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Abstract: Due to its capacity for temporal and spatial coverage, remote sensing has emerged as
a powerful tool for mapping inundation. Many methods have been applied effectively in remote
sensing flood analysis. Generally, supervised methods can achieve better precision than unsupervised.
However, human intervention makes its results subjective and difficult to obtain automatically,
which is important for disaster response. In this work, we propose a novel procedure combining
spatiotemporal context learning method and Modest AdaBoost classifier, which aims to extract
inundation in an automatic and accurate way. First, the context model was built with images to
calculate the confidence value of each pixel, which represents the probability of the pixel remaining
unchanged. Then, the pixels with the highest probabilities, which we define as ‘permanent pixels’,
were used as samples to train the Modest AdaBoost classifier. By applying the strong classifier to the
target scene, an inundation map can be obtained. The proposed procedure is validated using two
flood cases with different sensors, HJ-1A CCD and GF-4 PMS. Qualitative and quantitative evaluation
results showed that the proposed procedure can achieve accurate and robust mapping results.

Keywords: inundation mapping; flood; optical sensors; spatiotemporal context learning; Modest
AdaBoost; HJ-1A/B CCD; GF-4 PMS

1. Introduction

Natural disasters are common phenomena in all parts of the world. There are many types of
natural disasters [1], of which a flood is considered to be one of the most destructive, widespread and
frequent disasters [2,3]. Every year, tremendous loss of life and property is caused by flooding [3].
Due to the changes in global climate and land use, floods are becoming more severe and more frequent
all around the world [3,4]. Although it is difficult to prevent floods, it is possible to minimise their
impact through proper rescue, relief and resource allocation for recovery and reconstruction. Therefore,
accurate inundation mapping, especially near real time, is very important for establishing a fast
response plan and mitigating the disaster [5–7].

Traditional methods for inundation mapping are based on ground survey and aerial observation.
However, when the flood spreads to a large scale, these approaches are time- and resource-consuming,
which cannot satisfy the need for a fast response to a disaster. Moreover, aerial observation can be
unrealistic in some extreme weather conditions, and the density of gauging stations is not satisfactory
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in many countries [8]. An alternative choice is provided by satellite remote sensing (RS) techniques [6].
Due to their time availability and cost effectiveness, satellite data has played an important role in
understanding inundation [9–13]. The availability of multi-date images makes it possible to monitor
the progress of floods.

Satellites used for mapping floods can be divided into those that are optical and those that are
microwave. Due to its capacity to penetrate the frequent clouds in a flood event, microwave remote
sensing is all-weather and invaluable for flood monitoring. With multispectral images, the flood can
be analysed in a more straightforward way with simpler pre-processing [14]. In this study, we mainly
focus on methods using multispectral satellite images.

Numerous methods have been proposed for mapping inundation using multispectral remote
sensing images. Among them, the one most frequently used is thresholding. Usually, indices are first
calculated through different band combinations, such as the normalised difference water index (NDWI)
created by McFeeters [15], which has been proven to produce good results for inundated areas [16].
Then a threshold is selected to determine the water range in the image. A manual threshold is accurate,
but has difficulty satisfying the need for fast disaster response. Moreover, it is subjective, as different
operators may produce different results. To overcome the problems, unsupervised thresholding
methods have been proposed. For instance, Xie et al. [17] introduced Otsu’s algorithm to implement
automatic selection of the water threshold. But due to the common illumination differences and mixed
pixels in satellite images, its effectiveness is reduced, especially for some complicated scenes.

The segmentation (semi-supervised) technique [18] has been proposed to minimise the
involvement of the user. The user first selects some seed points, with which the connectivity map is
generated using fuzzy logic. For example, in [19], a fast flood map and a detailed flood map were
obtained using growing strategies with seed points. However, the detailed map result still depended
on the correctness of the seed points.

Unsupervised strategies without any human involvement have attracted a lot of attention
in recent years. There are several kinds of unsupervised inundation mapping methods.
Besides the unsupervised threshold, unsupervised feature extraction methods have been utilised.
Chignell et al. [20] combines the pre- and post-flood images and apply the independent component
analysis (ICA) to them. Segmentation and threshold are used to extract the flood from the change
components. The cloud and crop components help to refine the maximum flood extent. In the work by
Rokni et al. [21], the multi-temporal NDWI images are composited into one file. Principal component
analysis (PCA) is applied to the composited file. The principle components are classified by the
thresholding technique, and the result of the change detection for the lake is obtained. But these
methods are only based on spectral information. When they are applied to cases using different
sensors, the ability of the method can vary with the changes of spectral characteristics.

Recently, context information, especially spatiotemporal context information, has attracted
more attention and proven to bring much improvement in monitoring the water surface. It is
combined with other techniques to generate chains of processing for better representation of an event.
Chen et al. [22] proposed a water surface monitoring method using contextual information. First,
permanent water/non-water pixels were detected by judging the statistical consistency between an
image point and its neighbourhood. Then, a distance-based classifier was used to map the other pixels
with the obtained permanent pixels. Experiments on Moderate Resolution Imaging Spectroradiometer
(MODIS) proved its validity and superiority over other unsupervised methods. However, the proposed
definition of the statistical equality depended on simple one-dimensional features, which were the
means and mediums of temporally adjacent pixels. A pixel was considered to be permanent if it had
more than five spatially adjacent and statistically equal pixels. This simple count strategy can reduce
the robustness of the method. Moreover, the low spatial resolution of MODIS data also limited its
performance in spatial dimension.

To resolve these issues, in this paper, we introduce a spatiotemporal context learning (STCL)
method and propose a novel work flow for flood mapping. The main objective is to delineate the
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water surface in an accurate and automatic way. First, a statistical model is built for the contextual
information of multi-temporal NDWI. Then, permanent pixels are extracted according to their
contextual consistency confidence values calculated from the model. Finally, a Modest AdaBoost
(MADB) classifier, trained with the permanent pixels and a variety of spectral characteristics, is adopted
to map the image into water and non-water categories. Through making full use of the spatiotemporal
and spectral information, the proposed approach improves the ability to map inundated surfaces.
The uncertainty caused by the sensor and scene differences is also reduced. Two different multispectral
datasets with medium resolution, HJ-1A CCD (30 m) and GF-4 PMS (50 m), are employed for
the validation.

2. Experimental Set Up

2.1. Datasets

Several kinds of multispectral satellite data have been used for flood mapping, such as Advanced
Very High Resolution Radiometer (AVHRR), MODIS, and Landsat TM/ETM+ data. However, most of
these data do not have high spatial and temporal resolution at the same time [23]. This has limited their
ability to map inundation, which changes complicatedly and rapidly over time. For example, AVHRR
and MODIS have a frequent revisiting cycle, which can be even shorter than 1 day. Their high temporal
resolution makes them useful for monitoring environmental changes, while the spatial resolution of
AVHRR and MODIS is 1 km and 250 m, respectively, which is coarse. Only general extent, not accurate
results, can be obtained using these data for flood mapping. On the contrary, Landsat TM/ETM+ data
have a middle-to-high spatial resolution of 30 m, but the observation is repeated every 16 days, which
cannot satisfy the needs for timely response.

On 6 September 2008, two optical satellites named HJ-1A/B (short for HuanJing-1A/B),
also known as the Chinese Environment and Disaster Monitoring and Forecasting Small Satellite
Constellation, were launched in China. The data can be downloaded from the website
(http://www.cresda.com/) free of charge, and have been successfully applied in several applications
such as land mapping, yield prediction, and environment assessment. The two satellites were equipped
with CCD cameras, which take multispectral images on the earth surface with a spatial resolution of
30 m. For each satellite, the time interval is 4 days. The constellation of the two satellites theoretically
has a higher revisiting frequency of 2 days. With both the advantages of spatial and temporal resolution,
HJ-1A/B satellites are regarded as an effective tool for monitoring and post-flood assessment [24].

The recently emerged geostationary satellite GaoFen-4 (GF-4) also has a high application value in
rapid assessment and emergency response of floods [25]. Due to its optical geostationary orbit, GF-4
shows a better performance in time resolution over other satellites. It is equipped with a camera for
visible, near infrared and middle-wavelength infrared spectra. The spatial resolution is 50 m. To the
best of our knowledge, research work using GF-4 imagery is limited, as it was only launched on
29 December 2015, and officially put in use on 13 June 2016. In this work, we also want to explore the
potential of the multispectral GF-4 PMS data in flood mapping. The main parameters of the HJ-1A/B
CCD data and GF-4 PMS data are listed in Tables 1 and 2. Slightly different from the HJ-1A/B CCD
data, the GF-4 PMS data have an additional panchromatic band.

Table 1. Technical parameters of the HJ-1A/B CCD data.

Satellite Sensor Band No. Spectral Range (µm) Spatial Resolution (m) Revisiting Time

HJ-1A/B CCD

1 0.43–0.52

30 4 days2 0.52–0.60
3 0.63–0.69
4 0.76–0.90

As can be seen, the HJ-1A/B CCD data and the GF-4 PMS data show balanced abilities in spatial
and temporal resolutions. Due to the limitations stated above in other multispectral data, we decide to

http://www.cresda.com/
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utilise these two datasets for verifying the methods, and for understanding more about the potential of
these two datasets in flood mapping as well, as they are not so commonly used as MODIS or Landsat
data. Certainly, another reason why the HJ-1A/B CCD and GF-4 PMS data are chosen is because of
their free access.

Table 2. Technical parameters of the GF-4 PMS data.

Satellite Sensor Band No. Spectral Range (µm) Spatial Resolution (m) Revisiting Time

GF-4 PMS

1 0.45–0.90

50 20 s
2 0.45–0.52
3 0.52–0.60
4 0.63–0.69
5 0.76–0.90

2.2. Study Area

The Heilongjiang River is one of the largest rivers in Northeast Asia, flowing through four
countries (Mongolia, China, Russia and North Korea). The main stream has a total length of 2821 km,
and also forms the boundary between China and Russia. There are abundant water resources in the
Heilongjiang River, with a yearly runoff of 346.5 billion cubic meters. The main climate type in that
region is monsoon. The precipitation distribution varies with the season. From April to October, the
precipitation accounts for 90–93% of the annual precipitation, and the period from June to August
accounts for 60–70%. From December, the winter dry season starts and the precipitation mainly falls in
the form of snow.

From 12 August 2013, several severe precipitation events continuously hit the northeastern part
of Asia, leading to great flood in 39 rivers including part of the Heilongjiang River. Especially for the
Tongjiang and Fuyuan Reaches of the Heilongjiang River, the flood had been the most serious one
in the past 100 years. On 24 August 2013, more than 5 million people were affected in this disaster.
The first case study analyses the event in this region. Two cloud-free scenes of HJ-1A CCD data are
utilised. One image was obtained on 12 July 2013, which is around one month before the flood, and the
other one was obtained on 27 August 2013 during the peak flow period. The dimension of the study region
is 1082× 1321 pixels (around 1286 square kilometres). Its location and extent are shown in Figure 1.
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Dongting Lake is one of the most essential lakes in China, and one of the most important wetlands
in the world as well. It is located on the southern bank of the Jinjiang section of the middle Yangtze
River, and is one of the important dispatching lakes for the Yangtze River because of the strong ability
of flood storage. The area of the lake is approximately 2690 square kilometres, across Hunan and
Hubei provinces, and is roughly composed of East Dongting Lake, South Dongting Lake and West
Dongting Lake. The water of Dongting Lake is clean and this area is one of the main freshwater fishery
bases for commercial purposes. Due to its good environment and richness in water, soil and wildlife
resources, it is one of the earliest birth places of Chinese rice raising agriculture. The basin area is of
262.8 thousand square kilometres, accounting for 14.6% of the Yangtze River basin area.

In June and July 2016, heavy rains hit the middle and lower reaches of the Yangtze River basin,
causing a catastrophic and wide flood in southern China. Eleven provinces and more than 10 million
people were affected. On 3 July 2016, the water at the Chenglingji station in Dongting Lake also
surpassed the warning level 32.50 m. A regional flood occurred in Dongting Lake. The second case
study focuses on this area during this flood. Two cloud-free GF-4 PMS images are selected as the
experimental data, which were obtained on 17 June 2016 (before the flood occurred) and 23 July 2016
(during the flood period), with a dimension of 2534 × 2235 pixels (around 14,159 square kilometres).
The location and extent of the second study site are shown in Figure 2.
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As can be seen from the figures, these two study sites are located in different geographic positions.
The first case study mainly presents a river flood and the second one presents a lake flood. Studies on
different kinds of floods can help validate the robustness of the method. Moreover, these two floods
took place in 2013 and 2016. Each of them is one of the most severe flood events in that year, bringing
about a large amount of damage and wide effects. The areas covered by the first and the second case
studies are also areas with high flood risk every year, so it is significant to choose these two areas for
study, which can help the government to make better decisions in disaster prevention in these areas.
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Before the experiment, these two pairs of data are preprocessed. For HJ-1A/B CCD data, we
download the absolute calibration coefficients from the data source website (http://www.cresda.com/),
and apply the absolute radiometric corrections to the data. These coefficients are obtained through field
experiment and authenticity testing by the China Centre for Resource Satellite Data and Application
(CRESDA). For the GF-4 PMS data and the GF-1 WFV data used for validation, a relative radiometric
correction is implemented before they are archived. We have not made further modifications to
their radiation values. All the satellites images used in this study are geometrically registered using
the software ERDAS IMAGEINE AutoSync. Specifically, in either of these two case studies, the
experimental data before the flood is considered the reference data. Other images used in the same
case are all registered to it. The co-registration technology adopts the cubic polynomial. The mean
displacement error is 0.5 pixels. All the data are projected to the WGS 1984 UTM coordinate system.

2.3. Validation

The extent of the water surface during a flood process can have daily changes. It is almost
impossible to obtain an accurate map of inundation regions on a particular day. In general, most of the
flood products are a rough outline of the main inundated areas. In order to achieve the qualitative and
quantitative evaluation, we produce two approximate reference maps for the first and second case
studies. Either of them is based on a remote sensing image over the same site and taken on the same
date as the corresponding experiment data. The spatial resolution of the data used for generating the
reference map is necessarily higher than that of the experiment data. For the first case study using
HJ-1A/B CCD data, there is a scene of GF-1 WFV data that can meet the requirements. The technical
parameters of the GF-1 WFV data are listed in Table 3. For the second case using GF-4 PMS data,
no corresponding GF-1 WFV data could be found. Instead, we find a scene of HJ-1B CCD data that is
qualified. The technical parameters of the HJ-1B CCD data can be found in Table 1.

Table 3. Technical parameters of the GF-1 WFV data.

Satellite Sensor Band No. Spectral Range (µm) Spatial Resolution (m) Width

GF-1 WFV

1 0.45–0.52

16 800 km
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89

For the process of how the reference map is made, we use a traditional water extraction method.
We take the first case study as an example. First, the selected GF-1 WFV image is geometrically
registered to the experimental HJ-1A CCD data. Then, we calculate the NDWI of the GF-1 WFV image.
Compared with the ground information from Google Earth software, we manually select a threshold
in NDWI to separate water and non-water pixels. Finally, the binary water mask is resampled to the
spatial resolution of HJ-1A CCD data (30 m). Similar processes are applied to the second case study.
Given that there is no detailed ground truth available, and that it is not feasible to get one by field
investigation, we use the reference map in this study as an approximation of the real inundated extent,
helping to evaluate and compare the detection results qualitatively and quantitatively.

3. Methods

3.1. Permanent Pixel Extraction Using Spatiotemporal Context Learning

The images before and after a flood are referred to as image #1 and image #2, respectively.
The pixels with a constant land cover type, no matter what the type is, are defined as permanent pixels.
The proposed method is divided into two steps. First, the permanent pixels in image #1 and image #2
are extracted based on the STCL strategy. This is a method that models the relative relationship between
an object and its context. We introduce it to formulate the relationship between a satellite image pixel
and its context. Through comparing the models at different time points, a confidence value for whether

http://www.cresda.com/
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a pixel changes or not is calculated to extract the permanent pixels. Second, using these permanent
pixels as a training set, a widely adopted machine learning classifier, Modest AdaBoost, is trained and
implemented for mapping inundation in image #2. Modest AdaBoost is one of the derivations of the
boosting algorithm, like the original AdaBoost algorithm. It combines the performance of a set of weak
classifiers, and also proves better than other boosting algorithms for convergence ability. More details
about these methods will be given below. In this section, we will first discuss the procedure in the
first step.

Due to its capacity for targeting specific land cover type and reducing influence from inconstant
band representation, spectral indices are commonly used in diverse remote sensing applications,
such as disaster monitoring, land cover mapping and disease prevention [26–28]. For mapping
different cover types in different applications, various indices have been proposed, including the
normalised difference vegetation index (NDVI), the enhanced vegetation index (EVI), NDWI, and the
normalised difference built-up index (NDBI) and so on. Among these indices, the NDWI has been
successfully applied to mapping land surface water, and proved more effective than other general
feature classification methods [29]. In this study, we calculate the NDWI in the experimental datasets
(the HJ-1A CCD data for the first case study and the GF-4 PMS data for the second case study) first.
Then, the steps for extracting permanent pixels will be executed on the NDWI data. The NDWI is
calculated as:

NDWI =
Green−NIR
Green + NIR

(1)

where Green and NIR are the reflected green and near infrared radiance, respectively, which are
replaced by band 2 and band 4 in the HJ1-A CCD data case, and band 3 and band 5 in the GF-4
PMS data case [15]. NDWI can eliminate the influence from the band value difference, but not the
influence caused by the different weather conditions. However, as it is the relative relationship
between neighbouring pixels that we use, influences from changes of overall brightness are limited in
the proposed procedure.

In the visual tracking field, as the video frames usually change continuously, a strong
spatiotemporal correlation is thought to exist between a target and its surroundings. In order to
make better use of this relative relationship, Zhang et al. [30] proposed the STCL method. In this
method, a rectangular contextual region was first built with the target in the centre. With the low-level
features (including the image density and location) of the contextual region, the relative relationship
between the target and its surroundings in contextual region was modelled. When a new frame came,
it was put into the model to calculate a confidence map, indicating the location that best matched the
contextual relationship of previous frames. This location was the inferred location of the target in the
new frame. As it depended on a kind of relative relationship, the illumination difference during the
frames cannot influence the result. Extensive experiments showed its effectiveness and good degree of
precision. This method has also been further employed and extended in other visual trackers [31,32].

A remote sensing image time series shares many similar characteristics with video data, although
video sequence images have a higher sampling rate. It can be inferred that there is also a relationship
between a target pixel and its spatiotemporal neighbourhoods in a local scene of RS images, if the
images are of good quality, without too many clouds and shadows. Due to the constant changes in
weather and light conditions, radiation values of the same cover type can vary greatly in different
scenes. Furthermore, it is rather difficult to calibrate the radiation of two RS images to absolute
consistency. As a result, more false positives can be introduced in mapping the changes. While the
relative relationship between unchanged pixels and their nearby pixels is relatively constant, the STCL
method, which aims at modelling this kind of relationship, is supposed to be robust also to illumination
variation in RS images. What is more, the STCL method provides a fast solution to online problems.
In this work, we borrow the concept of STCL to build a procedure for extracting permanent pixels for
flood mapping. The proposed flowchart for extracting permanent pixels is shown in Figure 3.
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One core of the STCL method is its utilisation of the attention focus property in biological visual
systems. In the mechanism of biological vision, assume that we are observing a point in a picture.
Besides the point itself, which draws most of our attention, other points around the target point are
the part we pay the second most attention to in the picture. The further one point is from the target
point, the less concern it will get from the visual system. On the contrary, if someone tries to find a
known point in an image, the visual mechanism first roughly figures out the background of the target,
and then, on the basis of a correlation between the background and the point, the point can be easily
targeted. But if only the feature of the target itself is considered, the search will be time and labour
intensive. In the visual tracking field, it means the tracker may get lost.

According to this conception, the STCL proposed by Zhang et al. [30] in the visual tracking field
uses the distribution of the attention focus, which is formulated as a curved surface function. In the
function, the peak is located at the target point and its surroundings gradually decrease. With the
weights from this function, the correlation of the target with its local background in image density
and location are modelled. If the target location gradually changes, this context model will gradually
change as well, and will be updated in each frame. When a new frame comes, although there are
illumination variation and occlusion problems, the new location of the target can still be found by
comparing the model with that of each pixel in the image. We borrow the concept and the formulation
of the spatiotemporal context in STCL, and propose a method based on this context information for
extracting permanent pixels. Details of the method are described as follows. The core of this problem
is calculating the confidence map c(x) between image #1 and image #2, which is also the probability of
that the pixel is permanent. It can be formulated as

c(x) = P(x), (2)

where x ∈ R2 is a pixel location, and P(x) is the probability. The higher P(x) is, the more likely x will
be permanent. After transformation, P(x) can be given by

P(x) = ∑
f (z)∈XC

P(x| f (z))P( f (z)) (3)

where XC = { f (z) = (I(z), z)|z ∈ Ω(x)}. I(z) denotes the pixel value, i.e., the NDWI value, at location
z, and Ω(x) is the neighbourhood of location x. P( f (z)) is the context prior probability that models
the appearance of the local context, and P(x| f (z)) represents the relative relationship between x and
its neighbourhood, which is defined as the spatial context model

gSC(x− z) = P(x| f (z)) (4)
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In image #1, x∗ and z are, respectively, the locations of the target pixel and its local context. For
context prior probability, when x∗ is permanent, if the values of x∗ and z, as well as I(x∗) and I(z),
are closer, there is a higher probability that the pixel at location z will also be permanent. Different
from the original solution for the tracking problem, we model the context prior probability P( f (z)) as

P( f (z)) = e−|I(x∗)−I(z)|ωσ(z− x∗), (5)

where ωσ(z− x∗) is a spatial weight function. With regard to the attention focus principle, if the local
context pixel z is located closer to the object x∗, z should make a greater contribution to the contextual
characteristics of x∗ in (5), and a higher weight should be given to it, and vice versa. Given that the
weight should decrease smoothly with the increase of the distance to the object, ωσ is defined as an
exponential type as

ωσ(z) = ae−
|z|2
2σ2 , (6)

where a is a normalising constant that restricts P( f (z)) to a range from 0 to 1. σ = 0.5 is the scale
parameter. As there are no changes occurring to x∗ in image #1, we set its confidence value c(x∗) = 1.
According to the correlation between adjacent pixels, if the context pixel is located closer to the object,
it should be more likely to be permanent. Therefore, the confidence function in image #1 can be
modelled as

c(x) = P(x) = e−|
x−x∗

α |β , (7)

where α is a scale parameter and β is a shape parameter. The confidence value changes monotonically
with the values of α and β. Therefore, these two parameters can be neither too large nor too small.
For instance, if β is too large, the model can easily get over-fitted. While if β is too small, the smoothing
may cause some errors. We empirically set α = 4.5 and β = 1 for all the experiments here. Based on
(2)–(5), it can be inferred that

c(x) = P(x) = ∑
f (z)∈XC

P(x| f (z))P( f (z)) = ∑
z∈Ω(x′)

gSC(x− z)e−|I(x∗)−I(z)|ωσ(z− x∗)

= gSC(x)⊗ (e−|I(x∗)−I(x)|ωσ(x− x∗))
, (8)

where ⊗ denotes the convolution operation. According to (7), (8) can be transformed to the frequency
domain as:

F(c(x)) = F(e−|
x−x∗

α |β) = F(gSC(x))� F(e−|I(x∗)−I(x)|ωσ(x− x∗)), (9)

where F donates the Fourier transform function. � is the element-wise product. So, for image #1,
the spatial context model is

gSC(x) = F−1(
F(e−|

x−x∗
α |β)

F(e−|I(x∗)−I(x)|ωσ(x− x∗))
) (10)

With the spatial context model gained from image #1, according to (9), the confidence map of
image #2 can be calculated by

c′(x) = F−1(F(gSC(x))� F(P′( f ′(x)))) = F−1(F(gSC(x))� F(e−|I
′(x∗′)−I′(x)|ωσ(x− x∗′))), (11)

where x∗′ is the location of the target pixel in image #2, and f ′(x) and I′(x), respectively, represent the
context prior probability and image intensity in image #2 [30]. After the permanence confidence map
is calculated for image #2, obtained after a flood, we select the pixels with top n% confidence values as
the final permanent pixels. In this work, we choose n = 2. More discussion on how n influences the
result will be given later.
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3.2. Inundation Mapping Based on Modest AdaBoost

3.2.1. Permanent Pixels Labelling

According to the previous section, we get the set of permanent pixels. In order to utilise the
permanent pixels for training the classifier later, we need to label the permanent pixels into water
and non-water categories. In keeping the whole process automatic, manual labelling should not be
used. In this study, we adopt the openly accessible MODIS 250 m land-water mask, which is called
MOD44W for short, to achieve this purpose. MOD44W is a constant product, which is derived from
Terra MODIS data MOD44C 250 m 16-day composites. If a pixel is identified as water in more than
50% of the period May to September of years 2000–2002, this pixel is labelled as water in the MOD44W
product. This method effectively smooths the short-term water surface changes caused by flood and
drought. Therefore, although the MOD44W was produced years before the case study, it is widely
accepted as the description of average water distribution [33]. Here, we adopt MOD44W to label
the permanent pixels. It is acknowledged that there are most likely some mistakes, caused by small
changes in water surface over the years. But, as the general condition changes little, and the permanent
pixels have high probability of being unchanged, the labels from MOD44W are generally reliable.

For both the first and second study area, there is only one scene of MOD44W data. We resample
the MOD44W data to the same spatial resolution as the experimental image, and then label the
permanent pixels into permanent water pixels and permanent non-water pixels according to the
MOD44W values. As the labels of the permanent pixels are used for classifier training, the proportion
of the permanent pixels of each class will influence the classifier training result. However, as most
changes happen inside or around the river regions, it can be inferred that the permanent confidence
is generally higher in non-water regions than in water regions. Among the pixels of the highest
confidence values, we selected the water and non-water permanent pixels with the same proportion as
that in the same scene in MOD44W. The sum of water and non-water permanent pixels remained n%
of the total. With the labelled permanent pixels, the Modest AdaBoost classifier is trained. Then it is
applied to the testing set consisting of multiple features of image #2. The final inundation mapping
result can be calculated.

3.2.2. Inundation Mapping

Boosting is a technique that combines several weak classifiers to generate a powerful one. The first
proposed boosting algorithm, AdaBoost, was created by Freund and Schapire in 1996 [34], which is
regarded as the basis for all other kinds of boosting method. Due to its good generalisation ability, low
computational complexity and high execution efficiency, boosting has become one of the most popular
and effective classification tools in computer vision [35] and pattern recognition [36]. A number
of algorithms are derived from the boosting method, such as the Discrete AdaBoost (DADB), Real
AdaBoost (RADB) and Gentle AdaBoost (GADB). DADB is a boosting method that mainly employs
binary weak classifiers, and RADB is a generalisation version of the basic AdaBoost algorithm [37].
On the basis of RADB, GADB is designed with better performance and higher resistance to outliers [38].
Here, we adopt a different boosting method called Modest AdaBoost, which proves to outperform
GADB in generalisation error and overfitting. Its natural stopping criterion is also an advantage, which
other boosting techniques lack [36]. The flowchart of mapping inundation using Modest AdaBoost is
shown in Figure 4.

Modest AdaBoost is a variant of boosting proposed by A. Vezhnevets et al. [36]. The basic idea of
this method is that in every iteration for computing the new distribution, more importance is given to
the samples that are misclassified in the previous step (with low margins). In every step, the method is
committed to improve the lowest margins of samples. While those training samples that already have
high margins may be misclassified with the new distribution and the margins are decreased, this forces
the weak classifier to work only in its domain and be ‘modest’, which is the origin of the name MADB.
Through this strategy, some regions of the input space have fewer chances to become overconfident,
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and the generalisation ability of the method benefits from this. The open source GML AdaBoost Matlab
Toolbox [39] is used in the experiments to implement the Modest AdaBoost algorithm. It is a collection
of classes and functions of several boosting algorithms. More details about the mapping procedure are
presented below.
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First, each permanent pixel is set as a training sample point. Thus, the training dataset
(x1, y1), , (xN , yN) can be obtained. xi ∈ X is the input vector, which consists of several feature
values of the permanent pixel, and yi ∈ {−1,+1}, which is the corresponding class label of the
permanent pixel. Here we define y = +1 when the pixel is water, and y = −1 when the pixel is
non-water. N is the number of permanent pixels. At the beginning, we initialise the weight distribution
on the input data as D0(i) = 1/N, i = 1, 2, . . . , N.

For each iteration t = 1, . . . , T, with the weight distribution Dt(i), the weak classifier st(x) ∈ S
can be trained by weighted least squares:

st = argmin
s

(
N

∑
i=1

Dt(i) · (yi − s(xi))
2

)
, (12)

In addition, the ‘inverted’ distribution of the data weights is calculated by

Dt(i) = (1− Dt(i))αt, (13)

where αt is the normalisation coefficient. Then we compute the probabilities:

P+1
t (x) = PDt(y = +1∩ st(x)), (14)

P+1
t (x) = PDt

(y = +1∩ st(x)), (15)

P−1
t (x) = PDt(y = −1∩ st(x)), (16)

P−1
t (x) = PDt

(y = −1∩ st(x)). (17)

Set
ft(x) = (P+1

t (1− P+1
t )− P−1

t (1− P−1
t ))(x), (18)

and update the distribution by:

Dt+1(i) = Dt(i) exp(−yi ft(xi))αt, (19)
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where αt is the normalisation coefficient. After T iterations or ft = 0, the final classifier can be
constructed by [36]

F(x) = sign[
T

∑
t=1

ft(st(x))] (20)

The procedure of training the Modest AdaBoost classifier uses the permanent pixels extracted
in previous steps, which contain the typical characteristics of water and non-water. After the strong
classifier is obtained, it is applied to image #2 to get the inundation mapping results. Due to the
difference in the bands of different satellites, the individual index of fixed band combination cannot
always be effective in different flood scenarios. In order to overcome this shortcoming and make the
method more robust, we set the components of the training vector using several bands and indices:
(1) original bands; (2) NIR− Red; (3) NIR/Red; (4) EVI; (5) NDVI; (6) NDWI. All of these indices can
be applied to optical satellite images. The computing method of NDWI is described in (1). For the EVI
and the NDVI, the computing methods are as follows [40,41]. The training and classification processes
are performed individually on each pixel of the image.

EVI =
2.5× (NIR− Red)

6× Red + NIR− 7.5× Blue + 1
, (21)

NDVI =
NIR− Red
NIR + Red

, (22)

For comparison, the commonly used unsupervised classification method K-MEANs, and another
two different permanent pixel extraction methods combined with Modest AdaBoost, are also applied
to the same experimental datasets. K-MEANs is implemented using the ENVI 5.0 software. The change
threshold is set as 5.0%. One permanent pixel extraction method is from [22], which determines the
permanent pixels through the means and mediums of the spatial neighbouring pixels. In another
permanent pixel extraction method, a similar judgment rule using mediums and means, but extended
to spatiotemporal field, is utilised. Specifically, each pixel has 8 spatial neighbouring pixels, and in the
spatial neighbourhood-based permanent pixel extraction method (SP) in [22], if more than 5 among the
8 spatial neighbouring pixels are statistically equal (having the same medium or mean) to the target,
the target pixel is considered permanent. For the spatiotemporal neighbourhood-based permanent
pixel extraction method (STP), not only more than five spatially neighbouring pixels, but also more
than five among the nine temporally neighbouring pixels, need to be statistically equal to the target
for the target to be considered permanent. These permanent pixels are utilised with MADB in the
same way as the proposed method. The inundation mapping results from each comparison method
is then obtained. Here we call these two comparison methods utilising different permanent pixel
strategies SP-MADB and STP-MADB, for short. All of these comparison methods are applied on the
same multiple feature set of the classification step to the proposed method.

4. Results

4.1. Inundation Mapping Using HJ-1A CCD Data

As described above, in the first case study, two images, acquired on 12 July 2013 (before the flood)
and 27 August 2013 (after the flood), are selected for the analysis. After pre-processing, the false colour
composite images of the study area and the corresponding MOD44W product used for labelling the
training data are shown in Figure 5.
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Figure 5. False colour composites (R4G3B2) of HJ-1A CCD images acquired on (a) 12 July 2013 (before
the flood) and (b) 27 August 2013 (after the flood) for the first case study. (c) Corresponding MOD44W
water mask product with water in blue and land in black.

The proposed spatiotemporal-context-learning-based permanent pixels-MADB (STCLP-MADB)
method and three other comparison methods (K-MEANs, SP-MADB and STP-MADB) are each
respectively applied to the experimental data. The final inundation mapping result for the individual
method is shown in Figure 6. For a better visualization of the obtained results, we select four
sub-regions and make a detailed zoom in. The location and size of the four sub-regions are shown in
Figure 6e. The enlarged view of the small regions and their corresponding false colour composite, flood
extraction result and the reference map are shown in Figure 7. Table 4 lists the number of inundated
pixels derived by different methods in the full scene and sub-regions.

Table 4. The first case study in 2013—Number of inundated pixels.

Method Full Region Sub-Region A Sub-Region B Sub-Region C Sub-Region D

K-MEANs 528,238 1833 16,236 7778 1442
SP-MADB 710,587 96 8470 5207 0

STP-MADB 843,570 1750 16,060 7009 1345
STCLP-MADB 812,610 1308 13,884 7011 1047
Reference Map 764,470 1176 11,861 6267 873

From the above figures and table, some comments can be made:

(1) The proposed inundation mapping method, based on STCL permanent pixel extraction and
MADB, successfully extracts most of the flood regions in the first case study. In each column of
the Table 4, the STCLP-MADB method achieves the closest number of inundated pixels to the
reference, except in sub-region C. It is the second best among the methods, and has almost the
same number of inundated pixels as the best. All of this evidence proves the effectiveness of
the HJ-1A CCD data and the proposed procedure for mapping wide inundated areas in a river
flood event.

(2) On the whole, it can be seen that the main regions of the flood are mostly well-delineated by each
inundation mapping algorithm, except for small tributaries−for example the tributaries near
the sub-region A and D−which are omitted by the SP-MADB method, and are shown in yellow.
The STCLP-MADB performs better than the three other methods from the visual effect. In these
regions, the K-MEANs and STP-MADB results present more false alarms, and the SP-MADB
method makes more omissions. The result derived from STCLP-MADB is most consistent with
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the reference map. Its effectiveness for precision mapping is significant for inferring the future
evolution of the flood.

(3) From the detailed mapping results, it can be found that the inundated regions are delineated
differently by different methods. In the map derived using K-MEANs, many points of false
positive can be found in the unflooded regions. However, the SP-MADB method produces more
false negatives in some small flood regions and half-submerged regions. More advanced results
are obtained by STP-MADB and STCLP-MADB methods. Further comparisons of the details
show that the results from STCLP-MADB provide finer outlines and are slightly better.

(4) Although the results from STCLP-MADB are quite promising, there are still some false positive
errors, mainly occurring in the small unflooded areas surrounded by large flooded areas.
For example, in Figure 6d, we can find some pixels in blue inside the main region of the flood,
which are unflooded areas but determined as flood by the STCLP-MADB method. This is because
these areas mostly comprise mixed pixels. Different proportions and locations of water in one
mixed pixel influence what class the pixel is distributed to.
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Figure 6. (a–d) Flood inundation mapping results for the first case study using K-MEANs, SP-MADB,
STP-MADB and STCLP-MADB methods. (Gray: flood pixels in both the detection and reference maps;
Blue: flood pixels only in the detection map; Yellow: flood pixels only in the reference map; Black: the
background). (e) The locations of the four sub-regions in red rectangle, shown on the reference map of
inundation derived from the GF-1 WFV data, with the water in yellow and the background in black.
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From the second to the fifth row: corresponding detection and reference maps with the flood in blue
and the background in black.

Besides the qualitative evaluation, a quantitative evaluation is also made for the test.
For classification, the confusion matrix is one of the most commonly used methods for calculating
accuracy. In this study, the reference and the detection results are all binary maps with two categories,
water and non-water. Then, the confusion matrix can be produced. The accuracies of each method can
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be calculated, among which the overall accuracy is the rate of correctly classified water and non-water
pixels among the total pixels. The values are shown in Table 5.

From the numbers reported in Table 5, a few further conclusions can be summarised:

(1) STCLP-MADB achieves the highest overall accuracy and kappa coefficient among these four
methods, which shows that STCLP-MADB performs better than the others in terms of quantitative
evaluation. Extending the SP strategy to STP strategy improves mapping accuracy. Furthermore,
utilising STCL confidence calculation instead of a simple counting strategy in STP also enhances
the mapping results.

(2) With incomplete flood information, different flood detectors produce different commission and
omission errors. The best omission and commission rates are achieved by the K-MEANs and
SP-MADB methods, respectively. However, there is always a balance between the omission and
the commission. A decrease in omission errors usually brings about an increase in commission
errors and vice versa. As can be seen from Table 5, the high commission and omission rates limit
the ability of K-MEANs and SP-MADB methods in inundation mapping, which is illustrated in
Figures 6 and 7, while the STCLP-MADB method achieves a balance between these two rates and
provides a more acceptable result.

Table 5. The first case study in 2013—Accuracy.

Method Overall Accuracy (%) Kappa Omission (%) Commission (%)

K-MEANs 87.48 0.7450 2.77 17.51
SP-MADB 90.73 0.8146 12.18 5.53

STP-MADB 91.22 0.8220 3.03 12.13
STCLP-MADB 92.25 0.8435 4.10 9.78

We also discuss the relation between accuracy of the proposed method and the n in the permanent
pixels extraction step, i.e., the influence that the number of selected permanent pixels has over mapping
precision. The result is shown in Figure 8 below. In this work, we try n = 1, 2, . . . , 9, for if n is too big,
it will cost a lot of computation resources and time for training the classifier, which is impractical and
cannot satisfy the need for a quick response to a disaster.

From the figure, it can be seen that more permanent pixels leads to an increase in commission and
decrease in omission, but this only happens when n ≤ 2. When the value of n gets higher, there is no
significant change in commission and omission. Similarly, for overall accuracy, there is only a slight
decrease (around 0.1%) when n changes from 1 to 2. After that, the overall accuracy remains almost
unchanged. Therefore, it can be concluded that for the proposed STCLP-MADB method using HJ-1A
CCD data, the number of permanent pixels has a very limited influence on mapping precision. Given
the importance of computation efficiency in disaster response, it is quite enough to set n as 1 or 2.
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4.2. Inundation Mapping Using GF-4 PMS Data

The second case study aims to analyse the GF-4 PMS data for the 2016 flood event at Dongting
Lake. Figure 9 shows the two images selected for this case, which were acquired on 17 June 2016
(before the flood) and 23 July 2016 (after the flood). The corresponding MOD44W product used as the
ancillary data is also shown in Figure 9.

In the second case study, inundation mapping results using different strategies are shown in
Figure 10. Similar to the first case study, four sub-regions located at different positions are selected and
shown in Figure 11, which aims to visually compare the results in a more detailed way. With regards
to quantitative evaluation, Tables 6 and 7 report the number of inundated pixels and the final accuracy
values, respectively. Figure 12 illustrates the relation between the permanent pixel proportion and
detection accuracy.

As can be seen from the figures and the table, many similarities exist between the results of the
second and the first case studies, and several slight differences as well. They are described as follows:

(1) In terms of the performance in categorisation, results in the second test are similar to that in the
first test. The proposed STCLP-MADB method still achieves the best overall accuracy and kappa
coefficient. K-MEANs and STP-MADB methods achieve the best omission and commission,
respectively, while STCLP-MADB shows an average performance of these two rates. As the two
test datasets are from different sensors, locations and inundation cases, this experiment further
proves the good robustness of the proposed method.

(2) K-MEANs makes use of the statistical properties of the whole image, which causes high
commission because the inundated pixels can have a different appearance in different contextual
situations. SP-MADB and STP-MADB draw more attention to the local characteristics, but they
make the determination of permanent pixels by counting, which lacks a theoretical foundation
and can be easily disturbed. This can be found by comparing Figures 6c and 10c. In the first
case, using HJ-1A CCD data, the STP-MADB method produces more commission, while in the
second case study, using GF-4 PMS data, more omission than commission is introduced in the
STP-MADB result. In the proposed method, a spatiotemporal context confidence calculating
model is adopted to overcome the limitation of counting. With the formulised combination of
local spatiotemporal and spectral information, we achieve a more accurate and robust inundation
map than other methods.

(3) The changing curves of accuracy with n are more unstable than those in the first test. The influence
of n on result precision does not change monotonically. It is difficult to find any rules in the curves
at all. This could be because the outline of the inundation is more complicated in the second case
study than in the first. Moreover, the spatial resolution of the GF-4 PMS data is sparser than that of
the HJ-1A CCD data, which brings out more mixed pixels. With the increase in these uncertainties,
the variation in accuracy becomes more unpredictable. Nevertheless, the fluctuation is still within
a limited range. The effectiveness of the proposed method is rather stable.

(4) As the GF-4 satellite was officially put into service not long ago (in June 2016), research on
GF-4 PMS data is rare. Our work explores the applied value of this new dataset and proves its
effectiveness for inundation mapping. More promising research about GF-4 PMS data could be
carried out in the future.

Table 6. The second case study in 2016—Number of inundated pixels.

Method Full Region Sub-Region A Sub-Region B Sub-Region C Sub-Region D

K-MEANs 2,417,535 74,610 21,785 10,363 13,001
SP-MADB 1,103,408 23,946 1488 5884 6163

STP-MADB 873,738 16,908 1468 5233 3848
STCLP-MADB 1,215,464 30,502 2116 6668 6961
Reference Map 1,357,670 37,529 3654 7963 7510
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Table 7. The second case study in 2016—Accuracy.

Method Overall Accuracy (%) Kappa Omission (%) Commission (%)

K-MEANs 79.73 0.5613 3.24 45.66
SP-MADB 92.88 0.7877 26.43 4.29

STP-MADB 91.01 0.7190 36.58 1.46
STCLP-MADB 93.66 0.8195 18.47 8.93
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Figure 10. (a–d) Flood inundation mapping results for the second test area using K-MEANs, SP-MADB,
STP-MADB and STCLP-MADB methods. (Gray: flood pixels in both the detection and reference maps;
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background). (e) The locations of the four sub-regions in red rectangle, shown on the reference map of
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Figure 12. Second test—commission, omission and overall accuracy in function of n, the percentage of
permanent pixels.

5. Discussion

In this study, we choose cloud-free images for the experiment. In practice, clouds and their
shadows have been a critical issue for flood mapping using multispectral images, especially the as
flood is usually accompanied by rainy and cloudy weather. This is because the visible and near infrared
spectra cannot penetrate the cloud, so the image quality is frequently affected during flood periods.
We put forward some analysis and speculation regarding how this may influence the result of the
proposed method. First, the confidence value calculated in the step of STCL will certainly be affected
by the clouds. As the STCL method models the correlation of image density and distance, and the
cloud has different characteristics with those of the land or the water, the relative relationship will
change a lot with the interference of clouds. According to the description in Section 3.1, if there are
some clouds present nearby, the confidence value will decrease. However, since we only extract pixels
with high confidence values for training the classifier, its impact on the final flood mapping may be
limited. On the other hand, the GF-4 is a geostationary satellite. When a disaster happens, it can take
images of the same region with a very high time resolution if needed. Through combining the common
region of multiple images over a short time, data hidden by clouds and shadows may be recovered.
Anyhow, it is a deficiency in our work that no experiment using cloudy data has been carried out.
More explorations concerning cloudy data will be made in a future work.

In the proposed process for flood mapping, the MOD44W product plays a role in separating
permanent pixels into permanent water pixels and permanent non-water pixels. With the introduction
of this water mask, some issues are introduced as well. One is that this product is obtained based on
the MODIS data from 2000 to 2002, while our case studies are in 2013 and 2016. There was over a
decade between the MOD44W product and the experimental data. The outlines of the water are very
likely to have altered. Besides the difference in time, the huge gap between the spatial resolutions of
the water mask and the experimental data could also lead to problems. The spatial resolution of the
MOD44W product is 250 m, which is much lower than that of the HJ-1A/B CCD and GF-4 PMS data.
Many jagged edges can be found in the resampled result of the MOD44W product. Moreover, some
small water surfaces are omitted because of the low spatial resolution. Both of these issues will bring
about errors in labelling the permanent pixels. Nevertheless, as the labelled permanent pixels serve as
the training set for the Modest AdaBoost classifier, not the final detailed classification result, we think
a certain number of errors can be tolerated. Figures 5c and 9c also show that, in the experimental areas,
from the visual effect, the MOD44W product is able to provide a general outline of the water before
the flood comes. From another perspective, for the areas near the edges of the rivers and lakes, where
most of the differences between the MOD44W product and the study data exist, the confidence value
is generally low because of the changes induced by the flood. Therefore, the pixels at these areas are
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less likely to be selected as permanent pixels, and their corresponding MOD44W labels would have
little influence on the final result.

According to the demand for automation and details in disaster assessment, this study aims
to explore a novel solution for flood mapping that can achieve precise results with minimal human
intervention. After two experiments on different regions and data, the proposed method shows
better performance than other automatic methods. Several important reasons we infer are as follows.
The first is the introduction of the machine learning classification method. Extensive literature shows
that the precision of supervised classification methods is generally better than that of unsupervised
classification methods. Unsupervised flood mapping methods, like K-MEANs, can bring about more
errors in scenes of large area or complicated distribution. Because in these situations, the radiation
value of water may vary a lot at different locations. Without a learning strategy, some non-water pixels
with similar features to the water at other locations could be identified as water, as can be seen in
Figure 10a of the Dongting Lake case. With the aid of the samples, the supervised classifier can learn
and adapt itself better to different land cover characteristics in different scenes, resulting in higher
accuracy. But the samples usually need to be selected manually, which limits their applicability in
disaster response. Another essential advantage of the proposed method is that it proposes an automatic
sample selection method, and combines it with a learning method. With the advantages of these two
methods, both good precision and automation can be achieved.

The utilisation of local information is also a factor bringing improvement to the result. On one
hand, it is more robust to utilise both contextual and global information than to utilise global
information only. On the other hand, the experiment results show that the proposed method
outperforms (qualitatively and quantitatively) the SP-MADB, STP-MADB methods. The only
distinction among these three methods is the permanent pixel extraction strategy. All three methods
utilise the local relationship between a pixel and its surroundings. The SP-MADB and STP-MADB
methods count the number of 8-neighbourhood or 17-neighbourhood pixels with equal mean or
medium to the object pixel. Noise and radiation variation, which exist all the time, can easily change
the count result. Moreover, if a pixel and its neighbouring pixels simultaneously change from one cover
type to another, the mean and medium will still remain the same, leading to errors in the permanent
pixel set. From the experiment results we can see that the STP-MADB method obviously makes more
commissions than omissions in the first case study, but makes more omissions in the second case,
which proves its lack of robustness. Whereas, the proposed method builds a model between the pixel
and its neighbouring regions, instead of counting the few adjacent pixels. Even if there are some noise
pixels, the general structure of the model will not change. With better selection of the permanent pixels
and the training set, the STCLP-MADB method produces a more precise outline of the inundated areas.

This study is proposed for floods, which is a practical problem. Hence it makes sense that
this proposed method can be applied operationally, and that it can help when a real flood comes.
Here we propose some suggestions for implementation, which may help the STCL-MADB method
to be effectively applied in a real application. The whole workflow can be divided into three steps:
extracting permanent pixels using STCL, training the classifier and mapping the inundation. The first
step, especially the STCL algorithm, accounts for most of the time consumption in the whole process.
Not only because the STCL algorithm has higher computation complexity than other steps, but the
operations need to be performed pixel by pixel. For example, in the second case study at Dongting
Lake, the size of the data is 2534 × 2235 pixels. The first step takes around 3 days, while the second
and third steps take around 15 min and a few dozen seconds, respectively. All these experiments
are implemented by MATLAB 2013 on a laptop with an i7-4710HQ CPU and 8 GB RAM. In practice,
a library of permanent pixels can be built in advance for regions with high flood risk. With the
accumulation of time series data, the library can be updated continuously. Then, the classifier can
also be trained and updated with the new library. As soon as the latest scene of remote sensing data
arrives, the ready classifier can be directly applied to it. In addition, implementing the process in other
programming languages and utilising high-performance processors could also help promote efficiency.
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Above all, remote sensing data with middle-high spatial and temporal resolution are recommended
in the proposed method, as the spatiotemporal contextual information in the image is important for
the method. If the spatial or the temporal resolution is rather low in the data, the correlation between
neighbouring pixels could be unremarkable.

6. Conclusions

Due to its vast coverage in spatial and temporal scales, flood is considered to be one of the most
complex disasters in the world. A novel inundation mapping approach based on spatiotemporal
context learning and Modest AdaBoost is proposed and verified in this paper. The proposed method
is implemented and evaluated in two different flooding cases using images from different sensors,
HJ-1A CCD and GF-4 PMS. The experimental results show that the proposed approach is effective,
and is able to produce more accurate mapping results than other state-of-the-art methods and, more
importantly, without any artificial samples and thresholds.

On one hand, compared with the traditional global-based unsupervised flood mapping methods
(such as K-MEANs), the SP-MADB, STP-MADB and the proposed method combine an automatic
sample selection strategy with a machine learning classifier, leading to higher accuracies in an automatic
way. With the samples extracted using local information, each of these three methods achieves an
overall accuracy of more than 90% in both of the first and second case studies. By comparing the results
of the SP-MADB and STP-MADB methods, it can be seen that only extending the neighbouring region
to the temporal domain cannot significantly improve the performance of the SP-MADB method. With a
formulised model of the spatiotemporal context information instead of simple counting, the proposed
approach achieves a more accurate and robust result than other methods. As a result of mixed pixels,
there are still some inaccuracies in the result. Moreover, the effect of the proposed method on cloudy
data needs to be explored. Future work will focus on these aspects and validate the proposed method
with more kinds of data.
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