyond its scope of velocity and position, the constraints of
charging demand are handled as follows:

vnd(m) =

{
vmin, vnd(m) ≤ vmin

vmax, vnd(m) ≥ vmax
(16)

xnd(m) =

{
xmin, xnd(m) ≤ xmin

xmax, xnd(m) ≥ xmax
&set vnd(m) = −vnd(m) (17)

xn3(m) = pRCS − xn2(m)− xn1(m),
D

∑
d = 1

xnd(m) > pRCS (18)

where vmin and vmax are the minimum and maximum value of velocity, respectively; xmax is the
maximum value of position, xmin is the minimum value of position, pRCS is the parking probability
for RCS.

Step 8: Carry out the power flow calculation again, update the fitness function. During the power
flow calculation, the charging load of PEVs in different charging stations is also updated.

Step 9: Repeat Steps 5–8 for M times.
Step 10: Output the best position as the optimal solution, then we can obtain the optimal charging

load of PEVs.
The whole process of coordinated charging of PEVs based on PSO algorithm is shown in Figure 3.
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4. Case Study

4.1. Case Description

In this paper, the IEEE 33 distribution system is used to demonstrate the proposed model and
method. The system structure diagram is shown in Figure 4. The PCS, RCS, WCS and OCS are located
at node 5, 8, 12 and 29, respectively. For each node of the IEEE 33 system, the load data is from the
measured data of a real-urban area in China [33]. In addition, the typical daily load curve is shown in
Figure 5. For all kinds of charging stations, SOCs obeys the normal distribution N (0.5, 0.1), SOCf is set
as 1, and the relevant parameters of the PEVs [34] and the PSO [35,36] algorithm are shown in Table 3.
For better comparison, five different cases are described as follows:

Case 1: No PEVs connected to the distribution network.
Case 2: Random uncoordinated PEV charging may occur anytime and all PEVs charge only

at RCS.
Case 3: The coordinated charging strategy is applied here and the charging probabilities at RCS,

WCS, PCS and OCS are set as 0.5, 0.3, 0.1 and 0.1, respectively. Here, only DNPL is selected as the
optimization objective.

Case 4: All the conditions are set the same as case 3, but only MVD is selected as the
optimization objective.

Case 5: The multi-objective optimization under coordinated charging is conducted.
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Table 3. Parameters of the simulation.

Part Quantity Value

PEV

total number of PEVs NEV 500
battery capacity Bc/kWh 30

charging efficiency λ 90%
fast charging power PChF/kW 45

slow charging power PChS/kW 7

PSO

population size Ns 50
maximum number of iterations M 200

dimension D 3
the maximum value of ω 0.9
the minimum value of ω 0.4

the initial value of learning factor ca 2.5
the final value of learning factor ca 0.5

the initial value of learning factor cb 0.5
the final value of learning factor cb 2.5
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Figure 5. Typical daily load curve.

4.2. Parameter Calculation

The NHTS 2009 database has abundant trip records of residents. For each trip, the important
information including trip destination, arrival time, departure time and driving distance are all
provided. The transition probability of each trip is calculated by statistical data, which is shown in
Table 4. By using the curve-fitting toolbox in MATLAB, the arrival time in different charging location
is fitted with normal distribution, which is shown in Table 5.

Table 4. Parameters of transition probability.

Parameters Zone H P W O

transition probability

H 0.0028 0.5006 0.261 0.2356
P 0.4032 0.513 0.0206 0.0632
W 0.5797 0.3087 0.0397 0.0719
O 0.4582 0.3617 0.0279 0.1523

Table 5. Parameters of arrival time.

Parameters Zone Mean Standard Deviation

arrival time/h

H 17.47 3.41
P 8.8214 2.7897
W 13.7059 3.2416
O 12.605 3.8663

4.3. Results Analysis

4.3.1. Convergence Analysis

The optimization is repeated 50 times, and the results are shown in Table 6. Over 50 runs, the final
simulation results are chosen based on the best fitness value, which is closest to the average value in
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Table 6. Figure 6 shows the convergent curve of the PSO algorithm. The calculation time in all cases is
less than 120 s. Therefore, the PSO algorithm finds the best fitness values with fast convergence rate,
which shows the superiority of the algorithm.

Table 6. The objective function value of PSO.

Parameters Mean Variance

Case 3 0.3358 5.3096 × 10−7

Case 4 0.3136 3.6667 × 10−7

Case 5 0.3319 6.7078 × 10−7
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The values for the obtained parking probabilities in PSO are shown in Table 7. In addition,
according to Table 1 and the transition probability shown in Table 4, the parking probability for RCS
can be obtained as pRCS = 0.6866, which is the same value in different cases.

Table 7. The parking probability obtained in PSO.

Parameters pPCS pWCS pOCS

Case 3 0.2432 0.1522 0.1429
Case 4 0.2474 0.197 0.1708
Case 5 0.2369 0.1796 0.1481

4.3.2. Objective Functions Analysis

The simulation results of DNPL and MVD in different cases are shown in Table 8. From Table 8,
it is observed that compared with case 1, the DNPL and MVD in case 2 are both greatly increased
with uncoordinated PEVs connected to the distribution network. To mitigate these negative impacts,
the coordinated charging strategy is adopted in case 3–case 5. In case 3, the DNPL is maximally
reduced to 3.358 MW, and in case 4, the MVD is maximally reduced to 0.3136 pu. In case 5, both the
DNPL and MVD are taken as the objective functions with a weight ratio of 3:1. Compared with case
2, the DNPL is reduced to 3.372 MW and the MVD is reduced by 10.5%, which achieves satisfactory
result of both DNPL and MVD.

Table 8. Objective function values in different cases.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5

DNPL (MW) 3.198 3.45 3.358 3.403 3.372
MVD (pu) 0.2935 0.3531 0.3196 0.3136 0.3161
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Figures 7 and 8 show the daily power loss and maximal voltage deviation, it can be found that
during the peak period of load demand, both the power loss and maximal voltage deviation reach
the maximum value, which increases the operation risk. From Figure 9, it can be observed that the
power loss of every branch in the distribution network is very small after optimization, which avoids
obvious economic loss. Figure 10 shows the node voltage of the distribution network in case 5.
In Figure 10, the voltage of each node at each moment is between 0.95 pu and 1.05 pu, which validates
the effectiveness of the coordinated charging strategy in voltage profile improvement.
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4.3.3. Charging Load Analysis

The optimal charging load of PEVs in different locations has large differences, as shown in
Figure 11. The charging load in RCS is the highest and the peak load occurs from 18:00 to 21:00. This is
because most residents are used to charging at home after the last trip. The charging behavior in
WCS mostly occurs in 8:00–14:00 and the charging load is smaller than only RCS. The charging load
in PCS and OCS is relatively small, which is because once PEVs are fully charged in RCS or WCS,
it is enough for the users to finish daily trips. Through the optimal charging, the number of PEVs are
properly assigned to different charging stations, which avoids the large-scale concentrated charging at
rush hour.
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4.3.4. Peak Valley Load Analysis

The daily load curve of the distribution network in different cases is shown in Figure 12 and the
peak valley load values are shown in Table 9. In case 1, the peak-valley difference is 1.101 MW. With the
large number of PEVs randomly connected to the distribution network, the fluctuation of the daily load
curve is deeply aggravated, and the peak-valley difference in case 2 increases to 1.402 MW. Compared
with case 2, the load peak valley difference in case 5 is reduced by 12.5% with the coordinated charging
of PEVs. From Figure 12, it can be observed that after the optimal charging, the increased charging
load at rush hour can be reduced and transferred to other moments, which shows the effectiveness of
the coordinated charging strategy in reducing the peak valley difference.
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Table 9. Peak and valley load values in different cases.

Parameters Case 1 Case 2 Case 5

Peak load (MW) 3.731 4.081 3.906
Valley load (MW) 2.63 2.679 2.679

Peak-valley difference (MW) 1.101 1.402 1.227
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5. Conclusions

This paper proposes a spatial and temporal optimization strategy for PEV charging to mitigate
impacts on the distribution network, in which the moving characteristics and charging habits of PEV
owners are taken into account. Based on trip chain, the spatial and temporal distribution of PEVs
is analyzed and then a stochastic optimization model for PEV charging is established to minimize
the distribution network power loss (DNPL) and maximal voltage deviation (MVD). The particle
swarm optimization (PSO) algorithm with an embedded power flow program is adopted to solve
the optimization problem by shifting the charging load of PEVs in different locations. According to
the simulation results, the proposed strategy is feasible and effective. It can reduce power loss and
improve voltage profile greatly as well as reduce the peak valley difference. Our future work will
consider the demand response measures to meet the charging demand of PEVs.
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