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Abstract: In determining position and attitude, vision navigation via real-time image processing of
data collected from imaging sensors is advanced without a high-performance global positioning
system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor
navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper
proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy
geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in
environments with poor GPS. First, the framework of GRID-aided vision navigation is developed
with sequence images from land-based mobile mapping systems that integrate multiple sensors.
Second, a highly efficient GRID storage management model is established based on the linear index
of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is
presented to search and match a real-time image with the GRID. Subsequently, the image matched
with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor
platforms. Experimental results show that the proposed approach retrieves images efficiently and
has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within
1500 m.

Keywords: vision navigation; imaging sensor; geo-referenced; image database; multiple
sensor-integrated mobile mapping; image retrieval; image matching

1. Introduction

The objective of a moving platform is to provide accurate information for moving platforms, e.g., a
land vehicle, an airplane, or aircraft in space, particularly when a global positioning system (GPS) or an
inertial measurement unit (IMU) is not working effectively under poor environmental conditions [1,2].
Imaging sensors have been widely studied and applied to determine position and orientation via a
technology called vision navigation. This approach may be effective for such applications because
it can be utilized in a GPS/IMU-deprived environment (such as indoors, in urban canyons, and
in far space) [3–5]. Accurate positioning and orientation in a downtown building forest district or
a long-distance tunnel with GPS outage and longtime IMU drift is a significant challenge in 3D
navigation of a multiple sensor-integrated platform even with high-performance GPS/IMU-integrated
platforms, such as the land-based mobile mapping system (L-MMS) for 3D surveying and modeling.
Imaging sensor-based vision navigation can avoid certain harsh environmental restrictions because
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this approach does not depend on any signal or radiant sources [1,6]. Nonetheless, this environmental
condition becomes problematic when real-time and high-precision performance is required.

Imaging sensor-based vision navigation estimates position and orientation information according
to the geometrical relation from overlapping sequence images, which can improve the reliability of
a navigation platform. DeSouza and Kak [7] investigated the developments in vision-related fields
for mobile robot navigation over the past 20 years. Vision navigation is classified into three different
categories: map-based, map building-based, and mapless navigation [7–9]. Mapless vision navigation
utilizes imaging sensors and does not consider any prior description of the environment. Sequence
images from the imaging sensors are used for motion analysis to determine the relative position and
orientation information of a moving platform. The recently developed simultaneous localization
and mapping (SLAM) technique integrates imaging sensors to extract the 3D navigation information
with which 3D environment data are used for a map building-based vision navigation application.
SLAM is employed in self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles,
planetary rovers, new domestic robots, and even within the human body [10–12]. At present, imaging
sensors are combined with other laser scanning sensors to obtain robust positions and orientations
for SLAM-based applications. Mapless vision navigation is a relative navigation technology that
supports moving platforms to understand surroundings and explore a local environment, such as in
indoor navigation and self-driving cars. This type of navigation stores information from the current
environment, as well as its own relative position in the environment.

Nonetheless, cases of absolute navigation with global 3D coordinates and orientation have
been observed, such as outdoor navigation, the L-MMS for 3D surveying platforms, and space
navigation [2,13,14]. These cases require global geo-referencing with highly accurate absolute 3D
coordinates and may include GPS/IMU; however, harsh and poor environmental conditions limit
the performance of GPS/IMU navigation. Thus, map-based vision navigation is implemented by
providing a moving platform with a geo-referenced 3D model of the environment, such as a 3D
map, landmark, and geo-referenced image database (GRID) [3,15,16]. Map-based vision navigation
considers the map as a sensor to match the real-time imaging sensor and facilitate highly accurate
absolute navigation in advanced driver assistance systems (ADAS). A collection of geo-referenced
images serves as a map for real-time localization; this collection is normally treated as a 3D map because
it contains not only a set of landmarks but also the corresponding 3D location information [17,18].
Thus, imaging sensor-based vision navigation has two application scenarios as a map-based navigation
approach: one is to improve the reliability of navigation under harsh environmental conditions in
which GPS and IMU are ineffective, such as in ADAS. The other is to improve navigation accuracy
where the vision navigation result is considered to be new input for Kalman filtering with GPS/IMU,
such as in L-MMS.

The key issues in image database-aided vision navigation are image searching and the matching
methods with real-time images (RTIs) [19,20]. Results of recent research show that the process
of matching two images of the same scene under different scales, illumination, and view angles
has been developed successfully for years; nonetheless, several theoretical and technical problems
must be addressed [21,22]. For example, two independent images share many similar features or
pixels under certain circumstances, which may cause matching ambiguity given many candidate
images. This condition is a serious problem for image database-based vision navigation. The speed of
matching RTIs with the image database not only depends on feature computation but also on image
search and retrieval. The organization model of the image database is combined with robust feature
matching to realize matching with fast searching; these methods are the key techniques in GRID-based
vision navigation.

Our paper presents a novel imaging sensor-aided vision navigation approach that uses the highly
accurate GRID. First, the framework of GRID-aided vision navigation is established with sequence
images derived from land-based, multiple sensor-integrated mobile mapping systems. Second, a
highly efficient GRID storage management model is developed based on the linear index of a road
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segment for fast image search and retrieval. Third, a robust image matching algorithm is presented to
search for and match RTIs with GRID; the matched image is then matched with the real-time scene to
calculate the 3D navigation parameter of the multiple-sensor platform. Experimental results show that
the proposed approach retrieves images highly efficiently and has navigation accuracies of 1.2 m in a
plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

2. Methodology

2.1. Framework and Navigation Model of GRID-Aided Vision Navigation

The foundation of the proposed vision navigation approach is the comprehensive GRID with
highly accurate position and orientation parameters that were derived from an L-MMS prior to
vision navigation. All the images are captured and synchronized with the GPS/IMU according to
image exposure time to calculate these parameters. The geo-referenced images are collected and
are considered to be a highly accurate 3D survey of the environment. The imaging sensors of the
moving platform capture the RTI of the current scene. Subsequently, this image is presented to match
and search the GRID to obtain the exact geo-referenced image. Thus, the geo-referenced data are
transferred to the RTI on the basis of the matched point with a strict photogrammetry geometry model
to determine the 3D coordinates and the orientation parameter of the moving platform upon capturing
the RTI. The framework of the proposed imaging sensor-aided vision navigation method with GRID is
presented in Figure 1.
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Figure 1. Framework of the proposed imaging sensor-aided vision navigation approach that uses a
geo-referenced database.

Three key issues are observed in the proposed vision navigation approach in relation to feasibility
and accuracy; one is the performance of the image database. The geo-referenced image should be
indexed well to reduce the time consumed in querying a candidate image set from the entire image
database. Thus, we propose a data storage management model for GRID, as introduced in Section 2.2.
The other issue involves the fast image searching and matching of the candidate image set with the RTI.
The two processes should be completed quickly with high reliability, as described in Section 2.3. The
third issue involves transferring the 3D navigation parameter from the geo-referenced image to the
RTI precisely. We propose a vision navigation model from the image database to the moving platform,
as explained in Section 2.4.
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2.2. GRID Data Storage Management Model

2.2.1. L-MMS for GRID Data Collection

The GRID is compiled by multiple sensor-integrated, land-based mobile mapping systems,
which were developed in the 1990s for rapid and efficient road surveying. Such systems include
VISATTM, GPS VisionTM, GI-EYETM, LD2000TM, ON-SIGHTTM, Topcon IP S2, and Hi-Target
iScan [2,23–25]. L-MMS integrates geodetic quality GPS, an inertial navigation system (INS), an
odometer, a synchronization time board, and digital cameras that are mounted on a land vehicle
(as presented in Figure 2). As a result, highly accurate GPS data can be logged along with INS
orientation data and sequence images with high synchronized time in the process of running along
defined routes at a speed of no more than 80 km/h.
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Figure 2. L-MMS for the data collection of geo-referenced database.

Four or more cameras are installed in L-MMS to capture sequence images with a user-defined
interval distance from 1 to 10 m. All the images are tagged with a time label by the synchronization
time board, which adopts the GPS time as a time clock with an accuracy of less than 0.01 ms. The
GPS/INS provides the orientation parameters for each sequence image based on the unique and
unified GPS time. L-MMS is the most rapid, convenient, accurate, and economical surveying system
for collecting and updating geo-information together with the GRID.

One L-MMS can obtain geo-referenced images for more than 200 km. Each image with a resolution
of more than 2 MB in RGB mode has a data volume of approximately 5 MB. If the interval distance in
image capturing is 5 m, then the number of images at 200 km will be 160,000 and the data volume will
be 800,000 MB [2,26]. Determining the image number and the data volume are difficulties encountered
in searching and matching RTI and GRID. The strategy and method of GRID design affects the
efficiency of image searching and matching. To ensure the efficiency of the proposed vision navigation,



Sensors 2016, 16, 166 5 of 17

we propose the indexing of a large number of images according to dynamic road section and the
packing of images based on a large file storage model.

2.2.2. Dynamic Section Indexing of GRID Based on Road Networks

At present, the quad-tree index is commonly used as a data organization and indexing method
(such as the KIWI data format developed in Japan) [27,28] to navigate digital maps. The basic principle
of this method is based on a quad-tree structure, and the geospace is divided into small grids. The
map elements in the bottom grid to which the quad-tree leaf nodes correspond are packaged and
stored according to location and size; furthermore, the map data are spatially separated into small
blocks. The main advantage of the quad-tree index is its capability to quickly locate the current target
area for a specified grid (block). The relevant target feature can also be extracted from an entire block.
Nonetheless, obvious drawbacks are detected in GRID data indexing. GRID data are usually sampled
along roads; therefore, data distribution in a quad-tree grid is uneven. As a result, the index data are
redundant. In addition, all the images within the grid must be traversed and compared one by one in
single-image retrieval (depending on the shooting location of the image), thereby lowering retrieval
efficiency. Therefore, the GRID data indexing model in particular must be examined and designed.

GRID data indexing must satisfy two conditions. First, the traveling vehicle should be capable
of quickly retrieving a recent image in a trend direction before reaching the current positioning
point. Second, this approach should be capable of checking the image sequence in which the current
positioning point of the region may be distributed during image matching and location retrieval. GRID
data are linearly distributed along a road, unlike 2D GIS data with the geometrical features of point,
line, and surface. Given this feature, a road-based dynamic segmentation (DS) index structure is
designed in the linear referencing system to determine the spatial query speed of GRID and to ensure
quick image matching.

The linear referencing system (LRS) constitutes a method of recording linearly distributed target
position information. This system is widely used in the transport domain [29–32]. LRS can be expressed
as (R, M), which are also known as linear coordinates that indicate the position information of linear
characteristics in an relative offset M, i.e., the distance to the starting point of the linear feature. R
denotes the linear characteristic. For example, (320, 274) suggests that the distance from the starting
point is 274 at road 320. Essentially, the proposed DS index method does not alter the position of
image distribution (shooting position). Moreover, the image space coordinate in the 2D reference
system is not associated with a road in the linear referencing system to establish the GRID data index
depending on the road network. The specific approach adopts DS technology according to the image
distribution position and location section, applies the offset from the starting point of each road section
representing the image position, and converts the image position from 2D coordinates (X, Y) to linear
coordinates (M). Meanwhile, road split (non-physical division) is realized, and the image is hooked
with the corresponding road section. A DS index (DS) tree is also built into the linear benchmark for
each linear feature (road).

The shape of the DS tree is similar to those of the R tree and quad-tree. However, the latter two
indices are located in a 2D space, whereas the DS tree is indexed in a 1D linear space. In addition, the
quad-tree and R tree represent the position of an object in an index space given the spatial coordinates
of object (X, Y) or a minimum bounding rectangle, whereas the DS tree indicates the position of an
object through offset M of the object. This tree is composed of root, intermediate, and leaf nodes. The 1D
data set is divided recursively according to the nodes in each layer. In Figure 3, the two-direction road
R includes two road-width-flow centerlines C and D that correspond to two road section sequences
in opposite directions: C1, C2, C3 and D1, D2, D3, respectively. These sequences comprise image
sequences P1, P2, . . . , P9 and K1, K2, . . . , K9. Figure 3a presents a schematic of the division of road
R via DS index intervals. Figure 3b illustrates the corresponding DS index tree structure, where R is
the root node. The structure of R can be expressed as R(RID, M1, M2). RID is the logical road index
number. M1 and M2 are the beginning and ending offsets of the entire road. The starting offset of
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the road (M1) is generally set to 0. Intermediate node C or D includes section sequences along two
directions of the centerline of road way flow, and the related structure can be expressed as S(SID, M1,
M2). SID is the section index number, and M1 and M2 are the beginning and ending offsets of the
sections along road flow, respectively. The leaf node stores information on each image in the GRID
image sequence, and its structure is I (IID, M). IID is the image index number, and M is the offset of the
sections in which the image position is detected.

The data structure of the index tree node of GRID data is presented as follows:

struct NODE

{

Linear_Interval linear; //linear interval

NODE*Parent; //a pointer to the parent node

NODE**child; //a pointer to the child node

long*ObjID; //object ID within the linear interval

}
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The quad-tree index in the 2D reference system must calculate the Euclidean distance between the
location point and the image position individually for image retrieval. Meanwhile, the DS index in the
linear referencing system only needs to compare the location point offset with the image position offset.
The retrieval calculations are performed in a 1D space. Thus, the computation amount is reduced, and
the retrieval efficiency can be improved.

2.2.3. GRID Data Storage Based on Large Files

Many GRID images are collected by L-MMS. If 1 site includes four images and the distance
between the two sites is 5 m, then the GRID data comprise more than 800,000 images given a city with
1000-km roads. If each image corresponds to a data file, then an excessive amount of files is produced,
thus directly affecting data extraction efficiency. In addition, many small files induce frequent disk
reading and writing, thereby resulting in straightforward disk damage. Therefore, the design of the
data storage model for GRID must be optimized.
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To effectively control the number of the generated GRID data files, a data storage model based on
large files is proposed in this paper. The basic idea involves considering one road section as a unit to
centrally store the image sequence in the section. This concept not only reduces the number of data
files but also quickly determines the image sequence through a road section through the DS index and
improves the efficiency of image retrieval.

The organization of GRID data based on large files is line with the following rules:

Rule 1: Images in one road section should be stored in one large data file as much as possible;
Rule 2: Cross-section images should be stored separately;
Rule 3: If the images in a section are so numerous that they constitute an excessively large image

file (exceeding the set threshold), then this image file should be split and stored as multiple files.

The proposed large file-based data storage model for GRID is established through compliance
with the aforementioned rules, as shown in Figure 4.

Sensors 2016, 16, 166 7 of 18 

 

Rule 1: Images in one road section should be stored in one large data file as much as possible; 
Rule 2: Cross-section images should be stored separately; 
Rule 3: If the images in a section are so numerous that they constitute an excessively large image 
file (exceeding the set threshold), then this image file should be split and stored as multiple 
files. 

The proposed large file-based data storage model for GRID is established through compliance 
with the aforementioned rules, as shown in Figure 4. 

 
Figure 4. Large file-based data storage model for GRID. 

A large file for GRID can be divided into three parts: an image index table, a file body, and an 
image parameter file. The index table records the current file section ID (long type, eight bytes), first 
section offset of the image position in the file (int type, four bytes), final section offset of the image 
position (int type, four bytes), number of images (long type, eight bytes), section offset of each next 
image in turn (int type, four bytes), and stored address of the image in the file (int type, four bytes). 
The file body accounts for each image information record (44 bytes plus the space occupied by the 
image sequence). The image parameter file stores the interior and exterior orientations of the GRID. 
The size of each large file for this database should be controlled to below 200 MB for one road 
section. When the file size exceeds this recommendation, a new large file should be generated 
automatically. One record should not be stored in two separate files. If the current storage space is 
not enough to store an entire piece of data, then this information should be transferred to a new large 
file for storage. All large GRID files are labeled “Image” + n + “. data”. 

The proposed GRID data storage based on large files can be organized in a database system or 
file directory, and this step is similar to image retrieval. In database storage, the generation of a 
large file can be regarded as the storage of sequence images related to a road section via a memory 
block. Meanwhile, the single file model can be treated as individual image storage. 
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A large file for GRID can be divided into three parts: an image index table, a file body, and an
image parameter file. The index table records the current file section ID (long type, eight bytes), first
section offset of the image position in the file (int type, four bytes), final section offset of the image
position (int type, four bytes), number of images (long type, eight bytes), section offset of each next
image in turn (int type, four bytes), and stored address of the image in the file (int type, four bytes).
The file body accounts for each image information record (44 bytes plus the space occupied by the
image sequence). The image parameter file stores the interior and exterior orientations of the GRID.
The size of each large file for this database should be controlled to below 200 MB for one road section.
When the file size exceeds this recommendation, a new large file should be generated automatically.
One record should not be stored in two separate files. If the current storage space is not enough to
store an entire piece of data, then this information should be transferred to a new large file for storage.
All large GRID files are labeled “Image” + n + “. data”.
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The proposed GRID data storage based on large files can be organized in a database system or
file directory, and this step is similar to image retrieval. In database storage, the generation of a large
file can be regarded as the storage of sequence images related to a road section via a memory block.
Meanwhile, the single file model can be treated as individual image storage.

2.3. Fast Image Searching and Matching

The RTI from a global GRID is impossible to search for and match efficiently or accurately.
A navigation system typically has GPS and IMU sensors, which play the most important role in
determining the position and orientation parameters of a moving platform. Imaging sensor-based
vision navigation is adopted to enhance navigation reliability and accuracy for a moving platform
in a harsh GPS or IMU-failed environment. Thus, the vision navigation module generates an initial
navigation parameter from GPS/IMU. The initial position can restrict the range of GRID searching
and matching, which can induce fast image searching and accurate matching. The proposed method
to search and match the RTI from GRID includes three steps: searching for and locating large GRID
files, extracting image features, and image matching.

2.3.1. Searching for and Locating Large GRID Files

To obtain a fast and reliable search result from a high-volume GRID, a spatial query is implemented
before image retrieval based on image understanding. Although the worst position accuracy of
GPS/IMU is 100–500 m, it can restrict image searching and matching in a road section or a street block.
This restriction can significantly reduce the workload of blind searching and matching over a wide
range. Thus, a fast search that conducts a spatial query of the initial position can be performed through
the proposed dynamic section indexing of GRID based on a road network. The road section of the
initial position can be determined to locate a certain large GRID file for accurate matching. Figure 5
illustrates the proposed concept of fast searching based on spatial query to locate a large GRID file.
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The current anchor point from GPS/IMU is considered as the spatial query input within the
road network to determine the current road section. A large file can be located through the road
section based on the proposed GRID data model. Meanwhile, the anchor point is converted into a 1D
coordinate based on the LRS model to obtain the initial image from a large file as the candidate image
for matching with the RTI. The candidate image is identified based on the DS tree; the process stops
until the image is well matched with the RTI, as explained in the subsequent part.

2.3.2. Extracting Image Features

RTI and GRID are the images captured in different environments of the same scene. Feature
selection and extraction are the key issues in achieving highly reliable image matching. Lowe [33,34]
proposed an efficient scale invariant feature transform (SIFT) algorithm that is widely used in image
matching. The local features of SIFT include invariance in rotation, scaling, affine transformation, and
a view angle, which is suitable for matching images captured at different times, distances, and viewing
angles [33–36]. In the proposed approach, we adopt a 128-dimensional SIFT feature vector to describe
the key feature point. The geometric distortion influence of scale and rotation can be reduced by this
vector, and its normalization can eliminate the effect of illumination change. Thus, the SIFT vector of
an image local feature can result in robust matching between RTI and GRID.

The SIFT 128-dimensional feature vector in GRID is time consuming to extract, particularly in
real-time processing applications. To decrease the duration of matching between RTI and GRID, the
SIFT feature vectors of each image in GRID are extracted in advance and linked to GRID.

2.3.3. Image Matching

Image matching between RTI and GRID is implemented based on the SIFT feature. As this process
runs during the image search, SIFT matching should be as fast as possible. The SIFT feature vectors of
RTI can be extracted before matching because we have identified these vectors for each image in the
GRID in advance. Thus, image matching is conducted only to calculate the similarity among the SIFT
feature vectors of RTI and GRID. The SIFT matching algorithm usually adopts Euclidean distance as
the similarity measurement of the key point. If the ratio of two key points with the closest Euclidean
distance to the candidate key point for matching is less than a certain threshold (always taken as
0.9–1.0), then one of these two key points is considered a successful match. The number of matching
points can be reduced by lowering the threshold ratio, thus stabilizing the SIFT matching process. In
the proposed approach, the matching between RTI and GRID is simplified as the calculation of the
Euclidean distance in the set of key points between RTI and GRID. A best-bin-first matching search
algorithm with a 128-dimensional feature vector is presented as well, and all these strategies reduce
the duration of searching and matching.

The correlation calculation based on Euclidean distance exhibits gross error. Handling mismatch
is another important process during SIFT matching; normally, the SIFT matching algorithm follows
a robust random sample consensus (RANSAC) [37,38] algorithm to address the gross error in
SIFT matching.

The image searching and matching processes intersect, as depicted in Figure 5. We can determine
the match status according to the number of the matched key points between RTI and GRID. The
number of matched points can be used to guide the search direction based on the LRS in a large file.
Figure 6 presents an example of the number variance of the matched points. A total of 59 images from
GRID are considered candidate images to match RTI.

The number of matched points increases when the GRID image is close to RTI. The entire matching
process uses the same parameter of the SIFT algorithm and RANSAC. Thus, the matched image has
the highest number of matching points. The number of matched points increases rapidly when the
candidate image is in view of RTI; this step also helps determine the direction of image searching. The
searching and matching time in all 59 images is 0.43 s; in real-time processing, these procedures stop
after the image either matches well or fails. The searching and matching time is shorter than that of
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the SIFT matching of all the candidate images. The 59 GRID images cover a distance of approximately
300 m, which can be considered the largest error in the GPS/IMU position serving as the initial input
for image interval retrieval.Sensors 2016, 16, 166 10 of 18 
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2.4. 3D Navigation Calculation: From GRID to RTI

In the proposed imaging sensor-aided vision navigation system, a camera is fixed to the body of a
moving vehicle, as described by a right-handed coordinate system. We define five coordinate systems
to derive the navigation parameters from GRID to RTI, as shown in Figure 7.
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GPpXG ,YG ,ZGq
is the Cartesian coordinate of the geodetic coordinate system(GCS). GO is the

coordinate origin and its coordinates in GCS are PG, which is adopted by the GRID and the moving
platform. V PpxV ,yV ,zVq

is the body coordinate system(BCS) of a moving platform where the coordinate
origin VO is defined as the intersection of two perpendicular lines of the cut planes through the center
of gravity and the body; its coordinates in BCS are PV . The XV axis is parallel to the longitudinal
axis of the body, which is the forward direction of the vehicle. The YV axis is perpendicular to the
longitudinal axis of the vehicle body and parallel to the cutting plane, which is located to the right
of the vehicle. The ZV axis is downward perpendicular to the cut plane. CPpxC ,yC ,zCq

is the camera
coordinate system(CCS), where coordinate origin CO is the projection center of the camera, and its
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coordinates in CCS are PC. The XC axis is parallel to the direction of the camera scan lines and to the
direction of the increasing scan pixels. The YC axis is perpendicular to the direction of the camera scan
lines and to the direction of the increasing scan lines. The ZC axis is perpendicular to the silicon target
plane and to the gaze direction of camera imaging system. I PpxI ,yIq

is the image coordinate system
(ICS) that defines the location coordinates of the optical imaging plane of the internal camera image,
where coordinate origin IO is the focus on the image plane of the imaging system; its coordinates in
ICS are PI . The XI axis is parallel to the direction of the camera scan lines and to the direction of the
increasing scan pixels. The YI axis is perpendicular to the direction of the camera scan lines and to the
direction of the increasing scan lines. BPpc,rq is the pixel coordinate system(PCS) that defines the pixel
coordinate, where coordinate origin BO is located in the top-left corner of the image; its coordinates in
PCS are PB. The c axis is parallel to the direction of the camera scan lines and to the direction of the
increasing scan pixels. The r axis is perpendicular to the direction of the camera scan lines and to the
direction of the increasing scan lines. Figure 7 indicates that ψ, θ, φ, V XC, VYC, and V ZC are considered
to define the installation status of imaging cameras in the camera coordinate system.

The following paragraphs describe a few of the main transformations of the aforementioned
coordinate system.

(1) From the body coordinate system into the camera coordinate system: the body coordinate system
can be transformed into the pixel coordinate system. The transition from the former into the camera
coordinate system includes translation and rotation, as indicated in Equation (1)

CPpxC ,yC ,zCq
“ C

V RpV PpxV ,yV ,zVq
´ V PCq (1)

where V PC is the coordinates of CO in the body coordinate system. C
V R is the rotation matrix, as per

Equation (2)
C
V R “ RYpψqRXpθqRZpφq (2)

(2) From the camera coordinate system into the image coordinate system: this transformation is based
on the principle of perspective projection, where the object distance is far greater than the focal length.
Thus, the pinhole imaging model can replace the perspective projection model. The image coordinate
can be calculated with Equation (3)

$

’

&

’

%

xI “ f
xc

zc
yI “ f

yc

zc

(3)

(3) From the image coordinate system into the pixel coordinate system: the pixel coordinate system can
be calculated from the image coordinate system through a 2D scale and translation, as indicated in
Equation (4)

BP “

«

Nr 0
0 Nc

ff«

xI
yI

ff

` BPI (4)

where Nr and Nc are the numbers of rows and columns of width and length in the image coordinate
system, respectively. BPI “

“BCI , BRI
‰T is the offset of the main point position in the column and

row directions.
In the transformation from Equations (1) to (4) explained above, ψ, θ, φ, V XC, VYC, and V ZC are

usually called the outer orientation elements of an imaging camera. f , Nr, Nc, BCI , and BRI are known
as the inner orientation elements of such a camera.

(4) From the body coordinate system into the geodetic Cartesian coordinate system: the matched
image is geo-referenced in the geodetic Cartesian coordinate system. All the matched key points
have Cartesian coordinates G Ai pXGAi, YGAi, ZGAiq that are transferred to the corresponding points in
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RTI. Thus, we can convert G Ai to V Ai in the body coordinate system of the moving platform with
Equation (5):

$

’

&

’

%

XGV “ XVcosα` ∆XG
YGV “ YVcosα` ∆YG

ZGV “ ´ZV

(5)

where ∆XGV and ∆YGV are unknown quantities, and α is the heading of the moving platform. Then, we
can convert V Ai to C Ai in the camera coordinate based on Equations (1) and (2). We can also transform
C Ai into I Ai in the image coordinate system and B Ai in the pixel coordinate system on the basis of
Equations (3) and (4). We finally complete the transformation of the key points C Ai pxCAi, yCAi, zCAiq

in the camera coordinate system to B Ai pxBAi, yBAiq in the pixel coordinate system, as shown in
Equation (6):

$

’

&

’

%

xBAi “ f
xCAi
zCAi

Nr `
B CI

yBAi “ f
yCAi
zC

Nc `
B RI

(6)

The B A1i pxBAi, yBAiq in the pixel coordinate system of RTI is determined through SIFT matching,
and the corresponding G Ai pXGAi, YGAi, ZGAiq in the geodetic Cartesian coordinate system is also
identified from the GRID. Both outer orientation elements (ψ, θ, φ, V XC, VYC, and V ZC) and inner
orientation elements ( f , Nr, Nc, BCI , and BRI) can be effectively calibrated in a high-precision
calibration site. Each pair of matched key points can generate two equations based on Equation (6),
and we can build the equations with all the matched key points with unknown elements ∆XGV , ∆YGV ,
and α. Thus, we can employ least squares’ adjustment to solve these unknown elements, which are the
navigation parameters of the moving platform in the geodetic Cartesian coordinate system. To obtain
a robust result, at least five key points should be used in the solving process.

3. Experimental Section and Discussion

The proposed imaging sensor-aided vision navigation approach has two key performance
indicators that affect its actual application. One is the efficiency of the image searching and matching
process, which is related to the GRID data organization model, and the other is navigation accuracy.
We design two experiments to assess the proposed approach in terms of efficiency and accuracy. An
L-MMS with six cameras is developed to collect GRID data; the GRID accuracies are 0.5 m in position
and 0.3˝ in orientation. The GPS/IMU utilized in the L-MMS is SPAN® IMU-FSAS™. The L-MMS is
also used to verify the accuracy of the proposed vision navigation method based on GRID, whereas
the high-precision GPS/IMU navigation data are considered the truth. One camera is simulated as the
real-time imaging sensor.

3.1. GRID Efficiency Experiment

The GRID data organization method directly affects the efficiency of searching and matching
between RTI and GRID. Thus, two experiments were designed to validate the proposed method. The
computer is configured with a Pentium 4 2.0 GHz CPU, 1 GB memory, and a direct fiber 80 TB disk
array with Windows XP Professional. We take three sets of GRID with data volumes that range from
1 GB and 100 GB to 1 TB by utilizing the proposed data organization model. This model represents the
road, street (town), and county levels, as shown in Table 1.

Table 1. Experimental GRID data set.

Data Set Data Volume (G) Mileage (km) Data Level

I 1.9 1.8 road
II 120.0 115.3 street (town)
III 1035.0 1027.7 county
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3.1.1. Comparison of the DS and Quad-Tree Indices for Image Spatial Query

The DS index converts the spatial query in 2D to a 1D space. Table 2 indicates the query response
times after clicking the 2D navigation map as an image query input.

Table 2. Comparison of image spatial query times of the DS tree and the quad-tree.

Data Set Index Model Query Time (s)

I Quad-tree
DS tree

0.50
0.21

II Quad-tree
DS tree

0.52
0.22

III Quad-tree
DS tree

0.55
0.24

Image spatial query, which is based on the DS index, is faster than the quad-tree index.
Furthermore, the proposed GRID data organization model does not differ significantly in terms
of data volume because of the large file model. Each query is restricted to a specific large file.

3.1.2. Comparison of Image Retrieval Efficiencies in Large and Small GRID File Storage Models

Image retrieval includes the image searching and image matching processes. Once the current
searching image from GRID is matched to RTI, image searching ceases. We compare the image retrieval
efficiency of the proposed large file model with that of the single-image file model. The average
retrieval times of the three data sets are listed in Table 3.

Table 3. Comparison of image retrieval times in the large file model and the single-image file model.

Data Set Index Model Image Retrieval Time (s)

I Single-image file
Large file

1.25
0.78

II Single-image file
Large file

4.86
0.82

III Single-image file
Large file

18.24
0.86

The proposed large file model based on road sections is obviously advantageous over the
single-image file model regardless of whether the files are stored in a database system or in a file
directory. The image retrieval time of a large file model-based GRID is less than 1 s given three data sets.
The retrieval time of the single-image file-based GRID increases with the data volume. The efficiency
of the proposed GRID data organization model can meet the requirement of vision navigation based
on this database.

3.2. Accuracy Analysis of GRID-Based Vision Navigation

To assess the accuracy of the proposed vision navigation method, we use L-MMS to collect data
on a single block twice at different times. One dataset is utilized to build the GRID as the proposed
approach. Another dataset is employed to simulate RTI. A total of 300 images are regarded as RTIs
for searching and matching with GRID. The image interval distance is set as 5 m, and the total time
for 300 images is approximately 300 s within a distance of 1500 m. Then, the navigation parameters
of the moving platform are calculated from the 300 images with the use of the proposed approach.
The navigation results are compared with the tightly coupled integration of GPS/IMU via Inertial
Explorer® software. Figure 8 presents the absolute value of the relative error in x, y, and H.
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The accuracy of the proposed imaging sensor-aided vision navigation method is less than 1.2 m
in the x and y directions. H is less than 1.8 m. This accuracy is approximately double the accuracy of
GRID because matching errors are detected in the key points between RTI and GRID.

3.3. Discussion

The use of a map as a sensor is a new ADAS trend. GRID is a map database that contains highly
accurate position data and real environment information [39]; it can be used as a high-precision map
database for ADAS. Although we have presented a basic framework of vision navigation with GRID,
some challenges are still encountered for widely commercial applications in the navigation system.
Nonetheless, the GRID data volume is extensive, as discussed in this paper; that of one county reaches
the TB level. The current navigation database with a vector map always covers one county. Storing the
high volume of GRID data on the navigation platform is a significant problem. The fast development
of wireless Internet, such as 4G LTE and 5G LTE, is a way to realize online GRID services for vision
navigation [40].

Although the GRID can provide real environment information for vision navigation, changes in
road scenes are another challenge in imaging sensor-aided navigation. It is common that one road
can change completely in a developing country. Such an altered scene complicates image retrieval
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and induces failure in certain cases. Rapid data collection and updating are important in GRID
maintenance. The incremental update technology for a navigation map can also be used for this
database. However, determining scene changes is particularly difficult in data collection and updating.
Volunteered geographic information can harness tools to create, assemble, and disseminate geographic
data provided voluntarily by individuals [41]; this information can serve as a crowdsourcing mode to
determine scene changes for updating.

In fact, no error accumulates in the proposed technology. The reliability of localization after long
periods of time depends on the image matching algorithms. Image matching is also a critical issue in
GRID-based vision navigation [42]. Although we have introduced SIFT matching for RTI and GRID,
challenges are still encountered with regard to matching speed and reliability, particularly given a wide
image searching range. Such difficulties are experienced in vision navigation with low-cost GPS/IMU.
Poor position inputs widen the range of image searching. Such a range worsens the reliability of image
matching. The improved SIFT algorithms with multicore parallel computing [43,44] can be discussed
further to improve the efficiency and reliability of this matching.

GRID-based vision navigation can be integrated with GPS/IMU, where the GRID can serve as
a new sensor for federal Kalman filtering (FKF) in navigation calculation [45]. Our paper merely
discusses vision navigation during GPS loss while one or more GPS satellites remain. Thus, we can
further combine the result of vision navigation and of GPS/IMU based on FKF. The fusion navigation
result can serve as vision navigation feedback to help narrow the searching range. The reliability and
robustness of fusion navigation can also be enhanced with increased accuracy.

4. Conclusions

GRIDs are expanding worldwide with high resolution and accuracy, included Google Street
View [46] and the Tencent Panoramic Image Service. The rapid development in global geo-referenced
databases enables vision navigation with GRID. In this paper, we proposed a vision navigation
approach based on this database to facilitate continuous and robust navigation for GPS and IMU
sensors under harsh environmental conditions. The framework and navigation calculating model
of GRID-aided vision navigation is established with sequence images from land-based multiple
sensor-integrated mobile mapping systems. A highly efficient GRID storage management model is
also developed based on the linear index of a road segment; large files are created to achieve fast
image search and retrieval. This model can perform image searching and matching in 1 s regardless of
data volume. A calculation method for 3D navigation parameters from GRID to RTI is also presented
for imaging sensor-aided vision navigation with matched GRID images. The final result of vision
navigation based on a GRID with 0.5 m accuracy indicates a 1.2 m accuracy in plane and 1.8 m accuracy
in height under GPS loss in 5 min and within 1500 m. The proposed approach can be used to improve
navigation reliability under harsh environmental conditions where GPS and IMU are ineffective, such
as ADAS. When integrated with GPS/IMU, this method can also be employed to enhance navigation
accuracy for L-MMS.
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