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Abstract: Non-structural carbohydrates (NSC) are products of photosynthesis, and leaf NSC 

concentration may be a prognostic indicator of climate-change tolerance in woody plants. 

However, measurement of leaf NSC is prohibitively labor intensive, especially in tropical 

forests, where foliage is difficult to access and where NSC concentrations vary enormously 

by species and across environments. Imaging spectroscopy may allow quantitative mapping 

of leaf NSC, but this possibility remains unproven. We tested the accuracy of NSC remote 

sensing at leaf, canopy and stand levels using visible-to-shortwave infrared (VSWIR) 

spectroscopy with partial least squares regression (PLSR) techniques. Leaf-level analyses 

demonstrated the high precision (R2 = 0.69–0.73) and accuracy (%RMSE = 13%–14%) of 

NSC estimates in 6136 live samples taken from 4222 forest canopy species worldwide. The 

leaf spectral data were combined with a radiative transfer model to simulate the role of 

canopy structural variability, which led to a reduction in the precision and accuracy of leaf 

NSC estimation (R2 = 0.56; %RMSE = 16%). Application of the approach to 79 one-hectare 

plots in Amazonia using the Carnegie Airborne Observatory VSWIR spectrometer 

indicated the good precision and accuracy of leaf NSC estimates at the forest stand level 

(R2 = 0.49; %RMSE = 9.1%). Spectral analyses indicated strong contributions of the 

shortwave-IR (1300–2500 nm) region to leaf NSC determination at all scales. We conclude 

that leaf NSC can be remotely sensed, opening doors to monitoring forest canopy 

physiological responses to environmental stress and climate change.  
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1. Introduction 

Non-structural carbohydrates (NSC) are the mobile portion of a plant’s carbon stock, comprised 

primarily of sugars, starch and pectin [1,2]. Also known as non-structural carbon or soluble carbon, 

plant NSC are produced and stored in leaves and can be transported to and stored in stems and roots. 

Plant NSC stocks reflect a balance between carbon fixation via photosynthesis and demand for  

longer-lasting compounds, such as cellulose and lignin. As such, NSC measurements provide 

biochemically-based insight into physiological performance (carbon “source”) relative to whole plant 

growth (carbon “sink”) [3,4]. 

NSC are important in trees and other perennial plants, because they provide chemical energy at times 

of reduced resource availability, such as during dry periods or leaf-off periods in deciduous plants [5]. 

Recent work reveals that NSC are an important determinant of tree survival during drought [6]. In that 

study, tropical tree species with inherently low NSC stocks in foliage, stems, and roots were about 

twice as likely to die in drought compared to those with naturally high NSC stocks. O’Brien et al. [6] 

also found that foliar NSC concentrations mirror those in stems and roots, despite the fact that NSC 

stocks may be higher in woody tissues compared to foliage [4]. This suggests that leaf NSC can be 

used as a general diagnostic for plant NSC, at least in a spatial or geographic context. Given the 

observed and predicted increases in drought frequency and severity in tropical forest regions [7,8], 

there is a need for studies to determine foliar and whole-plant NSC concentrations as potentially 

powerful predictors of drought tolerance [9]. This is particularly true in tropical forests, where leaf 

NSC concentrations display strong phylogenetic and regional variation [10]. 

The foliage of forest canopies is notoriously difficult to measure at any scale. Tall canopies and 

complex architectures preclude access and limit field collections to a few leaves or branches per 

crown. The data resulting from such approaches are challenging to interpret or to scale up and are not 

often random or systematic samples of an individual tree, a canopy of trees or a landscape [11]. 

Remote measurement of foliar traits is the only way to accurately sample at stand and ecosystem 

levels, but remote sensing approaches for NSC estimation have not been broadly developed. Two 

scales of analysis are needed: (i) leaf-level studies to determine the maximum potential expression of 

NSC to spectral reflectance and transmittance measurements; and (ii) canopy-level studies to 

understand if leaf NSC-spectral relationships scale up amidst a background of varying structure (e.g., 

leaf area index, leaf angle distribution, canopy gaps). 

Here, we present a multi-scale analysis establishing the potential for remote measurement of foliar 

NSC concentrations in forest canopies. We put emphasis on humid tropical and sub-tropical forest 

canopies, because they exhibit widely varying NSC concentrations [10]. From a remote sensing 

perspective, we focus on NSC estimation using optical spectroscopy, which provides measurements of 

leaf reflectance and transmittance, and canopy reflectance, in the 400–2500 nm wavelength range. 

Spectroscopy has an established history in the detection and analysis of leaf and canopy chemical  
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traits [12,13], but its use for NSC estimation is unproven. From both a theoretical and a laboratory 

spectroscopy standpoint, remote sensing of foliar NSC should be possible based on the specific 

wavelength sensitivities of sugars, starch and pectin in the shortwave region of the spectrum [14,15]. 

Spectral features centered at 1450, 1490, 1510–1580, 1780, 1900, 1960, 2080–2100, and 2270–2280 nm 

are particularly promising [14], but none or few wavelengths are likely to provide the information 

needed to predict NSC concentrations accurately. Instead a combination of spectral features, available 

through full-spectrum chemometric approaches, is likely the best candidate for operational NSC 

determination at leaf and canopy scales. 

2. Methods 

2.1. General Approach 

We took a three-tier approach to our assessment of NSC from optical spectroscopy (Figure 1). First, 

we collected leaf reflectance and transmittance spectra (400–2500 nm) in fresh foliage taken from 

thousands of forest canopies in the field and paired these spectra with laboratory assays of leaf NSC 

concentration. Second, we combined the leaf spectra with a canopy radiative transfer model that 

simulates vegetation structural variability and sensor noise and used the simulated canopy reflectance 

spectra to assess the potential limits of foliar NSC determination at the canopy scale. Finally, we used 

airborne imaging spectroscopy to assess foliar NSC concentrations at the stand level in forest plots 

distributed throughout the Amazon basin. For consistency, our leaf and airborne spectral measurements 

and field-based leaf collections were carried out in the early dry season for each study forest. 

 

Figure 1. Overview of our three-tier approach to estimate non-structural carbohydrates at 

(a) leaf, (b) simulated canopy and (c) forest stand scales. 

At each of these scales, the chemometric method, called partial least squares regression (PLSR) 

analysis, as described below, was used to estimate NSC at leaf, modeled-canopy and actual forest 

stand scales. We developed PLSR-ready datasets for leaves, modeled canopies and real tropical forest 

field plots using visible-to-shortwave infrared (VSWIR) (400–2500 nm) spectroscopy. These three 
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datasets provided a means to assess the precision and accuracy of NSC determinations from the 

simplest leaf-level case to the most complex tropical forest stand case. 

2.2. Leaf Spectral Properties 

A total of 6136 leaf samples representing 4222 different canopy species were collected from  

61 sites distributed among tropical and sub-tropical forests in the Amazon Basin, Australia, Borneo, 

the Caribbean region, Central America, the Hawaiian Islands and Madagascar (Figure 2, Table 1). The 

global distribution of the samples, and their breakdown into plant families, genera and species, were 

described in Asner et al. [16]. Briefly, the dataset is comprised of the most common plant habits found 

in tropical forest canopies, including tree (n = 5233), liana (648), palm (74), hemi-epiphyte (109) and 

vine (51). Across all sites, mean annual temperature (MAT) ranges from 8 to 27 °C, mean annual 

precipitation (MAP) ranges from 1200 to 6100 mm·yr−1 and ground elevation varies from 0 to 3660 m. 

Soil type varies strongly across sites, from nutrient-poor Oxisols (clays) and Entisols (white sands) to 

nutrient-rich Inceptisols. 

 

Figure 2. Map of global sampling locations for foliar spectral and non-structural 

carbohydrates (NSC) in tropical and sub-tropical forest tree canopies. Dots indicate the 

sites listed in Table 1. Site names BCI, PNM, and PNSL are Barro Colorado Island, Parque 

Natural Metropolitano, and Parque National San Lorenzo, respectively. 

Table 1. Collection sites and taxonomic partitioning of the leaf spectral and NSC dataset. 

Political 

Unit 

No. of 

Sites 

Elevation 
1 Range 

MAP 2 

Range 

MAT 3 

Range 
Soil Orders 4 

No. of 

Samples 

No. of 

Families 

No. of 

Genera 

No. of 

Species 

Australia 11 21–1084 1165–3333 18.3–23.7 
Alf, Ent, Inc, 

Oxi, Ult 
188 45 121 187 

Costa 

Rica 
9 50–1607 2832–4698 17.7–25.8 And, Inc, Ult 746 100 321 607 
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Table 1. Cont. 

Political 

Unit 

No. of 

Sites 

Elevation 1 

Range 

MAP 2 

Range 

MAT 3 

Range 
Soil Orders 4 

No. of 

Samples 

No. of 

Families 

No. of 

Genera 

No. of 

Species 

Ecuador 1 1325–1980 3200 18 Inc 242 51 105 162 

Hawaii 9 27–1570 1800–5080 13.2–23.8 And, Inc 180 58 129 156 

Madagascar 3 330–1118 1700–3020 17–24.3 Ent, Oxi, Ult 624 72 204 426 

Panama 4 84–189 1865–3140 26–27.2 Inc 269 65 180 258 

Peru 17 92–3660 2380–6128 8–26.6 
Ent, His, Inc, 

Ult 
3338 122 515 2090 

Puerto Rico 6 140–910 3460–6096 21.3–25.6 Inc, Ult 104 47 86 101 

Borneo 1 70–80 2680 26.6 Ult 395 51 108 235 

Notes: 1 Elevation (m); 2 MAP = mean annual precipitation (mm); 3 MAT = mean annual temperature (C);  
4 soil orders: Alf = Alfisol; And = Andisol; Ent = Entisol; His = Histosol; Inc = Inceptisol; Oxi = Oxisol;  

Ult = Ultisol. 

Hemispherical reflectance and transmittance in the 400–2500-nm wavelength range were measured 

on six randomly selected fresh leaves immediately after acquiring them from each forest canopy in the 

field (n = 6136 × 6 = 18,408 reflectance and 18,408 transmittance spectra). The spectral measurements 

were taken at or close to the mid-point between the main vein and the leaf edge and approximately half 

way from petiole to leaf tip. The spectra were collected with a field spectrometer (FS-3 with custom 

detectors and exit slit configurations to maximize signal-to-noise performance; Analytical Spectra 

Devices, Inc., Boulder, CO USA), an integrating sphere designed for high-resolution spectroscopic 

measurements and a custom illumination collimator [17]. Twenty-five spectra per sample were 

averaged and then referenced to a calibration block within the integrating sphere (Spectralon, 

Labsphere Inc., Durham, NH). An integrating sphere and collimated light source are required to obtain 

directional-hemispherical reflectance and transmittance measurements, which are subsequently 

required for use in scaling up to the canopy level with radiative transfer models [18–20]. The  

high-fidelity measurement capability of our field instruments resulted in leaf spectra that did not 

require smoothing or other filters commonly used in leaf optical studies. 

2.3. Leaf NSC Assays 

The method for the chemical determination of leaf NSC was reported by Asner and Martin [21], and 

the protocol is provided on the Spectranomics website (http://spectranomics.ciw.edu). Briefly, NSC 

concentration was determined in 0.5 g dry ground leaf tissue through using a neutral detergent fiber 

(NDF) solution in a fiber analyzer (Model 200/220, Ankom Technology, Macedon, NY, USA). The leaf 

samples were placed in 1800–1900 mL NDF and agitated for 75 min, then rinsed for 5 min in deionized 

water. This procedure was repeated three times to ensure maximum removal of NSC. The change in dry 

mass of the sample, before and after extraction, was used to calculate NSC concentration. Leaf standards 

were used as references with each digestion to ensure consistency across assays.  
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2.4. Canopy Reflectance Modeling 

We projected the mean leaf reflectance and transmittance spectra (n = 6136 pairs) to the canopy 

level using the 4SAIL2 (4-Stream Scattering by Arbitrarily Inclined Leaves) radiative transfer  

model [20]. This model simulates top-of-canopy spectral reflectance based on the measured leaf 

hemispherical-directional reflectance and transmittance spectra, along with the variation of leaf area 

index (LAI), leaf angle distribution and other crown geometric-optical properties. For each canopy 

simulation, a random combination of canopy structural parameters was selected from a very wide 

range of potential values based on growth-form (e.g., tree, liana), which was combined with the 

measured leaf spectra, to generate a canopy reflectance signature. Value ranges for each canopy 

structural parameter are listed in Table 2.  

Table 2. Ranges of canopy structural parameters randomly selected during canopy 

radiative transfer model simulations. LAI = leaf area index; LAD = leaf angle distribution; 

Cv = crown covering the ground at nadir; Zeta = ratio of crown diameter to tree height. The 

modeled LAI variation is considered extreme for tropical canopies [22]. 

Plant Growth-form LAI LAD 1 Cv Zeta 

Trees 2.0–8.0 
−0.4 to 0.4  

−0.1 to 0.2 
0.6–0.8 0.2–0.7 

Lianas 1.0–5.0 
−0.1 to 0.3  

0.3 to 0.6 
0.7–0.9 0.1–0.3 

Palms 1.0–5.0 −0.8 to −0.2 0.7–0.9 0.1–0.3 

Vines 1.0–3.0 
−0.1 to 0.3  

0.3 to 0.6 
0.7–0.9 0.1–0.3 

Hemi-epiphytes 2.0–8.0 
−0.4 to 0.4  

−0.1 to 0.2 
0.6–0.8 0.2–0.6 

Note: 1 Leaf angle distribution (LAD) is described by a two-parameter model, with the first parameter 

controlling average leaf inclination and the second parameter controlling the bimodality of the leaf angle 

distribution [20]. The ranges shown here are extremely wide for tropical vegetation canopies. 

These ranges are extreme in most cases, particularly with respect to LAI and leaf angle, both of which 

do not vary as widely as tested here at spatial resolutions typical of airborne spectroscopy (>1 m).  

Here, we selected extreme ranges compiled from the literature by Asner et al. [23] and Asner and  

Martin [17] as a means to create possible worst-case scenarios of canopy structure overpowering leaf 

spectral-chemical variation. Our modeling also included a treatment of both random and systematic 

spectrometer sensor noise using the technique described by Asner et al. [16]. Together, this provided a 

method to estimate the effects of extreme canopy structural variability and sensor noise on leaf NSC 

estimation using canopy reflectance in the 400–2500-nm wavelength range. A useful aspect of this 

approach is that it likely represents the chemical and structural variability of broadleaf forests worldwide. 

2.5. Airborne NSC Study 

We tested our ability to quantitatively estimate leaf NSC concentrations in actual tropical forest 

canopies. Airborne imaging spectrometer data were acquired over 79 one-hectare field plots distributed 
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throughout the Peruvian Amazon using the Carnegie Airborne Observatory (CAO) (Figure 3), which 

includes a high-fidelity VSWIR imaging spectrometer [24]. In each field plot, multiple full-sunlight 

canopies were selected for leaf collections (n = 3–38 per plot) as described in detail by Asner et al. [11]. 

Foliage from these canopies was assayed for NSC using the same technique described earlier for the 

global leaf collection. The field-collected NSC data were averaged to the plot level. 

 

Figure 3. The regional distribution of one-hectare field plots in the Amazon basin and 

Andean forests of Peru. The map is a digital elevation model (DEM) of Peru derived from 

NASA Shuttle Radar Topography Mission (SRTM) data. Circles contain clusters of field 

plots as indicated and are arrayed geographically to maximize environmental and floristic 

variation as reported by Asner et al. [11]. 

The VSWIR data were collected over each field plot from an altitude of 2000 m above ground level 

(a.g.l.), an average flight speed of 55–60 m s−1 and a mapping swath of 1200 m. The VSWIR 

spectrometer measures spectral radiance in 480 channels spanning the 252–2648 nm wavelength range 

in 5-nm increments (full-width at half-maximum). The spectrometer has a 34° field-of-view and an 

instantaneous field-of-view of 1 mrad. At 2000 m a.g.l., the VSWIR data collection provided a 2.0-m 

ground sampling distance, or pixel size, throughout each study landscape. The VSWIR data were 

radiometrically corrected from raw DN values to radiance (W sr−1 m−2) using a flat-field correction, 

radiometric calibration coefficients and spectral calibration data collected in the laboratory. The image 



Remote Sens. 2015, 7 3533 

 

data were atmospherically corrected from radiance to apparent surface reflectance using the ACORN-5 

(Atmospheric Correction Now) model (Imspec LLC, Glendale, CA USA). The reflectance imagery 

was corrected for cross-track brightness gradients using a bidirectional reflectance distribution function 

(BRDF) modeling approach described by Colgan et al. [25]. The sunlit portions of canopies in each  

1-ha plot were filtered and averaged based on the method described by Asner et al. (2015). This 

method removes pixels unsuitable for sunlit canopy spectroscopic measurement, including non-canopy 

surfaces (bare ground), shaded canopy pixels and pixels with low foliar content. To achieve this,  

we use a LiDAR (light detection and ranging) scanner flown with the spectrometer to estimate the 

height of the vegetation at a resolution of 8 laser shots per VSWIR spectral pixel and to model  

inter-canopy shade (Asner et al., 2015). To ensure that remaining candidate spectral pixels have 

sufficient foliar content, we apply a minimum NDVI threshold of 0.8. Spectral pixels that pass this 

combination of filters are considered suitable for NSC analysis at a mapping resolution of 1 ha. The 

resulting average reflectance spectrum of each 1-ha field plot was trimmed at the far ends (<400 nm, 

>2450 nm) of the measured wavelength range, as well as in regions dominated by atmospheric water 

vapor (1350–1480, 1780–2032 nm). Water vapor features preclude the use of these wavelength regions 

in canopy chemical analyses. 

2.6. Chemometric Analyses 

We used PLSR analysis [26] to characterize the strength of NSC expression in the spectroscopy of 

leaves, modeled canopies and actual canopies at the stand level. Leaf reflectance and transmittance 

were each tested using the field-based measurements followed by re-sampling to the 10-nm full-width 

half-maximum bandwidth spanning the 400–2500 nm spectral range and averaging of six individual 

leaf measurements (n = 6136 leaf samples). Canopy reflectance (n = 6136 simulated canopies) was 

tested in a similar configuration, but with the 1330–1430-nm and 1760–2030-nm atmospheric water 

vapor regions removed from the simulated VSWIR data [27]. Actual forest stand data (n = 79 field 

plots) from the Amazon were treated the same way. 

For all PLSR analyses, we minimized statistical overfitting by utilizing the prediction residual error 

sum of squares (PRESS) statistic [28]. The PRESS statistic was calculated through a cross-validation 

prediction for each PLSR model. This cross-validation procedure iteratively generates regression 

models while reserving a portion of the samples (10% for input datasets with >100 samples;  

leave-one-out for <100 input samples) from the input dataset until the root mean square error (RMSE) 

for the PRESS statistic is minimized. The leaf and modeled canopy datasets were each randomly 

divided into 40 subsets to generate 40 unique PLSR models containing approximately 150 samples 

each. For the measured stand-level reflectance data, 70% were randomly selected on an iterative basis 

to generate 1000 PLSR models. For each subset (leaf and modeled canopy) or iteration (stand level) in 

this evaluation, PLSR weighting coefficients derived for each spectral band were multiplied by the 

spectral values to generate predictions of NSC concentration. This provided a way to calculate the 

variation in the calibration predictions of NSC concentrations from each dataset. Statistics were 

computed for the PLSR equations resulting in robust models (R2 > the mean of the 40 or 1000 

iterations at the leaf and modeled canopy or actual canopy, respectively) to assess the precision and 

accuracy of NSC remote sensing with spectroscopy. The coefficient of determination (R2) was used as 
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the metric of PLSR model precision and the RMSE as an assessment of the model accuracy. The mean 

PLSR weighting coefficients are provided in Appendix Table A1. 

3. Results 

3.1. Leaf-Level Performance 

The global compilation of leaf reflectance and transmittance spectra indicated very wide-ranging 

values at nearly all wavelengths (Figure 4). Maximum reflectance variation occurred in the near-infrared 

(IR) and shortwave-IR between 800 and 1800 nm. For leaf transmittance, maximum variation occurred 

in the shortwave-IR from 1500–2450 nm. The variation expressed in these spectra meets or exceeds 

the variation reported for leaf optical properties in other biomes [29–34] and matches the reported 

variability achieved in models of leaf optical properties [19,35]. This suggests that our leaf optical 

database is globally relevant. 

 

Figure 4. Leaf-level (a) reflectance and (b) transmittance spectra of fresh (live) samples 

collected from 6136 forest canopy growth-forms in sub-tropical and tropical forests 

worldwide. The locations of the sample collections are shown in Figure 2, and the general 

site information is provided in Table 1. The thick dashed line indicates mean values; dark 

grey areas indicate one standard deviation; light grey areas indicate the total range  

of values. 
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Chemical analyses of the 6136 leaf samples indicated extremely wide-ranging concentrations of 

NSC, from 16.5% to 84.5% of total leaf mass (Table 3). Parallel to the spectra, this NSC range 

approximately meets the range reported for live, fresh foliar material worldwide [1,5,9]. Based on this 

range of chemical values, the PLSR analyses indicated that NSC can be estimated at the leaf level from 

reflectance with high precision (mean R2 = 0.73 ± 0.06) and accuracy (average %RMSE = 12.9%)  

(Table 3). Transmittance-based results showed similar performance, with mean R2 = 0.69 ± 0.03 and 

average %RMSE = 13.9%. Analysis of sub-regional leaf datasets, such as from the Amazon basin  

(Table 1), indicated similar performance levels. Spectral weightings from the PLSR models with the 

largest deviations from zero (positive or negative) indicate that the shortwave-IR (2000–2450 nm) and, 

to a slightly lesser extent, the 1300–1800 nm region, were most critical to the determination of NSC 

concentrations from leaf reflectance and transmittance (Figure 5a,b). PLSR spectral weights are 

derived from matrix multiplication that simultaneously takes into account spectral variation relative to 

changing chemical concentration. In Figure 5, departures from zero indicate the increasing importance 

of spectral features in determining a chemical concentration [36]. The most important features align 

with known centers of NSC expression in the spectrum, particularly from 1450 to 2270 nm, as detailed 

by Curran [14]. 

Table 3. Calibration performances for non-structural carbohydrates (NSC) derived from 

optical spectroscopy in the 400–2450-nm wavelength range at leaf, simulated crown and 

forest stand levels. Mean ± standard deviation values are presented with minimum and 

maximum values in parentheses. RMSE = root mean squared error; %RMSE is 

standardized to the mean value. Vectors indicate the number of spectral dimensions 

selected by the partial least squares regression (PLSR) analyses to achieve the reported 

precision (R2) and accuracy (RMSE) results. The range of vector numbers indicates 

variation among repeated PLSR model runs. For leaf reflectance and transmittance, as well 

as canopy reflectance, total n = 6136; these samples were randomly partitioned into  

40 sub-samples with nsub = 150 for iterative PLSR analyses. For stand-level reflectance,  

n = 79; these samples were randomly partitioned into 1000 sub-samples with nsub = 55 for 

iterative PLSR analyses. 

Approach Chemical Range R2 RMSE %RMSE Vectors 

Leaf reflectance  16.2–84.5 0.73 ± 0.06 5.9 ± 0.8 12.9; (9.1–15.6) 24; (20–38) 

Leaf transmittance 16.2–84.5 0.69 ± 0.03 6.4 ± 0.5 13.9; (12.5–15.9) 21; (17–26) 

Canopy reflectance 16.2–84.5 0.56 ± 0.09 7.4 ± 0.90 16.1; (11.4–19.4) 13; (9–19) 

Stand reflectance 36.0–71.9 0.49 ± 0.14 4.4 ± 0.87 9.1; (9.2–12.6) 4; (3–12) 
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Figure 5. PLSR spectral weighting factors for NSC estimation in foliage at three scales: 

(a) leaf reflectance and (b) transmittance; (c) modeled canopy reflectance; and (d) actual 

forest stand-level reflectance. In each panel, the black line indicates the mean values, and 

the grey shading indicates one standard deviation among PLSR models run iteratively on 

random subsets of samples from each leaf, canopy and stand-level database. 

3.2. Canopy-Level Performance 

Canopy simulations using the leaf reflectance and transmittance dataset (Figure 4) integrated with 

variable canopy structure and sensor noise resulted in an extremely wide range of canopy reflectance 

(Figure 6a), relative to actual stand-level canopy observations (Figure 6b). Maximum reflectance 

variation was observed in the near-IR (800–1300 nm) and secondarily in the shortwave-IR between 

1500 and 1800 nm. The extreme structural variation incorporated into the modeled spectra reduced the 

precision (mean R2 = 0.56 ± 0.09) and accuracy (avg. %RMSE = 16.1%) of foliar NSC estimates,  

as compared to leaf-level results (Table 3). Spectral PLSR weightings also shifted at the canopy scale, 

with the maximum signal for NSC estimates expressed in the 1200–2300 nm wavelength ranges  

(Figure 5c). 
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Figure 6. (a) Simulated canopy reflectance calculated using all leaf spectra (Figure 4) with 

a canopy radiative transfer model and a random selection of canopy structural properties 

(Table 2). (b) Actual forest stand-level reflectance spectra from 79 one-hectare field plots 

in the Amazon basin. The thick dashed line indicates mean values; dark grey areas indicate 

one standard deviation; light grey areas indicate the total range of values. 

3.3. Airborne Imaging Spectroscopy 

Airborne imaging spectroscopy of the 79 one-hectare plots showed much less spectral variability 

compared to the simulated canopies (Figure 6b). This was expected given the approach of automated 

averaging of spectra pre-filtered and selected for sunlit, highly foliated portions of canopies in each 

field plot [11]. Moreover, actual stand-level spectral data were of somewhat lower overall reflectance 

in the near-IR as compared to the simulated canopy-level spectral data. This is caused by within-canopy 

shading, which is present in the real data and absent in the simulations. Despite these differences, 

similar to the canopy simulations, we found that maximum stand-level reflectance variation was 

expressed in the near-IR (800–1300 nm) and secondarily in the shortwave-IR from 1500–1800 nm. 

PLSR analyses of the filtered airborne spectra against leaf NSC samples taken from the field plots 

indicated good precision (mean R2 = 0.49 ± 0.14) and excellent accuracy (average %RMSE = 9.1%) 

(Table 3). Whereas precision declined slightly in comparison to leaf-level NSC retrievals, the error 

(RMSE, %RMSE) decreased relative to the canopy-scale simulations. This results from the averaging 

of spectra and leaf samples within each field plot, compared to a very liberal use of canopy structural 

variation to the modeled spectra (Table 2). Spectral PLSR weightings indicated the importance of the 

700- to 720-nm range (“red-edge”) and the shortwave-IR (1500–2300 nm) in determining foliar NSC 

concentrations at this ecological scale (Figure 5d). 
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4. Discussion 

Using a three-tier strategy, we determined that leaf NSC concentrations can be estimated using 

high-fidelity spectroscopy at leaf, canopy and whole-stand scales with demonstrably high precision 

and accuracy compared to laboratory-based chemical assays. Laboratory wet-chemical assays of NSC 

typically result in relative errors of about 9% on a per sample basis [37], and our lab sampling 

protocols result in a similar error level. Leaf-level spectroscopy yielded relative errors ranging from 

just 13%–14% (Table 3). When averaging samples and spectral signatures at the forest-stand level, 

relative uncertainties were reduced to about 9%. From either ecological or chemometric standpoints, the 

spectral- and wet chemical-based approaches are nearly indistinguishable. 

Our model-based results should be considered quite liberal in the context of canopy structural 

variation, serving as a contributor to canopy reflectance. We varied LAI from 1.0 to 8.0 units  

(Table 2), which not only incorporates a global range of LAI values [23], but is also far more variable 

than what is typically encountered in closed-canopy tropical forests [38]. Our leaf angle distributions 

and other model parameters were also structurally very wide ranging [18,20]. Surprisingly, we found 

that leaf NSC estimates from modeled canopy spectroscopy remained demonstrably good, although 

precision and accuracy did suffer under such extreme canopy structural variability compared to the 

leaf-level analyses. This is important because, although past studies highlight the potential use of 

spectroscopy for canopy chemical trait analysis [13,14,39], other studies have emphasized the 

potentially dominant role of canopy structure over chemistry in determining canopy spectral 

reflectance [40]. Here, we found insufficient evidence to suggest that structural variability in forest 

canopies will critically impair NSC estimation from imaging spectroscopy. 

An additional finding was that the portions of the reflectance spectrum responsible for NSC 

determinations shifted in wavelength when going from leaf to canopy and stand levels (Figure 5). 

Whereas the shortwave-IR between 1300 and 2500 nm was almost uniformly important to NSC 

estimation at the leaf level, canopy-scale estimates were shifted to shorter wavelengths (closer to  

1200 nm). This is caused by increased absorption at the canopy level, which is related to increased leaf 

area index [17,19]. The leftward shift of the PLSR weightings was more pronounced at the stand level, 

where the spectral red-edge (~750 nm) was a co-predictor of NSC, in addition to spectral features in 

the shortwave-IR. This too is caused by canopy-scale absorption. Finally, we note that most of the 

PLSR weighting “peaks” (departures from zero to negative or positive values; Figure 5) are in line 

with many of the NSC-related features first suggested by Curran [14]. This suggests consistency in the 

expression of foliar NSC in leaf and canopy reflectance spectra. 

The total carbon content of a leaf is approximately equal to the sum of NSC, cellulose,  

hemi-cellulose and lignin [41]. One might therefore predict that remote sensing of NSC is somehow 

inversely related to remote estimation of the other carbon molecules, and indeed, lignin and cellulose 

have long been a focus of imaging spectroscopy [12,39]. In a previous study, we found that the 

spectral reflectance features associated with NSC were anti-correlated with spectral features expressed 

by lignin (r = −0.64) and cellulose (r = −0.77; p < 0.01) [11]. This internal consistency in the diversity 

of spectral expression among major leaf carbon constituents suggests that all three sets of compounds 

can be estimated from VSWIR imaging spectroscopy. If so, this will open new doors to large-scale 

ecological studies of multiple carbon fractions in the foliage of forest canopies. The resulting data 
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could, in turn, be used to estimate the relative strength of carbon sources (photosynthesis) and sinks 

(growth; tissue allocation) at ecological scales unobtainable using field and laboratory sampling alone. 

The dynamics of these environmentally-responsive carbon pools will be a focus of forthcoming studies 

with airborne high-fidelity imaging spectroscopy from the Carnegie Airborne Observatory. 

Remote sensing of foliar NSC will allow for measurement and monitoring of the direct products of 

photosynthesis in forest canopies at an ecological scale never before achieved. This will facilitate 

large-scale assessments of forest canopy responses to changes in multiple environmental factors, 

including climate. Drought and temperature tolerance are critically important applications of NSC 

remote sensing with spectroscopy. With the future promise of global imaging spectroscopy via 

Germany’s EnMap (Environmental Mapping and Analysis Program) and NASA’s HyspIRI 

(Hyperspectral Infrared Imager) missions, climate change effects on forest canopy NSC concentrations 

will, for the first time, be mapped and placed in an Earth system context. Until then, airborne imaging 

spectrometers will be the best way forward to understand NSC dynamics at landscape to regional 

scales, as well as at the scale of individual canopies and species. The spectroscopy of leaf NSC is a 

gateway to developing a chemical basis for remote sensing of forest physiology at the macroscale. 

5. Conclusions 

Remote sensing of leaf non-structural carbohydrates (NSC) may provide a spatially-explicit 

understanding of forest canopy exposure or susceptibility to increasing temperatures, decreasing 

precipitation and other climate perturbations. Using a global dataset of leaf chemical and spectral 

properties in tropical forests, we found that leaf NSC concentrations in 6136 plants can be estimated 

with high precision (R2 = 0.69–0.73) and accuracy (%RMSE = 13%–14%). Incorporating leaf spectral 

data into a radiative transfer model resulted in a reduction in the precision and accuracy of leaf NSC 

estimation at the canopy level (R2 = 0.56; %RMSE = 16%). However, application of imaging 

spectroscopy to 79 one-hectare plots in Amazonia indicated the good precision and accuracy of leaf 

NSC estimates at the forest stand level (R2 = 0.49; %RMSE = 9.1%). Spectral analyses indicated 

strong contributions of the shortwave-IR (1300–2500 nm) region to leaf NSC determination at all 

scales. These remotely-sensed estimates of NSC are indistinguishable, in terms of precision and 

accuracy, from those made via laboratory assay and can now be carried out at ecological scales 

otherwise intractable via ground- and laboratory-based studies. Future airborne and satellite-based 

spectrometers should be designed to deliver high-quality spectra, such as those used in this study,  

in order to advance NSC mapping for studies of biospheric responses to climate change.  
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Appendix 

Table A1. PLSR Weightings for Non-structural Carbohydrates (NSC) in Forest Leaves 

and Canopies. 

Leaf Level Modeled Canopy Measured Stand-Level Canopy 

Wavelength 
Leaf 

Reflectance 

Leaf 

Tranmittance 
Wavelength 

Canopy 

Reflectance 
Wavelength 

Canopy 

Reflectance 

Intercept 43.92346158 44.09943433 Intercept 49.56582227 Intercept −154.9237312 

409.68 −371.3165126 −919.2181631 433.67 −133.9772842 409.31 −378.8371125 

419.68 −228.6673269 −529.911383 443.36 69.28851678 419.33 −323.278948 

429.69 56.99304407 −135.8144438 453.06 64.55473098 429.34 −364.7098297 

439.70 252.1839902 366.6273342 462.76 91.50801732 439.36 −236.7114492 

449.70 151.0924843 136.6963453 472.47 119.5154075 449.37 −55.19831014 

459.71 383.5269807 484.0310369 482.18 150.4002381 459.39 15.85640461 

469.72 −532.7811941 545.345442 491.90 234.7742488 469.40 78.62211678 

479.72 874.8150235 350.917737 501.62 86.41842172 479.42 120.5855001 

489.73 822.4099553 173.4894125 511.35 8.246857264 489.43 175.8115229 

499.74 −175.7833749 27.35911747 521.08 −189.3421036 499.45 220.9395279 

509.74 −317.9762259 −192.7788036 530.81 −269.1251103 509.46 210.191244 

519.75 −306.0900255 −431.1836785 540.55 −274.2991826 519.48 150.6738296 

529.76 −167.351235 −240.2814429 550.29 −123.6322331 529.49 101.5254057 

539.76 143.9138163 395.8328311 560.04 92.04892792 539.51 76.44952998 

549.77 374.1549401 57.48124938 569.79 94.54929241 549.52 45.34680455 

559.78 −1061.982882 −604.6443121 579.55 208.2648986 559.54 25.00890073 

569.78 322.4597226 81.14812637 589.31 134.7526353 569.55 24.16803965 

579.79 1097.252175 451.6732106 599.08 66.2640756 579.57 47.18824022 

589.80 245.0388146 408.9186842 608.85 −55.51377327 589.58 83.08167905 

599.80 −607.0770945 48.72887079 618.62 −75.85092513 599.60 82.39917972 

609.81 −378.816813 −56.99428184 628.40 −17.03735391 609.61 128.3267049 

619.82 97.75052815 59.77830425 638.18 −32.12081198 619.63 173.778067 

629.82 −106.6153207 −9.505604153 647.97 −50.92780089 629.64 195.5438373 

639.83 14.72573507 −92.36009547 655.29 11.62208161 639.66 214.9546168 

649.84 297.9863014 −197.5296171 665.09 −27.56064832 649.67 260.5694842 

659.84 −303.162915 −556.6519505 674.90 −15.65527363 659.69 −58.72666144 

669.85 −344.4751678 −155.9677424 684.69 −14.97514638 669.70 −11.59788135 

679.86 −497.4206742 75.52539134 694.48 −40.57359288 679.72 −170.2091699 

689.86 −269.2332816 −67.23979032 704.27 −12.59050278 689.73 −247.522385 
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Table A1. Cont. 

Leaf Level Modeled Canopy Measured Stand-Level Canopy 

Wavelength 
Leaf 

Reflectance 

Leaf 

Tranmittance 
Wavelength 

Canopy 

Reflectance 
Wavelength 

Canopy 

Reflectance 

699.87 656.962502 348.9920474 714.05 54.56084237 699.75 −239.705834 

709.88 −435.3464835 −285.6378627 723.83 83.71100952 709.76 −136.6003647 

719.88 223.2205287 −84.4375331 733.60 45.40445656 719.78 −45.58251118 

729.89 −87.0258821 191.5929311 743.36 58.55044007 729.79 2.736042706 

739.90 −192.0743113 100.6395645 753.12 −8.086347346 739.81 66.49776933 

749.90 477.7664756 116.8965368 762.88 −53.38093568 749.82 37.1632202 

759.91 644.2351532 251.9308119 772.63 12.60744724 759.84 −29.33069299 

769.92 91.44899258 220.1083154 782.37 118.8497702 769.85 −63.95888037 

779.92 −479.0475033 46.04921125 792.11 37.4712146 779.87 −74.93098304 

789.93 −529.3763639 −184.3764745 801.85 −86.76430524 789.88 −46.20603431 

799.94 −391.9987476 −374.1086586 811.58 −112.3232265 799.90 −51.7597739 

809.94 −129.0286866 −361.8888455 821.30 −126.9358054 809.91 −46.18316548 

819.95 196.9461251 −256.366572 831.02 11.19585641 819.93 −43.22734258 

829.96 216.9529804 −45.80192762 840.73 53.78026185 829.94 −19.5644525 

839.96 304.8075438 26.02803471 850.44 57.35391261 839.96 −11.34007976 

849.97 197.7626744 84.80551186 860.14 −76.66158364 849.97 −16.3196782 

859.97 82.57576874 158.8608747 869.84 −2.719827379 859.99 5.129842753 

869.98 45.5682532 45.63869203 879.53 −12.98552828 870.00 12.42068434 

879.99 −80.14214218 −94.3029056 889.22 6.764800803 880.02 −12.93440156 

889.99 −181.6138235 −96.67063657 898.90 8.280011119 890.03 −9.43695131 

900.00 −171.5954815 −83.31427284 908.58 22.72116524 900.05 −24.87391216 

910.01 −64.81621826 53.6327811 918.25 −99.07303695 910.06 44.69227182 

920.01 −31.55516956 211.7780901 927.92 −45.43664117 920.08 123.1759786 

930.02 196.1039688 21.82398383 937.58 −49.45697949 930.09 −4.909074581 

940.03 −163.795639 −255.7551743 947.23 −31.80894597 940.11 12.09910326 

950.03 −706.7859755 −377.7214634 956.88 −37.39552131 950.12 259.5361108 

960.04 −293.5590555 −63.5208901 966.53 −38.20602646 960.14 217.2184419 

970.05 −388.6215367 689.0111029 976.17 -36.7076795 970.15 224.4095154 

980.05 538.40279 810.433792 985.81 19.09113554 980.17 268.1602899 

990.06 50.519203 696.985289 995.44 73.0029157 990.18 312.1828414 

1000.07 −421.9882309 −230.8351216 1005.06 −29.84729617 1000.20 −104.5367656 

1010.07 −269.1901213 −358.8756365 1014.68 −115.5968899 1010.21 −188.2529108 

1020.08 −117.813784 −89.79630257 1024.29 −21.97010843 1020.23 17.75207205 

1030.09 234.8164256 142.6136904 1033.90 61.37396794 1030.24 213.3349643 

1040.09 410.8624577 253.4213368 1043.51 151.4882373 1040.26 368.4556968 

1050.10 558.6637253 132.281373 1053.11 206.8744324 1050.27 335.3047203 

1060.11 366.475188 70.4138447 1062.70 197.7358421 1060.29 342.982734 

1070.11 243.3901684 −89.81088982 1072.29 44.39081555 1070.30 337.2164587 

1080.12 −115.2303522 −410.9955609 1081.87 −71.0510886 1080.32 255.8050587 

1090.13 −513.7217052 −673.9549008 1091.45 −144.2378713 1090.33 60.78419766 
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Table A1. Cont. 

Leaf Level Modeled Canopy Measured Stand-Level Canopy 

Wavelength 
Leaf 

Reflectance 

Leaf 

Tranmittance 
Wavelength 

Canopy 

Reflectance 
Wavelength 

Canopy 

Reflectance 

1100.13 −503.3266623 −735.2226782 1101.02 −175.982708 1100.35 −80.1777783 

1110.14 185.6157309 -256.084212 1110.59 44.64300286 1110.36 −118.7303193 

1120.15 824.8568883 474.0861467 1120.15 −79.57209073 1120.38 −30.42124311 

1130.15 706.7412998 631.9688998 1129.71 73.0245519 1130.39 132.0979241 

1140.16 −47.76023732 −114.2367884 1139.26 220.0080285 1140.41 124.772645 

1150.17 −793.9397966 −1198.363214 1148.81 146.2877695 1150.42 158.8058648 

1160.17 −745.6708347 −1504.678781 1158.35 31.91104367 1160.44 136.1227516 

1170.18 −287.3397315 −977.1440687 1167.88 −142.3016634 1170.45 105.533777 

1180.19 45.39977768 −275.292423 1177.42 −65.13435609 1180.47 −198.6871093 

1190.19 26.74717705 211.8166676 1186.94 −91.04540926 1190.48 −245.5642678 

1200.20 329.1118015 629.4019605 1196.46 145.3901957 1200.50 −248.8492534 

1210.21 743.5419947 984.940179 1205.98 138.8085743 1210.51 −166.1981497 

1220.21 806.117307 1071.042637 1215.49 164.0774127 1220.53 −150.0366876 

1230.22 457.2073627 737.3979868 1224.99 271.7640207 1230.54 −213.122067 

1240.23 −142.0063448 330.0453206 1234.49 39.18163026 1240.56 −187.9744947 

1250.23 −543.5563157 146.9869822 1243.99 150.5001931 1250.57 −163.8988272 

1260.24 −567.1012887 122.7306737 1253.47 26.67041061 1260.59 −140.5466685 

1270.25 −264.606581 143.0742552 1263.34 −4.733391691 1270.60 −96.02582255 

1280.25 −184.7943348 95.37154226 1273.31 −191.5538135 1280.62 −42.15363218 

1290.26 −180.8847637 73.07818472 1283.29 −290.6901333 1290.63 −10.26607101 

1300.26 −90.07775773 131.1229029 1293.26 −98.22080264 1300.65 36.6212788 

1310.27 90.20361037 309.6023981 1303.23 −43.45230966 1310.66 31.15060269 

1320.28 161.8813349 178.7665172 1313.20 29.02486545 1320.68 −16.79817654 

1330.28 825.7565913 −351.9536778 1323.17 −127.8674268 1330.69 −70.6390652 

1430.35 1217.506187 410.0379124 1333.14 −340.90711 1430.84 −24.89417885 

1440.36 364.840675 −14.80275979 1343.11 −428.3056273 1440.86 −49.96475033 

1450.36 −658.4000286 −584.856631 1353.08 802.2520087 1450.87 −119.3043298 

1460.37 −1355.94315 −1006.842005 1412.90 18.45498708 1460.89 −174.8554044 

1470.38 −1252.940641 −960.0889356 1422.87 −80.83907119 1470.90 −157.0907678 

1480.38 −533.9116164 −424.473693 1432.84 −6.09757958 1480.92 −147.3426524 

1490.39 387.0788578 197.1282446 1442.81 75.09399044 1490.93 −171.8612035 

1500.40 933.0515097 607.9026065 1452.78 −64.0492756 1500.95 −173.3175564 

1510.40 1031.005246 754.8906859 1462.75 −35.34963376 1510.96 −180.1370826 

1520.41 639.7832858 706.9938317 1472.71 −63.16887986 1520.98 −157.4391749 

1530.42 96.34347324 574.9548229 1482.68 −50.80736506 1530.99 −136.987365 

1540.42 −189.0654619 392.9730658 1492.65 −98.97882395 1541.01 −115.2314186 

1550.43 −361.200949 161.7731701 1502.61 −73.98580537 1551.02 −96.66156239 

1560.44 −178.6693632 154.998368 1512.58 −71.04244606 1561.04 −83.42409227 

1570.44 342.3061289 322.9407104 1522.55 120.6116297 1571.05 −78.92745713 

1580.45 967.4233718 535.4395096 1532.51 115.2604483 1581.07 −64.5684128 

1590.46 1169.502603 487.4268145 1542.48 97.45948869 1591.08 −57.98930307 
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Table A1. Cont. 

Leaf Level Modeled Canopy Measured Stand-Level Canopy 

Wavelength 
Leaf 

Reflectance 

Leaf 

Tranmittance 
Wavelength 

Canopy 

Reflectance 
Wavelength 

Canopy 

Reflectance 

1600.46 418.0703692 11.643117 1552.44 344.4234532 1601.10 −52.29878334 

1610.47 −758.7646897 −737.6646856 1562.41 297.8169922 1611.11 −43.22761703 

1620.48 −1458.921038 −1435.475427 1572.38 147.228783 1621.13 −34.71773851 

1630.48 −1282.885825 −1632.853563 1582.34 −3.979286894 1631.14 −21.00074229 

1640.49 −354.9454306 −1204.468722 1592.31 −67.83980097 1641.16 −8.324176442 

1650.50 606.0061873 −278.1329802 1602.27 −117.3975702 1651.17 8.533159176 

1660.50 812.9604732 722.4125758 1612.23 −153.6002936 1661.19 29.78949512 

1670.51 340.5055387 1212.004563 1622.20 −186.0518129 1671.20 43.24976141 

1680.52 −147.7023668 551.7746707 1632.16 −31.94937486 1681.22 39.1366824 

1690.52 −721.3004094 −782.8080637 1642.13 −88.37862942 1691.23 28.98373127 

1700.53 −1063.956987 −1701.277706 1652.09 71.4347783 1701.25 28.32998623 

1710.54 −1021.160996 −1411.708312 1662.05 −35.17241089 1711.26 42.20150165 

1720.54 6.498375354 −159.7847524 1672.02 153.8420071 1721.28 50.44622904 

1730.55 1506.761755 934.7928816 1681.98 17.02008587 1731.29 48.67695955 

1740.56 2001.84034 1247.12711 1691.94 11.48737073 1741.31 35.38533728 

1750.56 792.8495698 800.840925 1701.90 −117.224093 1751.32 30.12835599 

1760.57 −1214.787386 198.8604001 1711.86 −23.92446225 1761.34 33.86405036 

1770.57 −1624.124566 13.98091789 1721.83 −118.81257 1771.35 39.34287819 

2002.03 1468.02985 674.0373373 1731.79 −81.48569054 2031.74 −168.1982397 

2012.03 561.4831546 1043.239315 1741.75 −133.9368218 2041.76 −256.4353296 

2022.04 279.1126833 865.0245138 1751.71 −53.68955725 2051.77 −229.4068848 

2032.05 288.9162004 465.6398897 1761.67 −222.5379453 2061.79 −216.1085252 

2042.05 354.8780561 −322.9279525 1771.63 −89.06561924 2071.80 −116.234245 

2052.06 −725.8204573 −863.3993494 2028.37 −41.38642304 2081.82 −82.83329552 

2062.07 −1045.147746 −1199.012465 2038.39 39.6466759 2091.83 −71.22483251 

2072.07 −1428.854761 −1392.963567 2048.41 −95.08716004 2101.85 −10.03137133 

2082.08 −1066.911147 −1319.985558 2058.43 −122.4432577 2111.86 19.73794294 

2092.09 −887.5673094 −616.6957406 2068.45 −173.3457587 2121.88 63.42453466 

2102.09 −168.1844618 13.93939541 2078.47 −146.0312626 2131.89 80.01748509 

2112.10 570.8179091 377.0661637 2088.48 −186.4526505 2141.91 90.98833299 

2122.11 1261.525272 778.0295598 2098.49 −121.0580986 2151.92 105.7272038 

2132.11 632.3631569 1161.737757 2108.50 22.81176134 2161.94 90.38333754 

2142.12 574.7187805 639.1347964 2118.51 143.1007464 2171.95 86.59749841 

2152.13 76.11790917 300.9941378 2128.51 99.37593363 2181.97 84.96181125 

2162.13 92.69434539 249.2110435 2138.51 237.8748109 2191.98 67.64734018 

2172.14 187.1006467 202.7932003 2148.51 229.0735066 2202.00 84.13533845 

2182.15 748.6399275 246.9787361 2158.51 241.1260374 2212.01 64.51645446 

2192.15 −553.2831637 38.50347028 2168.50 29.29752352 2222.03 59.6410842 

2202.16 −734.7175539 −324.3644638 2178.49 −65.01128874 2232.04 70.06912197 

2212.17 −676.6531445 −1061.113818 2188.48 −92.03031921 2242.06 81.06354185 

2222.17 −982.810843 −832.2084714 2198.47 −126.5817693 2252.07 85.00666516 

2232.18 −125.3762175 −609.0033076 2208.46 −79.10724312 2262.09 86.68867079 
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Table A1. Cont. 

Leaf Level Modeled Canopy Measured Stand-Level Canopy 

Wavelength 
Leaf 

Reflectance 

Leaf 

Tranmittance 
Wavelength 

Canopy 

Reflectance 
Wavelength 

Canopy 

Reflectance 

2242.19 241.835186 115.1755888 2218.44 −18.02558741 2272.10 78.18181046 

2252.19 677.1287016 853.9901956 2228.42 15.19592898 2282.12 52.34591433 

2262.20 1385.449441 1827.592724 2238.40 111.3126661 2292.13 85.49341794 

2272.21 1337.826506 1569.501124 2248.38 212.2097671 2302.15 92.49323279 

2282.21 −88.74063332 312.4205493 2258.35 148.0641274 2312.16 92.68125205 

2292.22 −281.2954724 −722.3030813 2268.32 70.3796506 2322.18 126.3079726 

2302.22 −1100.754704 −1959.00414 2278.29 −11.2907835 2332.19 87.48525986 

2312.23 −1993.553061 −1621.390453 2288.26 138.9993526 2342.21 160.0424631 

2322.24 −252.8753957 −1111.049991 2298.22 94.41060687 2352.22 216.9693838 

2332.24 −114.6922794 −390.7161921 2308.18 8.420567335 2362.24 108.0718521 

2342.25 1007.151283 124.2526096 2318.14 −57.95639111 2372.25 198.6993561 

2352.26 186.6086765 818.4063019 2328.10 −89.67518112 2382.27 308.5381347 

2362.26 368.286122 1228.437516 2338.06 166.1435471 2392.28 233.3352833 

2372.27 1420.474875 1470.518086 2348.01 47.55116636 2402.30 199.913954 

2382.28 −15.20402847 476.3402157 2357.96 −112.4039599 2412.31 328.566246 

2392.28 487.8034804 875.0592421 2367.91 −92.34934375 2422.33 440.5182622 

2402.29 −456.7426985 −67.04033764 2377.86 6.825447361 2432.34 228.0424133 

2412.30 −761.5346907 −438.338257 2387.80 40.47869299 2442.36 180.3819973 

2422.30 −716.306305 −951.80626 2397.74 115.8280977 2452.37 331.5718859 

2432.31 19.14664416 −411.4209169 2407.68 −52.10616099 - - 

2442.32 87.46256623 −390.2173155 2417.62 35.37923776 - - 

2452.32 176.0899746 237.4730638 2427.55 −117.2654779 - - 

- - - 2437.48 114.907234 - - 

- - - 2447.41 −32.57342231 - - 

- - - 2457.34 −42.84769343 - - 

Notes: These PLSR weightings are provided for reference purposes only.  They should not be used in place 

of calibrations with other spectrometers. Spectral PLSR weightings are specific to the spectrometer used, 

including its wavelength range, spectral resolution, and signal-to-noise performance. Wavelength values are 

in nanometers (nm). 
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