
sensors

Article

Microservices in Web Objects Enabled IoT
Environment for Enhancing Reusability

Muhammad Aslam Jarwar ID , Muhammad Golam Kibria ID , Sajjad Ali ID and Ilyoung Chong *

Department of Information and Communications Engineering, Hankuk University of Foreign Studies,
Seoul 02450, Korea; aslam.jarwar@hufs.ac.kr (M.A.J.); kibria@hufs.ac.kr (M.G.K.); sajjad@hufs.ac.kr (S.A.)
* Correspondence: iychong@hufs.ac.kr; Tel.: +82-10-3305-5904

Received: 15 December 2017; Accepted: 24 January 2018; Published: 26 January 2018

Abstract: In the ubiquitous Internet of Things (IoT) environment, reusing objects instead of creating
new one has become important in academics and industries. The situation becomes complex due to
the availability of a huge number of connected IoT objects, and each individual service creates a new
object instead of reusing the existing one to fulfill a requirement. A well-standard mechanism not only
improves the reusability of objects but also improves service modularity and extensibility, and reduces
cost. Web Objects enabled IoT environment applies the principle of reusability of objects in multiple
IoT application domains through central objects repository and microservices. To reuse objects with
microservices and to maintain a relationship with them, this study presents an architecture of Web of
Objects platform. In the case of a similar request for an object, the already instantiated object that
exists in the same or from other domain can be reused. Reuse of objects through microservices avoids
duplications, and reduces time to search and instantiate them from their registries. Further, this article
presents an algorithm for microservices and related objects discovery that considers the reusability
of objects through the central objects repository. To support the reusability of objects, the necessary
algorithm for objects matching is also presented. To realize the reusability of objects in Web Objects
enabled IoT environment, a prototype has been designed and implemented based on a use case
scenario. Finally, the results of the prototype have been analyzed and discussed to validate the
proposed approach.

Keywords: Web of Objects (WoO); microservices for IoT; objects reusability; Internet of Things (IoT)

1. Introduction

In the Ubiquitous Internet of Things (IoT) environment, millions of objects are connected to
the web, for intelligent and user-preferred IoT service provisioning. It is predicted that numbers
of objects will exponentially increase to billions in the coming future, and may create problems of
objects duplication, communication, deployment, maintenance, and data abundance. The reusability
of objects will minimize the cost of recreation, storage, and maintenance. An efficient and effective
mechanism of reusing of already available objects and their data may overcome the problems, and
improve the smartness of objects for more intelligent IoT services. The reusability of objects across
the different platforms has been discussed in horizontally layered architecture platforms such as
oneM2M [1]. The horizontally layered platforms do not address the specific issues in a specific domain
but they support necessary tools to resolve problems of cross-cutting services across the platforms.
However, vertically layered architectures have been commonly used to resolve domain specific
problems [2,3]. Due to the special features of vertically layered architectures in resolving the domain
specific issues, this article is proposing the reusability of objects in vertically layered architecture by
using microservices. Microservices in vertically layered architecture improves service modularity,
extensibility, availability, and scalability of IoT services by reusing the existing objects. To resolve these

Sensors 2018, 18, 352; doi:10.3390/s18020352 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5332-1698
https://orcid.org/0000-0002-7936-0417
https://orcid.org/0000-0001-6905-446X
http://dx.doi.org/10.3390/s18020352
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 352 2 of 21

issues and to use the advantages of microservices in IoT, this article proposes microservices in Web of
Objects (WoO) enabled IoT environment for reusability of objects. WoO is an efficient IoT platform for
domain specific solutions as well as cross-domain reusability issues. The vision of WoO is to provide
simple but an efficient platform for the intelligent IoT services [4]. In WoO platform, Virtual Object
(VO) and Composite Virtual Object (CVO) harmonize the real world objects by using semantic web
technologies for relating, understanding, and exchanging of data among multiple IoT application
domains. Nowadays, smart homes, smart agriculture, smart grids, smart spaces, cyber-physical
systems for autonomous vehicles, smart city, smart manufacturing, and smart healthcare are the most
popular IoT application domains [5]. To provide better and intelligent IoT services, it is necessary
to foster the reusability of objects in various WoO based IoT application domains. When these large
numbers of objects are reused in IoT environment, it raises many important questions. How will
these objects be reused; how will these objects support plug and play functionality; how will these
objects be related to other domain objects; and how will these objects be shared and exchanged must
be answered so that they provide functionalities needed by the IoT applications [6]. The research and
techniques that facilitate the reusability of objects from various application domains to communicate,
create and share information will change the physical world into a highway of information and
knowledge. This highway of information and knowledge in IoT is not only connecting objects
from the physical world to the web for communication and linking channels but this linking and
communicating phenomena will also enhance the smart capability of objects [7]. Microservices based
architecture supports developing a service as a group of small services [8], and this pattern supports
the reusability of microservices in multiple IoT services. Microservices have the enormous support of
structuring the IoT environment over the web, for creating, connecting and reusing the information
highway as a collection of loosely coupled services in terms of microservices. The microservices based
architecture further enables the rapid development and deployment of large and complex applications,
and supports uninterruptable delivery of services [9]. However, domain knowledge plays an important
role to use microservices pattern in the architecture of large and complex systems.

Currently, 13 billion objects are considered as connected objects and it is expected that the
numbers of connected objects will reach 30 billion in 2020 [10]. This increase in a huge number of
objects for current and future IoT applications creates many challenges and opportunities for the
academic, and industries working in the IoT area. In the broader concept and vision of IoT in the
future, every connected object will be reused in multiple IoT application domains for enhancing
the smartness of IoT services. For example, in the fourth industrial revolution, the manufacturing
industries cooperate with cyber physical systems and other industries around the world to produce
cost effective things by providing data exchange and real time access to the product and production
information [11]. For reusing and fostering the cooperation among objects in multiple IoT application
domains, we need to create semantically interoperable application programming interfaces (APIs).
These semantic interoperable APIs should be developed with the best fit technologies to support the
reusability of objects, rapid development, deployment, recovery, and resiliency.

Among these challenges, the following are the main and problem statements of this article:

• How microservices, CVOs, and VOs are searched, shared, and reused among different application
domains in WoO enabled IoT environment for IoT service provisioning;

• How to consider the communication and complexities of semantic cooperation between
microservices, CVOs, and VOs in their own application domain and as well as in other domains,
for enhancing the reusability of objects and extensibility; and

• How to support the functionalities of every connected object and IoT service provisioning rapidly
implemented in best fit and lightweight technologies, deployed independently, with resiliency
and recoverability in minimum time.

WoO articles [12–15] have not provided the mechanism of communication, reusing and understanding
of information among various WoO based IoT application domains. In Reference [16], authors have

Sensors 2018, 18, 352 3 of 21

presented the service modularity by reusing VOs in WoO platform but the core of service modularity
that how the service will be exposed and reused in multiple application domains has not been addressed.
This article presents the approach of discovering, exposing, matching, mapping, and reusing of objects in
terms of CVOs through microservices, which can be accessed and shared among multiple IoT application
domains enabled with WoO platform.

The following are our main contributions that support the above-mentioned challenges:

• Using and discovering microservices, CVOs, and VOs in WoO enabled IoT environment;
• A central objects repository microservice and objects mapping and aligning microservices; and
• A WoO design and development based on microservices pattern. As microservices support the

proposed design and technological requirements with objects reusability, plug & play, best fit,
and lightweight features.

The paper is organized as follows. Section 2 presents background and related work. Section 3
discusses web of objects architecture for IoT service provisioning. Section 4 elaborates a functional
model of microservices in WoO platform. Section 5 presents enhancing the reusability of objects
in WoO based IoT environment. Section 6 discusses use case and prototype. Section 7 discusses
experiments and results. Finally, Section 8 concludes the article.

2. Background and Related Work

Since the early days of IoT, most of the IoT platforms are using monolithic approach for system
designing and implementation, and also followed the same approach for the provisioning of IoT
services. In monolithic approach, services are developed and updated separately and recurrently for
different users, which increase the overall cost of service development, deployment, and maintenance.
This cost can be minimized by distributing the functionality of a large IoT service into a group of
several small services. These multiple small services can be combined and reused in a big IoT service;
with more features and more customizability. The term of microservice was coined in 2011 and become
a hot topic in 2014 [17,18]. Microservices pattern is the extension of service oriented architecture (SOA).
Microservice approach is the best way to scale SOA based systems [19]. In IoT environment, SOA and
microservices style services are used to expose the real world objects on the web and providing a
mechanism of creation of services from the group of small services. Microservices have been widely
discussed in cloud computing environment service provisioning. Few studies [20–22] have discussed
the significance and microservices architecture for building IoT applications and platforms.

In Reference [21], authors discussed interoperable IoT platform by using the concept of
microservices. The aim of this article is the provision of communication among the heterogeneous IoT
devices. Authors modularized their proposed framework based on layering architecture. The bottom
layer used for the load balancing of IoT nodes and the microservices at middle layer performed
the tasks of data processing, data aggregation, and data transformation by using microservices
pipeline. For building smart cities, the microservices based IoT platform proposed in Reference [22].
In this IoT platform, authors distributed the functionality of large system into many microservices.
These microservices performed the tasks of data collection, data aggregation, and data analytics on live
streaming data. Sun et al., (2017) [23], compared the monolithic approach and microservices approach
of system designs for building IoT platforms. The comparison showed that microservices approach is
more useful than the monolithic. In their system design, authors proposed microservice for geospatial
data correlations to render location data on the map. Authors have also created microservice for user
management functions.

In a wireless sensor network, tiny IoT objects distributed across the large sensing filed. Most of
the energy of these tiny sensors consumed in transmitting data from the node to a central point.
Microservices implementation in these tiny objects can increase the life time by aggregating and
processing the data at the node level and then it sends the aggregated information to the central
point [24]. In our proposed approach, lightweight microservices fetch objects from other application

Sensors 2018, 18, 352 4 of 21

domains and reuse them similar to their own domains. For IoT system functionalities and services
development, the microservices pattern is useful. Microservices pattern supports service modularity,
single task executability and functional independency [25].

Microservices pattern supports object virtualization [26]. In the microservices pattern, virtualization
is supported by isolated execution environment for every microservice. Microservice interacts with other
microservice with lightweight payloads and HTTP-REST protocols. The communication mechanism
among the microservices was achieved by explicit interfaces and protocols. “The entire idea of
microservices becomes plug and play” [27]. The composability feature of microservices supports to
create IoT applications from a group of microservices [25], and this feature increases the reusability of
microservices. Composability facilitates the fine-grained arrangement of microservices through already
available instances of microservices. Once composed microservices with RDF and JSON payload can
be reused in various application domains for service provisioning in IoT environment.

The microservices approaches discussed in the above literature work does not provide semantic
interoperability at the service level to meet the service provisioning request from various IoT
application domains. As the semantic interoperability is a key requirement of future intelligent
IoT services. Therefore, our proposed approach has been using microservices for object reusing and
object sharing among various application domains at the service level. Microservices patterns are
also used in WoO architecture design and development of functional components by incorporating
semantic web technologies.

In our study for enhancing the reusability of objects with microservices, we need semantic
interoperability for aligning and mapping of objects among different application domains in WoO based
IoT environment through microservices and semantic technologies. “Semantic interoperability means
enabling different agents, services, and applications to exchange information, data, and knowledge in
a meaningful way, on and off the Web” [28]. In IoT environment, semantic interoperability cannot be
achieved without setting the foundations of interoperability, i.e., technical interoperability and syntactic
interoperability. Technical interoperability is achieved through setting a standardized organization
wise mechanism for each object and services in IoT applications. Solutions for technical interoperability
were discussed in Global Sensor Networks (GSN) Framework, SENSEWEB Platform, and FOSSTRAK
tools [29]. The requirement of syntactic interoperability can be achieved by clearly and agreeably
defined data and interfaces between client and server. When the object data are exchanged and reused
among various application domains in WoO enabled IoT environment, it should be in well-defined
formats, e.g., JSON, XML, and RDF. The reusing of devices and services has been widely discussed in
horizontal IoT architectures. In horizontal IoT standards, oneM2M is the most popular. The main goal
of the oneM2M standard is to define independent accessibility interfaces for M2M services across the
IoT platforms [30]. The oneM2M standard supports the IoT architecture with three layers: applications,
services, and networks. In Reference [31], authors discussed the ontology over the oneM2M base
ontology for achieving the semantic data interoperability at services level in the heterogeneous IoT
environment. To break the boundaries, Lysis platform used the iCore vertical architecture and defines
the social relationships among the virtual objects for fostering the horizontal IoT [32]. The Lysis also
considered the reusability at different layers in the architecture; in terms of object templates, third party
services, and codes. The reusability feature in terms of software implemented in Xively platform,
so the community can share the firmware for common devices but it did not provide the reusability at
service level for reusing the services and the data [33].

In Reference [34], authors have used ontology based semantic queries to detect user indoor
activities within the boundaries of a university campus. University activity ontology (UAO) was used
in their ontology based query model for sharing, exchanging, and reasoning to support semantic
relations among the classes. In Reference [35], authors discussed a semantic data-driven platform
for the annotation and reasoning of IoT data. This semantic data-driven approach used ontologies to
present contextual information and annotations of raw sensor data. The service was used as semantic
web gateway for enabling interoperability among systems [36]. The semantic web gateway translates

Sensors 2018, 18, 352 5 of 21

messages between services by using multi-protocol proxy architecture. A research article [37], proposed
semantic annotations of data received from smart objects. The semantic annotation of smart object’s
data was performed to integrate smart objects with IoT applications through the web.

3. Web of Objects Architecture for IoT Service Provisioning

WoO is the IoT platform which provides a way to virtualize the real world objects (RWOs) and
content objects through VOs. The semantic rules are applied over the mashup of VOs and CVOs
for the provisioning of IoT services from the group of microservices. The mashup of VOs is called a
CVO, and the conglomeration of CVOs is called a microservice. The standalone microservice can be
reused in two different IoT services and a user can also choose few microservices from the group of
microservices for the creation of new IoT services. The VOs are connected, controlled and incorporated
with the RWOs, social network service objects or any other content objects. VO supports development,
deployment, and functional operations for IoT services on the World Wide Web. WoO supports the
representation of RWOs and content objects as “web objects” on the web through the VO. It provides
the core functionalities of creating, deploying, and maintaining of IoT services from the group of
microservices. The microservices based Web of Objects layered architecture is shown in Figure 1.
WoO architecture has three layers: VO layer, CVO layer, and Service layer.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 21

web gateway for enabling interoperability among systems [36]. The semantic web gateway translates
messages between services by using multi-protocol proxy architecture. A research article [37],
proposed semantic annotations of data received from smart objects. The semantic annotation of smart
object’s data was performed to integrate smart objects with IoT applications through the web.

3. Web of Objects Architecture for IoT Service Provisioning

WoO is the IoT platform which provides a way to virtualize the real world objects (RWOs) and
content objects through VOs. The semantic rules are applied over the mashup of VOs and CVOs for
the provisioning of IoT services from the group of microservices. The mashup of VOs is called a CVO,
and the conglomeration of CVOs is called a microservice. The standalone microservice can be reused
in two different IoT services and a user can also choose few microservices from the group of
microservices for the creation of new IoT services. The VOs are connected, controlled and
incorporated with the RWOs, social network service objects or any other content objects. VO supports
development, deployment, and functional operations for IoT services on the World Wide Web. WoO
supports the representation of RWOs and content objects as “web objects” on the web through the
VO. It provides the core functionalities of creating, deploying, and maintaining of IoT services from
the group of microservices. The microservices based Web of Objects layered architecture is shown in
Figure 1. WoO architecture has three layers: VO layer, CVO layer, and Service layer.

Figure 1. Microservices based IoT service provisioning in Web of Objects architecture.

Figure 1. Microservices based IoT service provisioning in Web of Objects architecture.

The VO layer provides the API to connect RWOs and content objects to WoO platform. VO layer
also provides API for sending and receiving of data from third party services. These third party services
can be social network services (SNS), or weather services (WS). To connect third party services with

Sensors 2018, 18, 352 6 of 21

WoO platform has great importance, as the data from these services can be reused for the customization
and user preferred IoT services [38].

The virtual object is the key component in IoT platforms for digital representation of RWOs,
service discovery and service provisioning [39]. To virtualize RWOs with VO was discussed in
iCore [40,41]. In iCore, the VO can represent ICT (Information and Communication Technologies)
object and non-ICT object and the VO in WoO can be sensor, device, task, process, and information.
The VO in WoO contains semantic ontology for semantical representation of data generated by RWOs.
By using VO and CVO ontology, actionable knowledge is created for triggering the actions on RWOs.
The VO provides a semantic data model, and semantic data annotation schemes to harmonize RWOs
and represent content objects in WoO platform.

The VO registry database holds the current status of VOs and performs the task of record keeping.
The record keeping includes metadata of VO type, VO creation date, and duration for which the
particular VO was used. A VO template is created so the other similar types of RWOs can easily
be represented. The VO template is a basic description and properties to represent the RWOs and
content objects. The VO template is created and stored as OWL (Web Ontology Language) file. In WoO
platform, the VO template file includes the RDF and XML tags for the VO profile, VO temporal features,
and RWOs attributes. The VO template database holds the default or initial VO templates. The initial
VO template is used in the situation when the new object requests to connect to the WoO platform.
Upon connecting a new object, the default template updated as per the specification of that object.
The default or initial template is created from the VO information model [16]. The VO management
module includes the functions for changing and updating of VOs, VO access rights, and VO lookups.
The VO management functions also include the capability to resolve the triggering action conflicts;
in this case, the VO represents the actuator.

The CVO applies semantic rules on the selected list of VOs, for the execution of service features
with microservices. In WoO platform, RWO and other content object’s data are semantically annotated
through VOs to achieve actionable knowledge. This actionable knowledge is used to monitor real
world situations; for example, receiving current temperature, current humidity, current weather
update, and detecting the occupancy of persons in the meeting room to automatically adjust room
temperature. In the example, for the questions of when, why, how and at what level room temperature
could be adjusted, the CVO at CVO layer decides the answers. The CVO in this example can be
“MEETING_ROOM_HAVC_MONITORING”.

To support service modularity and scalability, the CVO layer functions and database are separated
into functional groups by following microservices patterns. The CVO layer includes functions
to support the operations of CVO layer. These functions include CVO management functions,
CVO creation functions, machine learning functions, CVO reuse detection functions, and CVO
system knowledge functions. The CVO management functions contain CVO update, CVO authorize,
CVO discover, and CVO search functions. Machine learning functions are required to extract
and inference the knowledge from semantically annotated data. The CVO reuse functions have
great importance in WoO platform. The CVO reuse detection function triggered when the graph
of CVOs (RDF/OWL payload) received from service layer for the execution of service features
using microservices. This function checks for already available CVO instances which are executed,
which executions can be reused to fulfill service requests, or which need to create a new instance.
The system knowledge functions collect facts about the CVOs which are used in the execution of
service features. These functions are used by the domain expert or system developers to create/update
new CVO templates and also used by the internal system components to execute service features
through microservices. The explanation of service layer (Figure 1) will be carried out in next section
along with microservices algorithm and microservices information model.

Sensors 2018, 18, 352 7 of 21

4. Functional Model of Microservices in WoO Platform

The service layer in WoO platform provides the northbound interfacing API for the IoT
applications. For enhancing the reusability of objects microservices, listener and object reusing
microservices have been introduced at the service layer (Figure 1). Microservice listener performs the
tasks of requesting a missing object from the central object repository as well as responding to the
requested objects from other WoO enabled application domains. The phenomena of requesting and
responding to objects are performed with the coordination of central object repository microservice.
The request of IoT service can be fulfilled with a single microservice or with a group of microservices.
The service layer contains databases and service level functional components to foster IoT services
modularity, scalability, and plug and play functionality with microservices. The microservices registry
database holds the status of current microservices. This status can be microservices execution
time, expected finish time, and how many times a microservice is used in which service request.
The microservices template database contains initial microservices templates from which other
microservices will be created. The microservices repository database stores the created microservices
templates. The created microservices template includes microservices metadata and the list of CVOs
to execute service features with microservices. The microservice template is created based on the
microservice information model. The information model for microservices is shown in Figure 2.

Microservices (µŞ)

- hasURI: URI
- hasName: String
- hasType: URI

CVO

- hasURI: URI
- hasCVOName: String
- hasStatus: String

MicroservicesType

- hasURI: URI
- hasType: URI

Owner

- hasOwnerId: URI
- hasName: String
- OwnerPass: PASSWORD
- OwnerLocation: GPS

Access Right

- hasURI: URI
- hasValue: String

Billing Cost

hasURI: URI
hasValue: String

Microservices Function

- hasName: String
- hasFunctionType:URI

Input Functions

- hasName: String
- hasFunctionType:URI
- hasFunctionValue:Literal

Output Functions

- hasName: String
- hasFunctionType:URI
- hasFunctionValue:Literal

Location

- hasURI: URI
- hasLocation: geolocation

hasMicroservicesType

hasB
illingC

ost

hasLocation

hasFunctionAccessRight

hasInputFucntion

hasOutputFucntion

MicroservicesTag

- hasTagId: URI
- hasTagName: URI

hasMicroservicesTag

Figure 2. Information model for microservices.

Microservices information model includes several functional, non-functional and descriptive
properties, such as input and output preconditions. Microservices information model provides
well-defined and standardized metadata; that offer all necessary functionalities for interacting with
the CVO layer. The microservices information model also includes billing cost for the advertising,
accessing and using of microservices. Access rights restrict accessing both microservices and its
functionalities because a user might be allowed to access a microservice, but all the functionalities
might not be allowed to access and use it. Input and output functions describe the incoming and
outgoing properties and functionalities of microservices.

Microservices supports service layer functions and tasks. These tasks and functions contain
microservices management tasks, microservices creation tasks, microservices lookup and discovery
tasks, and service authorization functions. The other components include objects reusing microservices,

Sensors 2018, 18, 352 8 of 21

and microservices listener, for requesting and responding of objects from/to other application domains
through central object repository microservice. When a service request arrives at service layer from
the IoT applications, the service authentication function checks the service credentials. After service
request authentication, microservices lookup and discovery functions are used to search required
microservices from the microservices registry for the execution of service request. The object reusing
microservices reuses the already instantiated object from the local domain registry to fulfill the service
request and also checks local domain registry from time to time for the newly created or updated object.
The information of newly created or updated object disseminated to the central objects repository in
the cloud through the central objects repository microservice and object reusing microservices.

Microservices and related objects discovery algorithm are shown in Figure 3a,b. This flow chart
based algorithm searches microservices and required objects (i.e., VO, CVO) from local domain registry.
If the required objects are not found in local domain registry, then microservices create a request to the
central objects repository. The process of microservices and related objects discovery is explained as
follows:

• When the service is requested from the IoT application, the get_service_parameters function takes
input as a service request.

• The function get_service_parameters searches the service in service registry based on service
input parameters and it returns the matched Context and Requests Parameters (c&rps) from
the service registry.

• Then, the correlated microservices are discovered from the microservices registry. The discovery process
is based on the Context and Requests Parameters (c&rps). At this step, the get_correlated_microservices
function is used. The correlated microservices are those that are matched based on the initial
service request.

• After the discovery of correlated microservices (c&rpµŞ) and Context and Requests Parameters
(c&rps), the distance rate between c&rps and c&rpµŞ is calculated.

• The function get_alternate_microservices takes three inputs from the microservices registry: distance
rate (dr), list of correlated microservices (list_of_correlated_µŞ) and weight parameters (wp).
This function returns a list of alternate microservices. The list of alternate microservices is
the group of microservices which are more filtered microservices and are matched with the
service request.

• The product result of distance rate (dr) and weight parameters (wp) is compared with a threshold
value. If the result of the product is greater than or equal to a threshold value, then the group of
alternate microservices is selected; otherwise, the list of alternate microservices will be obtained
by using the get_alternate_microservices function.

• From the group of selected alternate microservices, the weighted sum of all microservices is
calculated with the get_weighted_sum_microservices function.

• The get_ranked_microservices function ranks all the microservices from the filtered list and returns
highly ranked microservice from the group of filtered microservices.

• Now, the filtered microservice checks its objects (i.e., VO, CVOs) to execute the service features.
• In Figure 3b, the get_objects_local_registry function checks the required objects in the local

object registry. If the required objects are not found in the local object registry, then the
get_object_central_cloud_repository function will get required objects from the central objects
repository by using central object repository microservice.

Sensors 2018, 18, 352 9 of 21
Sensors 2018, 18, x FOR PEER REVIEW 9 of 21

(a)

Figure 3. Cont.

Sensors 2018, 18, 352 10 of 21

Sensors 2018, 18, x FOR PEER REVIEW 10 of 21

(b)

Figure 3. (a) Microservices discovery and lookup algorithm; and (b) microservices relevant objects
discovery and lookup algorithm.

5. Enhancing Objects Reusability in WoO Based IoT Environment

In the previous sections, we have discussed microservices functional model in WoO platform
for IoT service provisioning and using a group of microservices to execute IoT service request. Now,
problems of reusing and extending required or customized objects of other application domains are
considered. The phenomena of sharing, understanding and reusing of objects in various WoO
enabled application domains through microservices are shown in Figure 4. The mechanism presented
in Figure 4 fosters the reusability of objects, extensibility, and creation of complex IoT applications
by combining the information and knowledge from simple small IoT application domains.

Three WoO based IoT application domains are shown in Figure 4. Each domain contains VO,
CVO, and service layer. The service layer contains microservices and microservices related functions.
Each application domain implementation has two northbound interfaces. The first is known as
service API and the second is called a microservices listener. The service API is used for the service
requests from the IoT applications to the WoO platform. For example, in the smart home application
domain, the service request from IoT application can be a controlling and monitoring of room
heating, cooling, and ventilation.

Figure 3. (a) Microservices discovery and lookup algorithm; and (b) microservices relevant objects
discovery and lookup algorithm.

5. Enhancing Objects Reusability in WoO Based IoT Environment

In the previous sections, we have discussed microservices functional model in WoO platform
for IoT service provisioning and using a group of microservices to execute IoT service request.
Now, problems of reusing and extending required or customized objects of other application domains
are considered. The phenomena of sharing, understanding and reusing of objects in various WoO
enabled application domains through microservices are shown in Figure 4. The mechanism presented
in Figure 4 fosters the reusability of objects, extensibility, and creation of complex IoT applications by
combining the information and knowledge from simple small IoT application domains.

Three WoO based IoT application domains are shown in Figure 4. Each domain contains VO,
CVO, and service layer. The service layer contains microservices and microservices related functions.
Each application domain implementation has two northbound interfaces. The first is known as service
API and the second is called a microservices listener. The service API is used for the service requests
from the IoT applications to the WoO platform. For example, in the smart home application domain,
the service request from IoT application can be a controlling and monitoring of room heating, cooling,
and ventilation.

The microservices listener contains Object Requester Microservice (OReqµŞ) and Object Responder
Microservice (OResµŞ). The OReqµŞ and OResµŞ are used to handle the communication mechanism
for requesting and responding of objects from central objects repository in WoO enabled application
domains. The objects reusing microservices functional block contains the microservices for processing
and mediating of objects. Thus, these objects can be reused in the requested application domain.

Sensors 2018, 18, 352 11 of 21

Sensors 2018, 18, x FOR PEER REVIEW 11 of 21

The microservices listener contains Object Requester Microservice (OReqµŞ) and Object
Responder Microservice (OResµŞ). The OReqµŞ and OResµŞ are used to handle the communication
mechanism for requesting and responding of objects from central objects repository in WoO enabled
application domains. The objects reusing microservices functional block contains the microservices
for processing and mediating of objects. Thus, these objects can be reused in the requested application
domain.

Figure 4. Objects reusability and extensibility in WoO enabled IoT environment.

For clearly understanding of the following explanation, we consider the domain which makes a
request for the object as domain_requester, and the domain whose object will be served is considered
as domain_requestee.

When the IoT application sends a service request to its own domain and domain microservices
do not meet the requirements of objects to serve a request, or the domain wants to reuse the
customized objects of other domain through the central objects repository in the cloud, then the object
requester microservice (OReqµŞ) will make a request to the central objects repository microservice.
Central objects repository microservice lookups its repository, and will serve the best object to the
requester. As the central objects repository microservice is using the weight factor for each object
stored in the cloud. The domain_requester objects reusing microservices will receive the object, and
process and mediate that object according to their own domain ontologies and system configuration.
The detail process of objects reusing microservices is explained in the following section.

Figure 4. Objects reusability and extensibility in WoO enabled IoT environment.

For clearly understanding of the following explanation, we consider the domain which makes a
request for the object as domain_requester, and the domain whose object will be served is considered
as domain_requestee.

When the IoT application sends a service request to its own domain and domain microservices
do not meet the requirements of objects to serve a request, or the domain wants to reuse the
customized objects of other domain through the central objects repository in the cloud, then the object
requester microservice (OReqµŞ) will make a request to the central objects repository microservice.
Central objects repository microservice lookups its repository, and will serve the best object to the
requester. As the central objects repository microservice is using the weight factor for each object stored
in the cloud. The domain_requester objects reusing microservices will receive the object, and process
and mediate that object according to their own domain ontologies and system configuration. The detail
process of objects reusing microservices is explained in the following section.

Objects Matching and Alignment

The received response from the central object repository is processed and mediated by the
domain_requester microservices so the received object can be reused in the domain_requester.
The object reusing microservices at domain_requester can semantically understand the received
object and fulfill the deficiency of objects for the execution of service features. The object matching
microservices receives payload as a response from the central objects repository microservice.
This payload is then sent to the filtering microservices for further processing. The objects filtering
microservices filters the payload into entities. These entities contain domain_requestee concepts
used in the required object and object metadata. By using concepts of the received object from the
domain_requestee and domain_requester concepts, microservice (µŞ_a) and microservice (µŞ_b)
compare both concepts. The matching and comparison of concepts are performed based on
domain ontology properties (i.e., object properties, data properties, and equivalent properties).
Microservices µŞ_c and µŞ_d check for ambiguous terms, synonym, hypernyms, replacement, and

Sensors 2018, 18, 352 12 of 21

term equivalency between two object’s concepts of different application domains (domain_requester
and domain_requestee) from the central vocabulary and WordNet dictionary, respectively. To identify
a matched object from two different application domain ontologies, a matching decision has been
carried out on the score of several matching concepts. The matching cumulative score between the two
objects concepts is expressed in Equation (1). In the equation, the requested CVO (CVO_Conceptsreq)
is matched and aligned with the responded CVO (CVO_Conceptsres) based on CVO ontology concepts,
properties and relationships. The final matching decision will take place based on a threshold value.
The process taking place in these microservices is explained in Algorithm 1.

match(CVO_Conceptsreq, CVO_Conceptsresp)

=

 1, 1
n

n
∑

k=1
|match f unction(CVO_Conceptsreq, CVO_Conceptsresp)| ≥ thresholdmatch

0, otherwise

(1)

Algorithm 1. Algorithm for matching and aligning

Input domain_requester_OI, CVOresp

Output domain_reqester_CVO (CVOreq) and CVO minimum matched Value
1: function Get_domain_requester_CVO(OI, CVOresp)
2: CVOresp → responded CVO from the repository
3: OI → domain_requester ontology
4: FI → Features of Ontology OI

5: FJ → Features from OJ

6: UFO → Uniform concepts for the required CVO
7: FI ← getFeatures(OI)
8: FJ ← getFeatures(CVOresp)
9: for ∀ FJ in FI do
10: if match(FJ, FI) ≥ 1 //match concepts domain ontology
11: then MF1 ← getMatchedFeature (FJ, FI)
12: else if Match(FJ, FI) = 0
13: then ¬MF1 ← getNotMatchedFeatures(FJ, FI)
14: end if
15: if (check and Replace ¬MF1 in central vocabulary) ≥ 1
16: then MF2 ← getMatchedFeatures(¬MF1)
17: else if Match(¬MF1) = 0
18: then ¬MF2 ← getNotMatchedFeatures(¬MF1)
19: end if
20: if (check and Replace ¬MF2 in WordNet Dictionary) ≥ 1
21: then MF3 ← getMatchedFeatures(¬MF2)
22: end if
23: Score← 1

3 Sum{count(MF1), count(MF2), count(MF3)}
24: if Score ≥ threshold
25: then CVOreq ←merge(MF1, MF2, MF3)
26: end if
27: end for
28: // For requested and responded CVOs CVOreq, CVOresp

29: IfCVOreq, CVOresp are similar
30: then sim_distance(CVOreq, CVOresp) = 1
31: and return CVOreq

, 1
32: else check for the %age of matching between CVOreq, CVOresp

33: CVOmin_matched_value = sim_distance(CVOreq, CVOresp) = ∑ dist_min(CVOreq, CVOresp)

34: return CVOreq, CVOmin_match_value
35: end function

Sensors 2018, 18, 352 13 of 21

Algorithm 1 explains the process taking place to match and align the objects for enhancing the
reusability of objects with microservices. The algorithm takes two inputs, i.e., domain_requester
ontology (OI) and responded CVO (CVOresp). The responded CVO (CVOresp) contains the ontology
concepts related to the original application domain. Initially, the features of domain_requester
ontology (e.g., concepts, properties and relationship) and responded CVO (CVOresp) are extracted.
Then, the features of CVO (CVOreq) and CVO responded (CVOresp) are matched. The matched and
non-matched features are extracted in this step. The non-matched features are processed further
for matching with the help of ontology concepts, wordNet dictionary, and central vocabulary.
After matching, the matched features are counted for each matching steps and the average
matched CVO features are converted to score. Based on the threshold score, all matched concepts,
properties, and relationships are aligned and merged for making it a single requested CVO
(CVOreq). To check the minimum match value of requested and finally harmonized CVO from
both concepts, the similarity distance has been calculated with two well-defined similarity distance
techniques: Levenshtein edit distance (LD) [42,43], and Leacock-Chodorow matcher (LCM) [44,45].
Finally, the requested CVO (CVOreq) and the minimum matched value have been returned to the
microservices. Then, the domain_requester microservices will use the received object to fulfill the
service request.

6. Use Case and Prototype

Microservices in WoO architecture supports the enhancement of object reusability and extensibility
in WoO enabled IoT environment. WoO provides IoT services from the group of microservices and
enables the ubiquitous IoT environment for user smart space. A smart space based IoT applications
offer intelligent IoT services based on user location, context, and activity in a seamless manner. In these
smart space applications, objects are shared, and reused in the case they are not available at the existing
domain or the services need more customized objects. To realize the development of objects’ reusability
and discovery for fulfilling the requirement of service request, a use case has been designed and a
prototype has been implemented.

6.1. Use Case Scenario

The use case scenario involves a user living in a home equipped with the smart features based
on WoO platform. This system provides smart home features (i.e., heating, lighting, air-conditioning,
security, fire detection and management) and user health monitoring services. The user needs to visit
other cities frequently for her business trips. During her business trips, she stays in the hotel, and she
wants the same comfort and satisfaction that she has at home. As a laywoman, she does not know
how to create a service from a group of microservices and share the objects between her home and
hotel room. The hotel also provides the room heating and air-conditioning services based on WoO
platform, but it has different objects. From this use case, two IoT application domains (smart home
and smart hotel) have been identified.

6.2. Proof of Concept

The settings of user preferred and customized services in living room environment depend on
user context, user health, user activity (e.g., sleeping, reading, and listening), and weather condition.
Smart home domain features include home environment monitoring, safety monitoring, and emergency
situation monitoring. Smart hotel domain features include guest safety and emergency situation; it also
provides room environment monitoring with general rules and logic. The rules and logic of services
provided by the smart hotel application domain are applicable to all guests. Therefore, the smart hotel
domain microservices need to request users preferred and customized objects from smart home domain
to execute service features, as requested by the user. As discussed earlier, the user wants her preferred
and customized comfort level at hotel room environment, and health monitoring services that she has
at home.

Sensors 2018, 18, 352 14 of 21

When the user selects and activates services (i.e., health monitoring service, room environment
monitoring service, safety monitoring service, and emergency situation handling service) by using her
smartphone, microservices of smart hotel domain will make a request to the smart home microservices
for the objects. In this scenario, we assume that the user already grants the permission for reusing of
objects. These objects include rule, logic, and metadata to execute service features according to the user
preferences and customization. After retrieving the objects from the smart home domain, microservices
at smart hotel domain will use these objects with their own VOs, and CVOs. The VOs represent relevant
sensors and actuators in smart hotel domain. These sensors include indoor and outdoor temperature
sensors, CO2 sensor, humidity sensor, luminous sensor, light sensor, position sensor, accelerometer
sensor, plus sensor, glucose sensor, and body temperature sensor. These actuators include HAVC, LED,
alarm, fan, digital signage, etc. Figure 5 shows microservices model with relevant CVOs and VOs in
the ontology for smart home and smart hotel application domains as a proof of concepts.Sensors 2018, 18, x FOR PEER REVIEW 15 of 21

Figure 5. Microservices with relevant CVOs and VOs in ontology for smart home and smart hotel as
a proof of concept of reusing the CVOs for customized and user preferred services.

6.3. Prototype Details

A prototype has been implemented based on a use case scenario at advanced networking and
multimedia laboratory. Figure 6 shows the microservices based prototype implementation model for
a discussed use case scenario. For the microservices based prototype implementation, we installed
five virtual machines (VMs) with Oracle VM virtualbox version 5.1 (https://www.virtualbox.org/
wiki/Downloads) on the Ubuntu Server (https://www.ubuntu.com/server) operating system. The
first VM contains domain specific application services (i.e., in our case, smart home domain services,
and smart hotel domain services). The second and third VMs contain microservices and microservices
related functionalities for smart home and smart hotel application domains. In the second and third
VMs, microservices execution environment, microservices instance pool, and microservices load
balancing functions are deployed. Microservices template databases for smart home and smart hotel
application domains have also been created in these VMs. The microservices in these VMs (i.e.,
second and third VMs) can reuse CVOs from central objects repository, and also take relevant CVOs
and VOs from ontology management VM. The fourth VM contains the virtual level management
functions of WoO platform. These functions include CVO management functions, VO management
functions, and VO/CVO creation functions, and this virtual machine also contains CVO databases,
VO databases, and MySQL (https://www.mysql.com/) database. A triple store software is used for

Figure 5. Microservices with relevant CVOs and VOs in ontology for smart home and smart hotel as a
proof of concept of reusing the CVOs for customized and user preferred services.

In Figure 5, the ontology model of smart home and smart hotel application domains have
been shown with the microservices. Smart home ontology model and smart hotel ontology model

Sensors 2018, 18, 352 15 of 21

contains VOs, CVOs, and microservices separately. Smart home ontology model contains three CVOs
(i.e., UserHelathMonitoring, HomeEnviornmentMonitoring, and HomeUserComfortMonitoring) and two
microservices with many instances for the execution of CVO functionalities and load balancing of services.
The smart hotel ontology model also contains three CVOs (i.e., GuestEmergencySituationMonitoring,
HotelRoomEnviornmentMonitoring, and GuestHealthMonitoring), a microservice with many instances
and many VOs. These three CVOs from the smart home ontology model are used with the application
domain microservices in the respective domain, and reused in smart hotel domain microservices for more
customized and user preferred IoT services, when the same user stays in a hotel during her business trip.
The proof of concept shows that the CVOs are reused and extended to other application domains for
better services without creating new CVOs for that domain.

6.3. Prototype Details

A prototype has been implemented based on a use case scenario at advanced networking and
multimedia laboratory. Figure 6 shows the microservices based prototype implementation model for a
discussed use case scenario. For the microservices based prototype implementation, we installed five
virtual machines (VMs) with Oracle VM virtualbox version 5.1 (https://www.virtualbox.org/wiki/
Downloads) on the Ubuntu Server (https://www.ubuntu.com/server) operating system. The first VM
contains domain specific application services (i.e., in our case, smart home domain services, and smart
hotel domain services). The second and third VMs contain microservices and microservices related
functionalities for smart home and smart hotel application domains. In the second and third VMs,
microservices execution environment, microservices instance pool, and microservices load balancing
functions are deployed. Microservices template databases for smart home and smart hotel application
domains have also been created in these VMs. The microservices in these VMs (i.e., second and
third VMs) can reuse CVOs from central objects repository, and also take relevant CVOs and VOs
from ontology management VM. The fourth VM contains the virtual level management functions
of WoO platform. These functions include CVO management functions, VO management functions,
and VO/CVO creation functions, and this virtual machine also contains CVO databases, VO databases,
and MySQL (https://www.mysql.com/) database. A triple store software is used for storing the
VO and CVO ontologies and semantically annotated data. The fifth VM is used for central objects
repository, which includes CVOs and VOs from both application domains. All the databases in
the prototype have a separate data access point implementation. The separate data access point
implementation is considered because the failure of one data access point will not fail the other
ones. In the prototype implementation, microservices for both domains have also been implemented
separately, because these microservices can be updated and maintained without disturbing other
application domain microservices.

In the prototype implementation, MySQL database has been used for storing the raw sensors
data. The sensors, such as indoor and outdoor temperature sensors, CO2 sensor, humidity sensor,
luminous sensor, light sensor, position sensor, accelerometer sensor, plus sensor, etc., and actuators,
such as LED, HAVC, fan, etc., have been connected through the gateway. The communications
among all the components and central objects repository have been achieved through RESTful Web
Services. Publish/subscribe based communication with sensors actuators is achieved with RabbitMQ
(https://www.rabbitmq.com/). The ontology model of VOs and CVOs has been created with
protégé (https://protege.stanford.edu/download/protege/4.3/installanywhere/Web_Installers/).
Apache Jena Fuseki (https://jena.apache.org/documentation/fuseki2/) SPARQL endpoint has been
used for the storage of VO/CVO templates. The SPARQL query language has been used to query
Apache Jena Fuseki for VO/CVO. Spring Boot (https://jaxenter.com/spring-boot-tutorial-rest-
services-and-Microservices-135148.html) has been used for the microservices development. To serve
the objects and communication among the application domains, and for the deployment of RESTful
web services, the Apache HTTP server (https://httpd.apache.org/download.cgi) has been used.
Initially, collected data from sensors were stored in MySQL database, and, then, the data have been

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.ubuntu.com/server
https://www.mysql.com/
https://www.rabbitmq.com/
https://protege.stanford.edu/download/protege/4.3/installanywhere/Web_Installers/
https://jena.apache.org/documentation/fuseki2/
https://jaxenter.com/spring-boot-tutorial-rest-services-and-Microservice s-135148.html
https://jaxenter.com/spring-boot-tutorial-rest-services-and-Microservice s-135148.html
https://httpd.apache.org/download.cgi

Sensors 2018, 18, 352 16 of 21

annotated with relevant VOs and stored in VO repository. CVOs were used to compose microservices
and the Hermit 1.8.3 (http://www.hermit-reasoner.com/) reasoner has been used over the VO annotated
data for further inference, relations, and knowledge.

Virtual Machine for
application domains

Smart home Services

Smart hotel Services

Other domain
Services

Microservices Execution
Environment

Virtual Machine for Smart
home Microservices

Microservices Instance
Pool

Microservices Load
Balancing

Microservices Execution
Environment

Virtual Machine for Smart
home Hotel services

Microservices Instance
Pool

Microservices Load
Balancing

CVO Management
Functions

Virtual Machine for Ontology
Management

VO Management
Functions

VO/ CVO Creation
Functions

CVO Data
Access

/SPAQRQL

VO Data
Access

/SPAQRQL

Data
Access

/SPAQRQL

Microservices
Templates

CVO Databases

VO Databases

Sensor Data
MySQL

Data
Access

GatewayGateway

Sensors/
Actuators

Virtual Machine for
Central Objects Repository

Repository Access
point

Figure 6. Prototype implementation model for the use case scenario.

Our prototype design and implementation have some limitations in reusing of objects with
microservices. The proposed model has been applied in the use case because the smart home and
smart hotel are related to each other and offer similar types of IoT services. For example, related
application domains include smart hotel, smart home, smart office, etc., whereas smart industry and
smart agriculture are not related to the smart home or smart hotel. However, some of the functionalities
of different types of domain such as smart industry or smart agriculture can perform service creation
and provisioning in the smart home or smart hotel, even with degraded quality that depends on the
similarity between the requested services.

7. Experiments and Results

The service implementation in monolithic approach consists a single codebase with all logic
to discover, inference and execute service features with CVOs directly at the same place. The list
of relevant CVOs was stored in a single service template because the logic of all service features
was implemented as a single unit. In a monolithic implementation, all three services, service 1,
service 2, and service 3 (Figure 7b), have a single executable binary file. The single executable
binary file for all services creates easiness in the deployment of services for the IoT application
domain. However, any change or update in one service affects the whole system and requires the
redeployment of all services. The process of redeployment may bring down all services. The single
codebase implementation and size of application may also cause the delay in service start-up time and
service response time. The scalability and availability of services are two major issues of monolithic
implementation, because the conflict in resource requirements and a bug in any sub function can
potentially bring down the whole application domain.

In microservices approach, the implementation codes of a service were distributed to many
microservices. The service accessed the required CVOs through microservices to execute service

http://www.hermit-reasoner.com/

Sensors 2018, 18, 352 17 of 21

features. In this approach, the information on the required CVOs was stored in the microservices
template. The different microservices were reused with different service features, due to the
independency of codebase and CVOs. In our experiment, we implemented six microservices (µŞ)
and reused some of the microservices in Ş1, Ş2, and Ş3. The first service includes four microservices,
i.e., Ş1 = (µŞ1, µŞ3, µŞ4, µŞ6); the second service comprises of three microservices, i.e., Ş2 = (µŞ1, µŞ4,

µŞ5); and the third service includes four microservices, i.e., Ş3 = (µŞ2, µŞ3, µŞ4, µŞ5). Due to separate
implementation, each service can be scaled and deployed independently.

To measure the effectiveness of our proposed approach and its implemented prototype, the results
have been verified with numerous experiments and the performance has been evaluated with respect
to all system component. The system configuration for the experiment consisted of a PC with windows
pro 10 64-bit, Intel Core i7-6700@3.40 GHz, 16 GB RAM, in which five VMs were installed, as discussed
in the prototype detail section. During the experiments, the payload size of request and response,
and execution time of microservices were considered.

A first experiment was performed for the comparison of service discovery time with both
microservices approach and monolithic approach, while keeping an equal number of CVOs in each
service. The service discovery time is the time when the service request arrived and the related objects
such as service, microservices and their relevant number of CVOs were searched from the relevant
databases (service registry database, microservices registry database, CVO registry database, and VO
registry database). In service discovery process, the IoT service request parameters were matched with
the service metadata, microservice metadata, and CVO metadata.

The results of IoT service discovery time with microservices and monolithic approach are shown
in Figure 7a. For comparison of service discovery time, the IoT service implemented with the
microservices approach and monolithic approach. The number of CVOs in each service kept equally.
Initially, in the experiment, two CVOs were used in both types of service templates and then this
number was increased exponentially to 4, 6, 8, 10, 12, 14, 16, 18 and 20. During the experiment when
the number of CVOs increased in the service template, the discovery time of both approaches were
also increased. However, the discovery time of microservices approach increased slowly as compared
with the monolithic, because of the lightweight mechanism of microservices implementation. In the
experiments to support the modular and single function oriented concept of microservices, we tried to
keep a minimum number of CVOs with every microservice.Sensors 2018, 18, x FOR PEER REVIEW 18 of 21

(a) (b)

Figure 7. (a) Average discovery time for the service with the same number of CVOs with
microservices vs. monolithic; and (b) average execution time for the service with microservices and
monolithic approach.

The second experiment has been performed to compare the service execution time with the
microservices approach and monolithic approach. The results of service execution time with both
approaches are shown in Figure 7b. To compare the service execution time with microservices and
monolithic approaches, three separate services were designed and implemented. Each service pair
(i.e., Ş1 {Microservices, Monolithic}) implementation contained an equal number (2, 4, 6, 8, 10, 12, 14,
16, 18 and 20) of CVOs. The results of the experiment showed that microservices approach takes less
service execution time than the monolithic because, in the microservices approach, not all objects
were loaded in the cache memory, whereas, in monolithic approach, all objects are loaded into it. The
other reason was lightweight container based service execution environment for every microservice.

The results of the experiments show the importance significance in WoO platform for IoT service
provisioning. Microservices is not discussed in iCore [40] and oneM2M [30] for service modularity
and IoT service provisioning. The service in iCore is discussed monolithically, while our approach
supports the reusable small services in terms of microservices. To increase the scalability of IoT
platforms, the reusability in terms of software is discussed in Xively platform for sharing the
firmware of common devices [33]. The Xively platform does not provide the reusability features at
the service level. Our approach provides the reusability of objects in terms of microservices at the
service level.

8. Conclusions

In this paper, a novel microservices approach for enhancing the reusability of objects in WoO
based IoT environment has been presented. The research design has been an interactive and agile
process, in which we followed microservices pattern and semantic web technologies. A key concept
in this article is the enhancement of objects’ reusability in terms of microservices and CVOs,
providing the mechanism for objects sharing and semantically understanding of objects among
various IoT application domains enabled with WoO based IoT environment. Microservices pattern
has been followed to enhance CVO reusability and to support the rapid development and
deployment. For searching and ranking of microservices, a flow chart based algorithm has been
presented. For sharing the requested objects in various application domains, a central objects
repository microservice, and objects repository in the cloud have been designed and implemented.
For reusing the objects of other application domains through central objects repository, an algorithm
for matching, mapping, and aligning has been proposed. A use case scenario of two application
domains has been designed and a prototype has been implemented.

For in-depth analysis, the service discovery and service execution time with the microservices
approach and monolithic approach have been compared. The results of the experiment have shown

Figure 7. (a) Average discovery time for the service with the same number of CVOs with microservices vs.
monolithic; and (b) average execution time for the service with microservices and monolithic approach.

Sensors 2018, 18, 352 18 of 21

The second experiment has been performed to compare the service execution time with the
microservices approach and monolithic approach. The results of service execution time with both
approaches are shown in Figure 7b. To compare the service execution time with microservices and
monolithic approaches, three separate services were designed and implemented. Each service pair
(i.e., Ş1 {Microservices, Monolithic}) implementation contained an equal number (2, 4, 6, 8, 10, 12, 14,
16, 18 and 20) of CVOs. The results of the experiment showed that microservices approach takes less
service execution time than the monolithic because, in the microservices approach, not all objects were
loaded in the cache memory, whereas, in monolithic approach, all objects are loaded into it. The other
reason was lightweight container based service execution environment for every microservice.

The results of the experiments show the importance significance in WoO platform for IoT service
provisioning. Microservices is not discussed in iCore [40] and oneM2M [30] for service modularity
and IoT service provisioning. The service in iCore is discussed monolithically, while our approach
supports the reusable small services in terms of microservices. To increase the scalability of IoT
platforms, the reusability in terms of software is discussed in Xively platform for sharing the firmware
of common devices [33]. The Xively platform does not provide the reusability features at the service
level. Our approach provides the reusability of objects in terms of microservices at the service level.

8. Conclusions

In this paper, a novel microservices approach for enhancing the reusability of objects in WoO
based IoT environment has been presented. The research design has been an interactive and agile
process, in which we followed microservices pattern and semantic web technologies. A key concept in
this article is the enhancement of objects’ reusability in terms of microservices and CVOs, providing
the mechanism for objects sharing and semantically understanding of objects among various IoT
application domains enabled with WoO based IoT environment. Microservices pattern has been
followed to enhance CVO reusability and to support the rapid development and deployment.
For searching and ranking of microservices, a flow chart based algorithm has been presented.
For sharing the requested objects in various application domains, a central objects repository
microservice, and objects repository in the cloud have been designed and implemented. For reusing
the objects of other application domains through central objects repository, an algorithm for matching,
mapping, and aligning has been proposed. A use case scenario of two application domains has been
designed and a prototype has been implemented.

For in-depth analysis, the service discovery and service execution time with the microservices
approach and monolithic approach have been compared. The results of the experiment have shown
that the microservices approach takes less service discovery time and also service execution time
then the monolithic in IoT service provisioning. Microservices in WoO platform support the service
scalability, modularity, and objects’ reusability for intelligence IoT service provisioning. The service
provisioning with microservices was not discussed in iCore, oneM2M, and Xively. The results of the
proposed approach and a use case prototype implementation prove that microservices approach has
great significance in IoT service provisioning and enhancement of objects’ reusability in WoO based
IoT environment. Our proposed approach also has some limitations in the case of object reusing from
other application domains with microservices. The proposed approach can work in related application
domain, where the related IoT services are provided. However, we believe that some of the services
can work partially, based on the similarity distance between the requested and responded CVOs.

Currently, we have been working towards object reusability with microservices in various related
application domains in WoO based IoT environment. In the future, we would like to extend this work
to other IoT platforms.

Acknowledgments: This work was supported by Institute for Information and Communications Technology
Promotion (IITP) grant funded by the Korea government (MSIP) (No. B0113-16-0002, Development of Self-Learning
Smart Ageing Service Based on Web Objects).

Sensors 2018, 18, 352 19 of 21

Author Contributions: The research work was conducted in collaboration with all authors. Muhammad Aslam
Jarwar and Ilyoung Chong defined the research theme and designed the objects’ reusability architecture. Muhammad
Aslam Jarwar, Muhammad Golam Kibria, and Sajjad Ali implemented the prototype. Muhammad Aslam Jarwar
wrote the article. Muhammad Aslam Jarwar and Ilyoung Chong discussed and analyzed the prototype results.
All authors have contributed to, read, and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. oneM2M. oneM2M Is the Global Standards Initiative for Machine to Machine Communications and the
Internet of Things. Available online: http://www.onem2m.org/ (accessed on 12 January 2018).

2. Simfony Blog. IoT Platforms: Vertically versus Horizontally Layered Architecture | Simfony Mobile.
Available online: http://simfonymobile.com/blog/IoT_Platforms_Vertically_versus_Horizontally_layered_
architecture/ (accessed on 11 January 2018).

3. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey
on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

4. Functional Framework of Web of Objects. Available online: http://www.itu.int/rec/T-REC-Y.4452 (accessed on
6 December 2017).

5. The 10 Most Popular Internet of Things Applications Right Now. Available online: https://iot-analytics.
com/10-internet-of-things-applications/ (accessed on 19 September 2017).

6. Jarwar, M.A.; Ali, S.; Kibria, M.G.; Kumar, S.; Chong, I. Exploiting interoperable microservices in web objects
enabled Internet of Things. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 49–54.

7. IERC-AC. IoT Semantic Interoperability: Research Challenges, Best Practices, Recommendations and Next
Steps. 2015. Available online: http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_
Semantic_Interoperability_Final.pdf (accessed on 26 September 2017).

8. O’Connor, R.V.; Elger, P.; Clarke, P.M. Continuous software engineering-A microservices architecture
perspective. J. Softw. Evol. Process 2017, 29, e1866. [CrossRef]

9. Microservices Are Not a Silver Bullet. Available online: http://microservices.io/ (accessed on 26 September 2017).
10. International Data Corporation. Available online: https://www.idc.com/infographics/IoT (accessed on

6 December 2017).
11. Keller, M.; Rosenberg, M.; Brettel, M.; Friederichsen, N. How Virtualization, Decentrazliation and Network

Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. Int. J. Mech. Aerosp. Ind. Mechatron.
Manuf. Eng. 2014, 8, 37–44.

12. Jarwar, M.A.; Chong, I. Exploiting IoT services by integrating emotion recognition in Web of Objects. In Proceedings
of the International Conference on Information Networking, Da Nang, Vietnam, 11–13 January 2017; pp. 54–56.

13. Kibria, M.; Jarwar, M.; Ali, S.; Kumar, S. Web objects based energy efficiency for smart home IoT service
provisioning. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks
(ICUFN), Milan, Italy, 4–7 July 2017.

14. Ali, S.; Kibria, M.G.; Jarwar, M.A.; Chong, I.; Lee, H. A Model of Socially Connected Web Objects for
IoT Applications. Wirel. Commun. Mob. Comput. 2018, 2018, 20.

15. Kumar, S.; Kibria, M.G.; Ali, S.; Jarwar, M.A.; Chong, I. Smart spaces recommending service provisioning in
WoO platform. In Proceedings of the 2017 International Conference on Information and Communications
(ICIC), Hanoi, Vietnam, 26–28 June 2017; pp. 311–313.

16. Kibria, M.; Ali, S.; Jarwar, M.; Kumar, S.; Chong, I. Logistic Model to Support Service Modularity for the
Promotion of Reusability in a Web Objects-Enabled IoT Environment. Sensors 2017, 17, 2180. [CrossRef]
[PubMed]

17. Butzin, B.; Golatowski, F.; Timmermann, D. Microservices approach for the internet of things. In Proceedings
of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA),
Berlin, Germany, 6–9 September 2016; pp. 1–6.

18. Fowler, M.; Lewis, J. Microservices—A Definition of This New Architectural Term. Available online:
https://martinfowler.com/articles/microservices.html (accessed on 12 December 2017).

http://www.onem2m.org/
http://simfonymobile.com/blog/IoT_Platforms_Vertically_versus_Horizontally_layered_architecture/
http://simfonymobile.com/blog/IoT_Platforms_Vertically_versus_Horizontally_layered_architecture/
http://dx.doi.org/10.1109/COMST.2015.2444095
http://www.itu.int/rec/T-REC-Y.4452
https://iot-analytics.com/10-internet-of-things-applications/
https://iot-analytics.com/10-internet-of-things-applications/
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf
http://dx.doi.org/10.1002/smr.1866
http://microservices.io/
https://www.idc.com/infographics/IoT
http://dx.doi.org/10.3390/s17102180
http://www.ncbi.nlm.nih.gov/pubmed/28937590
https://martinfowler.com/articles/microservices.html

Sensors 2018, 18, 352 20 of 21

19. Pautasso, C.; Zimmermann, O.; Amundsen, M.; Lewis, J.; Josuttis, N. Microservices in Practice, Part 1: Reality
Check and Service Design. IEEE Softw. 2017, 34, 91–98. [CrossRef]

20. Lu, D.; Huang, D.; Walenstein, A. A Secure Microservice Framework for IoT. In Proceedings of the 2017 IEEE
Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April 2017.

21. Vresk, T.; Čavrak, I. Architecture of an interoperable IoT platform based on microservices. In Proceedings of
the 2016 39th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 30 May–3 June 2016.

22. Bonino, D.; Alizo, M.; Alapetite, A. Almanac: Internet of things for smart cities. In Proceedings of the 2015 3rd
International Conference on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 24–26 August 2015.

23. Sun, L.; Li, Y.; Memon, R. An open IoT framework based on microservices architecture. China Commun. 2017,
14, 154–162. [CrossRef]

24. Krylovskiy, A.; Jahn, M.; Patti, E. Designing a Smart City Internet of Things Platform with Microservice
Architecture. In Proceedings of the 2015 3rd International Conference on Future Internet of Things and
Cloud, Rome, Italy, 24–26 August 2015; pp. 25–30.

25. Newman, S. Building Microservices: Designing Fine-Grained Systems; O’Reilly Media, Inc.: Sebastopol,
CA, USA, 2015.

26. Wolff, E. Microservices: Flexible Software Architecture; Addison-Wesley Professional: Boston, MA, USA, 2016.
27. Introduction to Microservices. Available online: https://www.ibm.com/developerworks/cloud/library/cl-

bluemix-microservices-in-action-part-1-trs/index.html (accessed on 19 September 2017).
28. Achieving Semantic Interoperability Using RDF and OWL—v10. Available online: https://www.w3.org/

2001/sw/BestPractices/OEP/SemInt/ (accessed on 19 September 2017).
29. Spalazzese, R.; Pelliccione, P.; Eklund, U. INTERO: An Interoperability Model for Large Systems. IEEE Softw. 2017.

[CrossRef]
30. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer

platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]
31. Alaya, M.B.; Medjiah, S.; Monteil, T.; Drira, K. Toward semantic interoperability in oneM2M architecture.

IEEE Commun. Mag. 2015, 53, 35–41. [CrossRef]
32. Girau, R.; Martis, S.; Atzori, L. Lysis: A platform for IoT distributed applications over socially connected objects.

IEEE Internet Things J. 2017, 4, 40–51. [CrossRef]
33. Best IoT Platform Solution | Xively by LogMeIn. Available online: https://www.xively.com/xively-iot-

platform (accessed on 11 January 2018).
34. Lee, K.; Lee, J.; Kwan, M. Location-based service using ontology-based semantic queries: A study with a

focus on indoor activities in a university context. Comput. Environ. Urban Syst. 2017, 6, 41–52. [CrossRef]
35. Bonte, P.; Ongenae, F.; De Backere, F.; Schaballie, J.; Arndt, D.; Verstichel, S.; Mannens, E.; Van de Walle, R.;

De Turck, F. The MASSIF platform: A modular and semantic platform for the development of flexible IoT
services. Knowl. Inf. Syst. 2017, 51, 89–126. [CrossRef]

36. Desai, P.; Sheth, A.; Anantharam, P. Semantic gateway as a service architecture for iot interoperability.
In Proceedings of the 2015 IEEE International Conference on Mobile Services (MS), New York, NY, USA,
27 June–2 July 2015.

37. Han, S.; Crespi, N. Semantic service provisioning for smart objects: Integrating IoT applications into the web.
Futur. Gener. Comput. Syst. 2017, 76, 180–197. [CrossRef]

38. Ali, S.; Kibria, M.; Chong, I. WoO enabled IoT service provisioning based on learning user preferences
and situation. In Proceedings of the 2017 International Conference on Information Networking (ICOIN),
Da Nang, Vietnam, 11–13 January 2017.

39. Nitti, M.; Pilloni, V.; Colistra, G.; Atzori, L. The Virtual Object as a Major Element of the Internet of Things:
A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1228–1240. [CrossRef]

40. iCore: Internet Connected Objects for Reconfigurable Ecosystems, European FP7 Project. Available online:
http://cordis.europa.eu/project/rcn/100873_en.html (accessed on 15 November 2017).

41. Vlacheas, P.; Giaffreda, R.; Stavroulaki, V.; Kelaidonis, D.; Foteinos, V.; Poulios, G.; Demestichas, P.; Somov, A.;
Biswas, A.R.; Moessner, K. Enabling smart cities through a cognitive management framework for the internet
of things. IEEE Commun. Mag. 2013, 51, 102–111. [CrossRef]

42. Li, Y.; Liu, B. A Normalized Levenshtein Distance Metric. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29,
1091–1095.

http://dx.doi.org/10.1109/MS.2017.24
http://dx.doi.org/10.1109/CC.2017.7868163
https://www.ibm.com/developerworks/cloud/library/cl-bluemix-microservices-in-action-part-1-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-bluemix-microservices-in-action-part-1-trs/index.html
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
http://dx.doi.org/10.1109/MS.2017.265100723
http://dx.doi.org/10.1109/MWC.2014.6845045
http://dx.doi.org/10.1109/MCOM.2015.7355582
http://dx.doi.org/10.1109/JIOT.2016.2616022
https://www.xively.com/xively-iot-platform
https://www.xively.com/xively-iot-platform
http://dx.doi.org/10.1016/j.compenvurbsys.2016.10.009
http://dx.doi.org/10.1007/s10115-016-0969-1
http://dx.doi.org/10.1016/j.future.2016.12.037
http://dx.doi.org/10.1109/COMST.2015.2498304
http://cordis.europa.eu/project/rcn/100873_en.html
http://dx.doi.org/10.1109/MCOM.2013.6525602

Sensors 2018, 18, 352 21 of 21

43. Sun, Y.; Ma, L.; Wang, S. A comparative evaluation of string similarity metrics for ontology alignment. J. Inf.
Comput. Sci. 2015, 12, 957–964. [CrossRef]

44. Yatskevich, M.; Giunchiglia, F. Element level semantic matching using WordNet. In Proceedings of the
Meaning Coordination and Negotiation Workshop, Hiroshima, Japan, 8 November 2004.

45. Leacock, C.; Chodorow, M. Combining local context and WordNet similarity for word sense identification.
In WordNet: An Electronic Lexical Database; The MIT Press: Cambridge, MA, USA; London, UK, 1998.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.12733/jics20105420
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Web of Objects Architecture for IoT Service Provisioning
	Functional Model of Microservices in WoO Platform
	Enhancing Objects Reusability in WoO Based IoT Environment
	Use Case and Prototype
	Use Case Scenario
	Proof of Concept
	Prototype Details

	Experiments and Results
	Conclusions
	References

