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Abstract: In this paper, we propose a novel approach for mining lane-level road network 

information from low-precision vehicle GPS trajectories (MLIT), which includes the number 

and turn rules of traffic lanes based on naïve Bayesian classification. First, the proposed 

method (MLIT) uses an adaptive density optimization method to remove outliers from the 

raw GPS trajectories based on their space-time distribution and density clustering. Second, 

MLIT acquires the number of lanes in two steps. The first step establishes a naïve Bayesian 

classifier according to the trace features of the road plane and road profiles and the real 

number of lanes, as found in the training samples. The second step confirms the number of 

lanes using test samples in reference to the naïve Bayesian classifier using the known trace 

features of test sample. Third, MLIT infers the turn rules of each lane through tracking GPS 

trajectories. Experiments were conducted using the GPS trajectories of taxis in Wuhan, 

China. Compared with human-interpreted results, the automatically generated lane-level 

road network information was demonstrated to be of higher quality in terms of displaying 

detailed road networks with the number of lanes and turn rules of each lane. 

Keywords: GPS trajectories; adaptive density optimization method; naïve Bayesian 

classifier; lane-level information; big data 
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1. Introduction 

Accurate lane-based road network data for navigation, such as lane location, lane changes, and turn 

information, is crucial for ensuring reliable and safe driving, especially for intelligent transportation 

systems (ITS) such as advanced driver assistance systems and autonomous driving. In addition, lane 

geometry information, especially the number of lanes, can also be important for inferring the type of 

road and for estimating traffic flow capacity. Conventional road networks, which are extracted by 

digitization, mobile mapping vehicles, or aerial photographs, are based on road centerlines [1,2].  

Lane-level information (such as number of lanes and turning in the intersection) is usually acquired from 

high-definition video/images, laser point clouds, or DGPS/INS trajectories [3–7]. Mining such detailed 

information is time consuming and labor intensive [8]. 

Increasingly, public vehicles and personal navigation assistants are equipped with single-frequency 

global position system (GPS) trackers or loggers that monitor the user locations at regular intervals [9,10]. 

The quality of tracking data is often low due to the geometrical effects of urban canyons on the accuracy 

of GPS ranging, thereby causing tracking points to deviate from the original roads. However, large 

volumes of data can be inexpensively acquired using GPS tools. This new type of geospatial resource 

contains abundant information regarding road networks, traffic conditions, points of interest, and driving 

behaviors [11–13]. Extracting high-quality road maps from low-quality tracking data is a hot  

topic [14–17]. As compared to the existing approaches for generating lane-based network information, 

a geospatial approach takes full advantage of information generated by spatial and temporal tracking 

data, thus enabling a user to establish or update road networks (e.g., road-level network and lane-level 

network) in relation to traffic rules. 

This study proposes an approach (MLIT: mining lane-level road network information from vehicle 

GPS trajectories) to automatically generating lane-level road information including number of lanes and 

intersection turns from low-precision vehicle GPS trajectories gathered from thousands of taxis in a city. 

To reduce the impact of low accuracy and other vagaries in taxi trajectories, we take steps to offset the 

uncertainty of lane-based road network extraction. First, trajectories gathered in off-peak times comprise 

the experimental data [18,19]. Second, segmentation treatment is adopted during optimization and lane 

information extraction to avoid the significant impact of large vibrations on the spread of trajectories 

due to the changes in traffic features such as uncertain traffic flows and lane additions at different 

positions on the same road. Therefore, we define the trajectory segment section (TSS) as the basic unit 

for trajectory optimization and lane information extraction. Specifically, according to the trace features 

of the road plane and road profile, and the real number of lanes found in the training samples, we 

construct a naïve Bayesian classifier to infer the number of lanes from the test samples based on these 

trace features. The turn rules of each lane, including going straight, or making a left, right or U-turn, are 

extracted by tracking trajectories in relation to the rate of reckless driving. The contributions of this 

paper are as follows: 

(1) We propose a new method, the adaptive density optimization method, for vehicle GPS trajectory 

optimization based on the density clustering method and the spatial distribution of tracking points. 

Outliers mixed in the raw data are removed automatically using adaptive density optimization 

method. 

(2) We explore a novel way to infer lane-level information from low-precision spatiotemporal 
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vehicle GPS trajectories (MLIT). 

(3) We detect turn rules of each lane by tracking vehicle trajectories in relation to the rate of  

reckless driving. 

The remainder of this article is organized as follows. In Section 2, related studies on outlier removal 

and extracting lane information from low-precision GPS trajectories are reviewed. In Section 3, we fully 

describe the proposed method for detecting traffic lane information. In Section 4, a series of experiments 

on Wuhan datasets demonstrate the advantages and effectiveness of the proposed method. In Section 5, 

the conclusions and directions of future research are discussed. 

2. Related Work 

Spatial trajectories are never perfectly accurate, due to sensor noise and other factors. Sometimes the 

error is acceptable, such as when using GPS to identify the city where a person is located. In other 

situations, various methods to remove noise and decrease the error in the measurements are applied to 

trajectory data. Specifically, trajectories gathered by public vehicles include massive amounts of real-time 

and low-cost information (e.g., road network, point of interests, driving behaviors). This information also 

contains many outliers due to the limitations of the collection equipment, the environment, and purpose. 

The main categories for outlier removal include filtering algorithms to smooth the noise, map-matching 

methods to change the original coordinates of tracking points to fit them to the existing road network, 

and clustering methods to remove outliers. 

Filtering is important when the trajectory data is particularly noisy, or when it is necessary to derive 

other quantities like speed or direction from these data. In addition, filtering is suitable for trajectories 

with high sampling frequency only. Lee in [20] gave a detailed introduction on how to implement a 

filtering algorithm, including the Kalman filter and particle filter. Another pre-processing step uses  

map-matching methods to match the trajectories to the road network. Sotiris Brakatsoulas [21] presented 

three map-matching algorithms that focus especially on the trajectory nature of the data rather than 

simply on the current position, as in traditional map-matching techniques. It is important to note that 

map-matching methods apply only to road-level information extraction from GPS data because each 

tracking point is matched to the centerline of the carriageway, and its original location is changed. In 

contrast to these methods, some researchers have used clustering for outlier removal. For example, Jing 

Wang [15] proposed using kernel density methods to remove outliers among raw GPS trajectories.  

Chen [7] sorted all the data points in ascending order according to their distances from the median and 

then chose 95% of the sorted data points as the experimental data. Compared with filtering techniques 

and map-matching methods, clustering methods do not change the position of tracking points, and are 

less susceptible to sampling intervals, making them most suitable for outlier removal when dealing with 

a large volume of low-quality GPS trajectories at a low sample frequency and affected by urban canyons. 

However, in our case, the experimental data is collected in an urban area and their position accuracy and 

sampling rate are about 10–15 m and 20 s respectively. The kernel density estimation with a fixed 

bandwidth for outlier removal is not suitable for a complex road network in an urban area. In addition, 

the outlier’s proportion of low-precision GPS data far exceeds 5%. Therefore, we are motivated to use an 

adaptive density estimation method to remove outliers. 
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After data pre-processing, automatic road network refinement from GPS trajectories becomes 

possible. OpenStreetMap employs user-contributed GPS trajectories to create free digital maps that are 

open for editing by registered users [22]. Likewise, WikiMapia, Google Maps, and other map applications 

let users update maps. There has also been work on completely automated methods to infer road maps 

fromlow-quality GPS trajectories. Those methods include matching GPS traces to prototypical shapes [23], 

using incremental methods to process GPS traces and generate road maps [24,25], and applying clustering 

methods or artificial algorithms to extract road networks from GPS traces [26–28]. According to the 

references [23–28], the existing methods can generate and update road-level maps from low-quality 

vehicle GPS trajectories, while latter studies addressing detailed road network generation have gradually 

shifted down to lane-level road network information. 

Lane-level information extraction from vehicle trajectories starts with high-precision differential GPS 

data and concludes with a refinement of an existing map, including locating lanes and number of  

lanes [29,30]. This process involves smoothing and filtering the GPS data, matching it to an existing 

map, spline fitting the road centerline, clustering to find lanes, and refinement of the intersection geometry. 

Uduwaragoda [31] proposed using high-precision vehicle trajectories collected by vehicles equipped 

with INS/GPS-enabled mobile phones to generate lane-level road maps based on kernel density estimation. 

However, the methods proposed in [29–31] are based on the assumption that GPS traces from different 

lanes are separated well. For low-precision GPS data, this assumption is seriously violated, and therefore 

a kind of probabilistic method with prior knowledge is used to extract lane structure from a mass of  

low-precision GPS trajectories. Moreover, previous study [31] did not consider detailed lane extraction 

across large areas or regions, nor did it focus on turn extraction. Our study contributes to the existing 

research not only by generating lane-level road network information, including the number and turn rules 

of traffic lanes from pre-processing low-precision vehicle GPS trajectories, but also empirically evaluating 

the validity of the results for large areas and regions. 

3. Lane-Level Road Network Information Extraction from Vehicle GPS Trajectories 

In this section, we present the lane-level road network information (e.g., number of lanes and turns 

of each lane) extraction method (MLIT) from low-precision GPS trajectories. The architecture is shown 

in Figure 1. The processing of MLIT is described as follows: 

First, outliers in each TSS (trajectory segment section) are removed automatically with the adaptive 

density optimization algorithm. 

Second, a naïve Bayesian classifier is constructed by analyzing the trace feature (x(1)) of the road 

plane and trace feature (x(2)) on the road profile and the real number of lanes in the training samples. 

Third, according to the naïve Bayesian classification, the number of lanes of test sample is inferred 

by reference to naïve Bayesian classifier with known x(1) and x(2) of test sample. 

Finally, the turn rules of each lane are inferred by tracking GPS trajectories. 

3.1. Vehicle GPS Trajectory Optimization 

Density-based clustering methods are relatively suitable for spatial trajectories because they can 

reveal clusters of arbitrary shapes and can filter out noise [32]. A vehicle GPS trajectory does not always 

overlap with the actual path of a vehicle due to GPS positioning error. A statistical analysis of the 
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locations where GPS points are dense suggests a high probability that a road is present whereas a low 

density of points indicates that vehicles either deviated too far from the road or moved along a small 

branch road with few trajectories. Based on these considerations, points from multiple trajectories with 

low density are considered as outliers. In this section, we adopt an adaptive density optimization method 

to eliminate outliers. In addition, segmentation treatment optimization avoids significant large vibrations 

on the spread of trajectories due to the changes in traffic features such as uncertain traffic flows and lane 

additions at different positions on the same road. 
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Figure 1. Lane information extraction architecture. 

 

  

(a) (b) (c) 

Figure 2. Trajectories optimization. (a) shows the distribution of tracking points, p is the 

central point and the circle in (a) is the neighborhood of p; (b)indicates a subset of tracking 

points and be denoted as A; (c) is the Delaunay triangulation of A. 
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3.1.1. Adaptive Density Optimization Method 

A tracking point P is defined as high-density point if the points in the neighborhood of tracking point 

P display a high clustering degree (Figure 2a).The density of points can be represented as a significance 

and tested to identify significant high-density point clusters. The null distribution [33,34] of any point 

dataset can be defined as: 
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where N(A) is the number of points in any subset denoted by A (e.g., Figure 2b), k = 1,2, …, N(A), |A| is 

the area of subset A, λ is the intensity of the null distribution, and can be estimated as: 
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Therefore, the significance of the aggregation of points in neighborhood can be calculated as: 
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where x denotes any point in the subset A, P(x ≥ ni) is the significance of x, ni is the number of the points 

in the neighborhood of x, |Nei| is the area of neighborhood of x, r is the radius of neighborhood of x. 

2Nei r  (4) 

In order to simplify the calculation, the radius r is used to indicate |Nei|. Thus Equation (3) can be 

simplified as: 
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For different point datasets, the radius r is adaptive, depending on the spatial distribution of points. 

Thus, based on a Delaunay triangulation, the radius of neighborhood is statistically defined as: 

r = meanDE + variationDE (6) 

where meanDE is the mean length of all edges of the Delaunay triangulation, and variationDE is the 

standard deviation of the length of all edges in the Delaunay triangulation (see Figure 2c). The area of A 

is computed as: 
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where M is the number of triangles in the Delaunay triangulation (see Figure 2c), ATi is the area of 

triangle i. Each tracking point density is computed using formulas 1–7. Then the proposed method 

compares the density to significance η (usually set η = 0.05 or η = 0.01), and x is defined as an actual 

tracking point if its significance is less than η; otherwise the point x is defined as an outlier and removed 

from the dataset. 
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3.1.2. Optimization 

In order to avoid significant large vibrations on the spread of trajectories due to the changes of traffic 

features, such as the uncertainty of traffic flow and adding of lanes at different positions on the same 

road, we define a trajectory segment section (TSS) as the basic unit for trajectory optimization and lane 

information extraction. Each TSS is obtained by dividing the trajectory segment (TS) with a fixed length, 

h, as shown in Figure 3. The fixed length h for dividing TS depends largely on road construction rules 

of a city. For example, adding a lane on a road generally occurs when the road is within 50 m of an 

intersection; elsewhere, the length of a lane added on a road as a parking area for buses or taxis often is 

greater than 10 m. Therefore, the fixed length should be less than 50 m and greater than 10 m for a better 

result when extracting the number of lanes. The details for acquiring TS and TSS were recommended in [35]. 

Carriageway2

TS1 TS2

Carriageway1

TS2
TSS1

TSS2

TSS3

Carriageway2

 

Carriageway2

TS1 TS2

Carriageway1

TS2
TSS1

TSS2

TSS3
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(a) (b) 

Figure 3. TS and TSS. (a) is the description of TS and (b) is the depiction of TSS. 

We assume that any TSi contains several TSSes denoted as (TSS1, TSS2, …, TSSn). The TSSi has the 

point set SubB and the region of Delaunay triangulation network. In Figure 4a, the black point is the part 

of TSi and the red points belong to TSSi. In Figure 4b, the red line shows the Delaunay triangulation for 

TSSi. The radius of neighborhood can be computed based on Equation (6) and the area of SubB is 

calculated based on Equation (7). In this way, we can avoid the limitations caused by using the same  

radius of neighborhood to optimize trajectories in different density regions. Moreover, the accuracy when 

extracting the number of lanes improves because the added lanes on a road can be detected through 

segment treatment. 

3.2. Lane Number Extraction Based on Naïve Bayesian Classification 

Although low-precision vehicle trajectories with low-sampling frequency have the advantage of low 

costs and a short gathering period, they are still limited by gathering accuracy and frequency even when 

optimized. Those limitations mean that the final lane-level clustering results might differ from the actual 

structure of lanes. Therefore, based on the trace feature of road plane (x(1)) and trace feature of road 
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profile (x(2)), a priori knowledge of training samples was introduced as a constraint into the lane number 

extraction, and the naïve Bayesian classification of lane number extraction was proposed. The 

implementations are introduced in detail in an upcoming section. 

  

(a) (b) 

Figure 4. Trajectories optimization way. (a) is the tracking points of TSi; (b) shows the 

Delaunay triangulation network of TSSi. 

3.2.1. The Basic Method 

For training samples T = {TSS1(x1, y1), TSS2(x2, y2), …, TSSN(xN,yN)}, sample TSSi associated with 

trace feature set xi and category label set yi, xi = (xi
(1), xi

(2)) and yi=(c1, c2, …, cK), where xi
(1) and xi

(2) are 

trace features of road plane and road profile, ci is number of lanes in a road. For instance xi
(j), xi

(j) ϵ xi, 

has several possible values such as xi
(j) ϵ {aj1, aj2, …, ajl, …, ajsj}, ajl is the possible value for xi

(j). Then 

the prior probability P(Y = ck) and conditional probability P(x(j) = ajl|Y = ck) can be calculated as: 
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where I is the indicated function, Iy(c) = 1 if c ϵ y and 0 otherwise, i = 1,2, …, N, j = 1, 2, l = 1, 2, …, sj,  

k = 1, 2, …, K. 

Given test instance x = (x(1), x(2))T, x(1) and x(2) are the trace feature of test instance x, the posterior 

probability is defined as: 
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Based on the above notations and Bayesian rule, the lane number of test instance x is determined as: 
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where y is the number of lanes in test instance x, and y ϵ (c1, c2, …, cK). 

3.2.2. Naïve Bayesian Classifier 

The naïve Bayesian classification determines the number of lanes in a TSS, and a naïve Bayesian 

classifier is thus available. The key to constructing a naïve Bayesian classifier is to acquire trace feature 

set xi and category set yi from the training samples T. In this study, the naïve Bayesian classifier acts as 

a priori knowledge for the number of lane extraction from test samples. The categorization of roads by 

number of lanes in the training samples must include all lane types in a city. 

Trace feature set xi of training samples includes two aspects: trace feature of road plane (x(1)) and 

trace feature of road profile (x(2)). Millions of vehicles travel around each road in the city and gather a 

massive amount of tracking points that include information such as location, speed, direction and vehicle 

ID. A large number of tracking points cover a whole road and their coverage width will gradually become 

stable with an increasing number of trajectories. Road width also closely relates to the number of lanes. 

Thus, a trace feature of a road plane (x(1)) is the trajectories strip width (TSW) and indicates the real 

width of road with certain accuracy after outlier removal. Additionally, trajectories distributed on the 

same lane always cluster together. Thus, a trace feature of road profile (x(2)) is a cluster of a number of 

trajectories along the road cross-section and indicates the number of lanes to some extent. 

(1) Trace Feature of Road Plane Extraction 

In this paper, we propose the adaptive width detection method to detect the TSW (Figure 5). 

 

Figure 5. The detection of trajectories strip width. 

As shown in Figure 5, the total length of the trajectory segment TSi that starts at an intersection and 

ends at another intersection is L. If the fixed length is set as h, we can successively get m (m = L/h) 

sections as the trajectory segment section (TSS), and the diverging points of each TSS are recorded as 

{n1, n2, ..., nm}. The direction of the trajectory segment TSi and the diverging points are respectively set 

as the horizontal axis and origins of the width detection coordinate system. UYj and DYj are the positive 

and negative directions of the longitudinal axis, respectively. The details of the algorithm are as follows: 
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/*Initialization*/ 

Coordinate origin: n1;  

horizontal axis: the direction of the current TSS;  

longitudinal axis: UYi = 0; DYi = 0;  

Sliding window: length = l; width = w; proportion = 0; 

/*Assignment*/ 

for each TSSi, do 

repeat 

Moving the sliding window along the positive direction and negative direction of the 

longitudinal axis and accumulating the Proportion (Proportion = current points number in 

sliding window/all points in the current TSS) 

until proportion = 100% 

set Dwi = ∑ (maximum |UYj| + | maximum |DYj|)/(h/l); j = 1,2,…, (h/l). 

set Coordinate origin changed to ni+1; UYi+1 = 0;DYi+1 = 0; i = 1,2,…,m. 

end for 

The results for the TSS width (Dw1, Dw2, …, Dwm) are obtained as shown in Figure 6, where  

ΔDw1, …, ΔDwn-1 are the differences of each TSS width. 

TSS_1 TSS_2 TSS_3 TSS_nTSS_i TSS_n-1

Trajectories segment

Dw1 Dw2 Dw3 Dwi Dwn-1 Dwn

Intersection1 Intersection2

ΔDw1 ΔDw2 ΔDw3 ΔDwn-1...  

Figure 6. Trajectories strip width analysis. 

In most cases, the value ΔDwi between two adjacent TSSes will stay within one lane width a due to 

position accuracy of GPS data or from added lanes. However, some abnormal results still exist due to 

the effects of temporary parking areas, bus stops, dense lanes appearing near intersections, etc., which 

make ΔDwi abnormally larger than a. Thus, the nearest measurement result of TSS replaces abnormal 

results considering that the width along the road is always in a relatively steady state. We will explain 

this approach in more detail. 

Step 1, compute the difference of each TSS width between Dwi and Dwi+1, that is, ΔDwi = Dwi − Dwi+1  

(i = 1, 2, …, n − 1); 

Step 2, compare each ΔDwi with a, Dwi is replaced by Dwi+1 when ΔDwi is larger than a and Dwi is 

larger than Dwi+1 (i = 1, 2, …, n − 1); 

Step 3, do step1 and step 2 repeatedly until all abnormal values are optimized. 
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The results for TSS width difference are shown in Figure 7, the blue line indicates the raw results from 

ΔDwi, the red points are the abnormal values, and the green line shows the result of optimized ΔDwi. 
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Figure 7. Width detection results proprecessing. 

(2) Trace Features of Road Profile Extraction 

According to methods described previously, in the naïve Bayesian classifier, the trace feature of road 

profile (x(2)) is the number of clustered trajectories. The authors of [7,29–31] proposed using cluster 

methods to detect lane structure from high-precision GPS trajectories with high sampling frequency such 

as partition clustering, hierarchical clustering and statistical clustering. According to reference [7] 

statistical clustering is more suitable for lane structure detection from ordinary GPS data at an accuracy 

within 4 m. Therefore, for acquiring cluster number of trajectories in road profiles, we fit a constrained 

Gaussian mixture model (CGMM) to perpendicular cross-sections of the traces across the road, based 

on the assumption that GPS trajectories will tend to cluster near the center of each lane with some spread 

due to GPS noise and other vagaries. The CGMM can be defined as: 
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where ln represents the number of Gaussian components, and each component corresponds to each lane, 

while w1, …, wln are the weights of each component, corresponding to the relative traffic volume in each 

lane and ∑ 𝑤𝑗 = 1
𝑙𝑛
𝑗=1 . The μ1, …, μln is the means of the trajectories for each component and equals to 

the centerline of each lane; σ is the standard variance of the trajectories for each component and set same 

value because the width of lane of adjacency lane usually is the same. The number of components for a 

CGMM is equal to cluster number of trajectories of a TSS and determined by the structural risk model 

(structural risk minimization, SRM). To estimate wi, ui and σ for a set of ln’s and then select the ln that 

minimizes the structural risk model. The method to calculate and extract the number of clusters can be 

obtained according to [7]. 

In addition, a trajectory is a line described by a series of points. Each point has a gathering time and 

spatial location, such as Tracei = {p1, p2, …, pn}, pi = (xi, yi, ti, directioni, speedi, statei) (i = 1, 2, …, n), 

where (xi, yi) is the spatial location, ti is the gathering time, and directioni and speedi give the motion 

status of a moving object. At the same time, statei is attributed information of a moving object such as 

the ID number of a moving object, as shown in Figure 8a. However, this description is not appropriate 
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for analyzing the longitudinal density distribution of low-quality trajectories because the sampling 

intervals of this kind of data range from ten seconds to one minute, making the distance between any 

two adjacent points too large to retain enough information. Thus, we replace common trajectories with 

trajectory vectors, and obtain a number of trajectories clusters by detecting the longitudinal density 

distribution of those trajectory vectors. 

For each trajectory vector, the tracking point is regarded as the start point, the direction of tracking 

point as vector direction, and the speed as the vector mold. The tracking point is denoted as  

Pi (xi, yi, ti, directioni, speedi, statei), and its trajectory vector is described as Travectori = (xi, yi) and  

|Travectori| = speedi × Δt, Δt = 1 s (Δt does not affect the final outcome for GMM computation, this 

paper set it as 1 s), as shown in Figure 8b. 

To facilitate CGMM computation, we rotate the axes so that the X axis is made parallel to the average 

direction vector. Here, the rotation matrix in Equation (13) is used. The angle ξ can be obtained according 

to [35]. 

'

'

cos sin

sin cos

xx

yy

 

 

     
     

    
 (13) 

The longitudinal density distribution of trajectories is acquired by projecting each trajectory vector to 

the vertical axis (y'). The projecting ordinate of each trace vector is set as the sampling point and replaces 

the intersection points of trajectories and sampling lines perpendicular to the road centerline. 

(xi,yi)
(xi+1,yi+1)

Tracesi (xi+2,yi+2)

 

(xi,yi)
Travectori

Directioni

 

(a) (b) 

Figure 8. Trajectories and trajectory vector description. (a) shows the trajectory vector 

constructed according to traditional style; (b) is the trajectory vector proposed in this paper. 

3.3. The Detection of Turn Rules of Each Lane 

GPS trajectories are a sequence of GPS points with the time interval between any consecutive GPS 

points not exceeding a certain threshold ΔT (ΔT is the sampling interval.), as shown in Figure 9.  

We detect the turn rules of each lane by tracking GPS trajectories. Figure 9 illustrates the trajectories of 

vehicles. Figure 9a shows trajectories at a 40 s sampling interval. Figure 9b indicates the trajectories at 

a 20 s sampling interval. Figure 9c shows different driving directions of vehicles and the sample rate of 

trajectories is 20 s, where the red lines represent the turn rules of each vehicle from north to south, the 

green lines denote the south to north direction, the blue and yellow lines indicate vehicle right turns. 
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(a) (b) (c) 

Figure 9. Trajectory tracking. (a) indicates the trajectories with 40 s sampling interval;  

(b) shows the trajectories with 20 s sampling interval; (c) descripts the different driving 

directions of vehicles. 

Through recording the trajectory segments, the change of trajectory direction is replaced by the 

change of the trajectory segments’ direction. Figure 10 indicates the trajectory belonging to segments TS001 

and TS004. The change of direction between TS001 and TS004 is computed as Δθ = θ2 − θ1; these (θ1, θ2) 

are directions of TS001, TS004 obtained by [34]. The turn rules of the lane traversed by the trajectory are 

“left Turn,” “right turn,” “going straight” and “U-turn,” if change of direction satisfies the conditions: 

(Δθ < 0° & Δθ ≈ −90°), (Δθ > 0° & Δθ ≈ 90°), (Δθ ≈ 0°) and (Δθ > 0° & Δθ ≈ 180°), respectively. The 

turn rules of each lane are further determined by Equation (14). 

4

1

i
i

i

i

value
f

value





 (i = 1, 2, 3, 4) 

(14) 

That valuei is the number of GPS trajectories belonging to groupi (i = 1, 2, 3, 4 indicates “left turn,” 

“right-turn,” “going straight” and “U-turn,” respectively) on the lane. The final rate of groupi on the lane 

is denoted as fi. The turning of the lane is groupi if fi is far beyond a predefined rate of reckless driving. 

TS002

TS001

TS004

Lane-2
Lane-1

Lane-3

TS004:Trajectories

Trajectories segments
Lanes

Point of inersection

Road boundary

TS003

Trajectory

TS001:Trajectories

 

Figure 10. Intersection turns: left turn, right turn and U-turn detection. 

4. Experiments and Results 

Our test GPS data came from thousands of taxis driving in Wuhan city, as shown in Figure 11a.  

The sampling frequency ranges from 10 s to 40 s, while the positioning accuracy ranges from 10 m to  

15 m. Each taxi was recorded for an average of 14 days, and we collected in total about 200 billion GPS 
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points, as shown in Figure 11b. We obtained about 2000 TS, and 300,000 TSS when the fixed length h 

was set as 10 m. The number of trajectory vectors in each TSS ranges from 100 to 1000. 

0 5 10

km

N

  

(a) (b) 

Figure 11. Experimental data. (a) is the road network of the experimental area; (b) shows 

the raw trajectories collected by taxis. 

4.1. Trajectory Optimization 

Outliers mixed in raw GPS trajectories were eliminated using the adaptive density optimization 

method. The trajectory strip width (TSW) of each TSS was obtained and optimized using our proposed 

adaptive width detection method. The length l and width w of the sliding window were set as 10 m and 

0.1 m, respectively; the significance η was set as 0.05, as recommended by reference [33]; and the width 

of lane a for optimized trajectories was set as 3.75 m according to the road construction standards in 

China. Figure 12 shows the results of trajectory optimization, where red points and black points represent 

the valid data and outliers, respectively. 

  

Figure 12. Optimization results. The result of all experimental data (left); the magnification 

of one segment (right). 
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(a) (b) 

Figure 13. Optimization results evaluation: (a) shows the evaluation results of optimized 

trajectories; (b) indicates the evaluation results of non-optimized trajectories. 

An evaluation for trajectory optimization results was done by comparing with the correlation between 

TSW before and after optimization and the actual road width, as shown in Figure 13. The test data (about 

400 TSS) were randomly selected from the 300,000 TSS, the trajectory strip width (TSW) before and 

after optimization was acquired using adaptive width detection algorithm, and the actual width of the 

road was obtained by field measurement. Based on statistics, the strong correlation (R2 = 0.9633) between 

TSW and actual width of road of each optimized TSS illustrates that TSW of optimized TSS is very close to 

the actual road width. Comparing with the non-optimization results (Figure 13b), the optimization results 

indicate that the proposed optimization method performs well. 

4.2. The Construction of Naïve Bayesian Classifier 

A selection of TSSes (about 7,650 TSSes) found on various types of lanes in the experimental area 

were used as training samples, and the other 11,350 TSSes were designated as test samples. The real 

number of lanes in the training sample was extracted by observing a corresponding remote sensing image. 

By analyzing the relation between the real number of lanes, the trajectory strip width (TSW) and number 

of clusters in the training sample, we established a naïve Bayesian classifier, as listed in Table 1. 

Table 1 indicates the categories of the number of lanes in the experimental area including two-lane, 

three-lane, four-lane and five-lane roads. Each type contains three values, such as the value of TSW 

(x(1)), the number of trajectories clusters (x(2)) and the real number of lanes (y) for the training sample. 

4.3. Lane Information Extraction 

Given a test instance TSS (13.8m, 3)T, the lane number is calculated as: 

P(y = 2) = 278/765; P(y = 3) = 220/765; P(y = 4) = 189/765; P(y = 5) = 78/765; 

P(x(1) = 13.8 | y = 2)=0/278; P(x(2) = 3|y = 2) = 98/278;  

P(x(1) = 13.8 | y = 3) = 220/220; P(x(2) = 3 | y = 3) = 185/220; 

P(x(1) = 13.8 | y = 4) = 189/189; P(x(2) = 3 | y = 4) = 34/189; 

P(x(1) = 13.8 | y = 5) = 0/78; P(x(2) = 3|y = 5)=5/78; 

P(y = 2) * P(x(1) = 13.8 | y = 2) * P(x(2) = 3 | y = 2) = 0; 
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P(y = 3) * P(x(1) = 13.8 | y = 3) * P(x(2) = 3 | y = 3) = 0.242; 

P(y = 4) * P(x(1) = 13.8 | y = 4) * P(x(2) = 3 | y = 4) = 0.044; 

P(y = 5) * P(x(1) = 13.8|y = 5) * P(x(2) = 3|y = 5) = 0. 

Table 1. Naïve Bayesian classifier. 

Training Sample (ID) Trace Feature: x(1)/m Trace Feature: x(2) Category Label Set: y 

1 7.9–12.2 2 2 

2 7.9–12.2 3 2 

… … … … 

2,780 7.9–12.2 2 2 

2,781 10.2–19.8 3 3 

2,782 10.2–19.8 3 3 

… … … … 

4,980 10.2–19.8 4 3 

4,981 13.2–20.8 4 4 

4,982 13.2–20.8 4 4 

… … … … 

6,870 13.2–20.8 3 4 

6,871 17.6–25.8 4 5 

6,872 17.6–25.8 5 5 

… … … … 

7,650 17.6–25.8 5 5 

Table 2. Lane information identification. 

TS TSS x(1)/m x(2) 

The Number of 

Lanes 

(Detections) 

The Number 

of Lanes 

(True Value) 

Driving Direction 

(Detections) 

Driving Direction  

(True Value) 

TS001 

TSS001 10.1 2 2 2     

TSS002 9.9 2 2 2     

… … … … … … … 

TS002 

TSS001 14.1 4 4 3        

TSS002 14.2 4 4 3       

… … … … … … … 

TSS016 15.4 3 3 3       

… … … … … … … 

TS003 

TSS001 19.2 4 4 4         

TSS002 20.3 4 4 4         

TSS003 20.3 3 3 4         

… … … … … … … 

TSS042 20.3 5 5 3         

Thus, according to Equation (11), the number of TSS lanes were 3. Specifically, the road centerline 

of TSS was acquired according to [26], then we inferred the lane boundary based on the number of lanes 
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of TSS with the width of lane a. Turn rules of each lane is determined according to Equation 14. At the 

same time, according to the road construction standard in China, the lane width a is set to 3.75 m, and 

the predefined rate of reckless driving for turn information extraction is set as 5%. Table 2 indicates the 

other results of lane information detection for each TSS, including number of lanes and driving directions 

of each lane. 

In Table 2, most results show the stability and the validity of lane information extraction using a naïve 

Bayesian classifier, but a few mistakes still occurred. For example, numbers of lanes such as TSS001 of 

TS002, and TSS042 of TS003 were misclassified. We use arrow-shaped indications to represent the driving 

directions of each lane, where arrow-shaped indication  indicates that vehicle drivers go straight, and 

multi-headed arrows  show that vehicle drivers can travel in straight direction or turn left at an 

intersection, as shown in Table 2. At the same time, the accuracy of turn rules of lane detection depends 

largely on the results of the number of lanes. In Table 2, the turn rules from lanes in the test samples also 

get a misclassification because of an incorrect estimate of the number of lanes. 

4.4. Quantitative Evaluation 

4.4.1. Quantitative Evaluation for Number of Lane Identification 

To evaluate the performance of our proposed method for detecting lane information, we compared 

test samples for the number of lanes extraction to those manually marked. Table 3 shows quantitative 

values for precision, recall, and f-score in the proposed method (MLIT) and the methods of [29–31]. 

This comparison demonstrates that MILT has better precision, recall, and f-score in lane number 

extraction than those of [29–31]. Meanwhile, the result of this comparison shows that MLIT is more 

suitable for low-precision GPS trajectories with low-sampling frequency than other methods of [29–31] 

that detects lane structure directly from raw trajectories, but does not consider the prior knowledge 

during lane number identification. At the same time, experimental results also authenticate that  

low-precision GPS trajectories from different lanes are not separated well. In addition, Table 3 shows 

that the proposed method extracts the lane numbers with an overall accuracy of 83.72%; however, there 

is also a 16.68% chance of incorrectly identifying the number of lanes. The reasons are as follows. 

First, MLIT has a difficulty in lane number identification because a small number of complex 

intersections (e.g., the incorrect results in Table 2) have different traffic flows between adjacent lanes 

caused by traffic lights, driving restrictions, and other traffic characteristics. 

Second, MLIT cannot distinguish trajectories from roads on and below viaducts, since the 

experimental data has no elevation information. The lane information for overlapping roads in the study 

area was misclassified. 

Lastly, the number of lanes can be missed because of GPS signal loss in tunnels. 

Such misclassifications require further investigation to improve the accuracy classification of road 

segments by number of lanes. In summary, our method performs much better than other methods for 

number of lanes identification from low-precision GPS trajectories with low-sampling frequency. 
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Table 3. Quantitative evaluation and comparison. 

Methods Precision Recall F-Score 

MLIT 83.72% 83.35% 84.03% 

Kernel density estimation [31] 78.48% 79.05% 78.76% 

Hierarchical agglomerative clustering [30] 63.23% 62.7% 62.96% 

K-means clustering [29] 62.54% 61.51% 62.02% 

4.4.2. Quantitative Evaluation for Turn Rules Detection 

To evaluate the performance of the proposed method for turn rules of each lane, we compared turn 

information of two intersections calculated by MLIT with that of manually marked roads. In Figure 14, 

intersections were randomly selected from a database and the trajectories that traversed those 

intersections were used to detect turn rules of each lane. The results show that the overall accuracy for 

turn information classification was 81.3% when comparing our detection results with the actual turn 

rules, assuming the rate of non-standard driving was 5%. The accuracy of turn rules of each lane 

identification is lower than the number of lane extraction because it depends not just on the accuracy of 

lane number identification, but driver behavior and data precision as well. 

  

(a) (b) 

Figure 14. The overlay of image and trajectories. (a) shows the tracking results of one 

intersection; (b) indicates the tracking results of another intersection. 

5. Conclusions 

In this paper, we proposed an automated method (MLIT) to extract lane information, such as numbers 

of lane and lane turns on road segments from low-precision GPS trajectory data. On one hand, the 

proposed method (MLIT) eliminates outliers from GPS trajectory data using adaptive density 

optimization, method improving the robustness of the lane information detection. On the other hand, 

MILT detects the exact numbers of lanes in TSSes by combining prior knowledge with trace features of 

road planes and road profiles, resulting in robust extraction of numbers of lanes. However, MLIT still 

has room for improvement, and the future work will continue to focus on trajectory optimization and 

extraction of lane information in complex road environments such as tunnels, or overpasses. 
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