
sensors

Article

Semantic Framework of Internet of Things for Smart
Cities: Case Studies
Ningyu Zhang, Huajun Chen *, Xi Chen and Jiaoyan Chen

Computer Science and Technology Institute, Zhejiang University, Hangzhou 310058, China;
zhangningyu@zju.edu.cn (N.Z.); xichen@zju.edu.cn (X.C.); jiaoyanchen@zju.edu.cn (J.C.)
* Correspondence: huajunsir@zju.edu.cn

Academic Editors: Andrea Zanella and Toktam Mahmoodi
Received: 19 July 2016; Accepted: 8 September 2016; Published: 14 September 2016

Abstract: In recent years, the advancement of sensor technology has led to the generation of
heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment
of various aspects of IoT-based applications are necessary to mine the potential value of data to
the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time
nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a
semantic framework that integrates the IoT with machine learning for smart cities. The proposed
framework retrieves and models urban data for certain kinds of IoT applications based on semantic
and machine-learning technologies. Moreover, we propose two case studies: pollution detection from
vehicles and traffic pattern detection. The experimental results show that our system is scalable and
capable of accommodating a large number of urban regions with different types of IoT applications.
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1. Introduction

The rapid development of Information and Communication Technologies (ICT) and the Internet
of Things (IoT) has affected cities in the form of changes to the physical infrastructure, buildings,
urban transportation systems, governance, healthcare, etc. The integration of devices, platforms,
and applications using ICT is of great importance to smart cities. According to [1], approximately
50 billion devices are expected to be connected to the Internet, generating enormous amounts of
data for applications in a variety of areas such as transport, e-health, energy management, and the
environment. Data of such a widespread nature is potentially valuable and can improve our lives by
revealing latent patterns through mining. However, exploitation of the senses to implement artificial
intelligence necessitates unification of the IoT data by existing technologies. In fact, many efforts
have been devoted to this purpose and various solutions have been proposed in this area. The W3C
founded the Web of Things Community Group and initiated the standards oneM2M [2], which are
aimed at developing the technical specification for a common IoT service layer by reusing existing
web standards and protocols, including Restful, HTTP, and Resource Description Framework (RDF).

However, the IoT data obtained for smart cities are extremely complex, thereby posing a series
of challenges. For example, POIs (Points of Interest) are represented by spatial points associated
with a static category, whereas air quality is represented using geo-tagged time series. Human
mobility data is represented by trajectories. Thus, different types of data have different forms of
representation, distribution, scales, and densities, all of which results in the different data types
existing in isolation. Moreover, there exist certain correlations between the different data in regions
of smart cities. For instance, the function and POIs of a street block may indicate the concentration
of traffic in a region during a certain time (e.g., rush hour), whereas the traffic volumes and speed of
vehicles in the same block may indicate the air quality (PM2.5), and the low terrain value of the block
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may indicate the occurrence of waterlogging. Furthermore, different blocks in cities have different
populations and infrastructure, which may lead to data sparsity for some regions. In fact, there
exist many applications for different areas and aspects of smart cities based on machine-learning
technologies. However, most of these applications focus on specific problems and do not have the
necessary capability to interpret the data.

The technologies of the Semantic Web are viewed as a key element of the IoT. In fact, oneM2M
offers a general model supporting the semantics for the IoT. An abstraction and semantics layer is
provided to solve the interpretability of data by defining some standard concepts. Moreover, the
Semantic Web offers an interface to facilitate the fusion of IoT data with existing knowledge such as
Linked Data [3] and Wiki Data [4]. Currently, many studies aim to provide definitions and annotations
of various WSNs by providing corresponding description ontology. However, a comparatively small
amount of work focuses on the processing of IoT data from smart cities.

In this paper, we present a semantic framework for integrating the IoT with machine learning for
smart city applications. In practice, we first divide the city into blocks. We analyze the types, sources,
and structures of urban data and standardize the forms of data to fuse them across modalities. In fact,
we divide the data from smart cities into three categories: (1) Background Knowledge, which is almost
time-independent, such as POIs, road networks, terrains, function zones of a block; (2) Sensor Data,
which is generated by sensors and published by various web services such as bus and taxi trajectories,
air quality, and traffic; and (3) Social Data, which is generated by people such as on social media, in
user comments, and so on. We can obtain each of the three kinds of data for a certain block from the
web services of a smart city. For each block, it then becomes possible to learn the latent features by
using fusion technologies to generate urban knowledge based on all three kinds of data according to
application demands. We use semantic technologies to model and annotate all kinds of data to enhance
the meaning of data values and hide the complexity of data sources and environments by providing a
standard format to represent. Moreover, we adopt a utility layer to integrate machine-learning methods
such as transfer learning for solving data sparsity. Finally, we include two case studies: pollution
detection from vehicles and traffic pattern detection, by using data obtained from taxi trajectories and
traffic based on our framework.

The major contributions of this paper are as follows:

(1) We present a semantic framework for the IoT integrated with machine learning for smart city
applications.

(2) We build an application-specific urban knowledge graph and include two case studies involving
pollution detection from vehicles and traffic pattern analysis and analyze their potential causes.

(3) We evaluate the practicability and scalability of our framework by implementing it on a SPARK
cluster with two case studies.

The remainder of this paper is organized as follows. Section 2 briefly reviews existing studies
on the semantic IoT and smart cities. Section 3 contains the framework, urban knowledge graph,
typical technology, and use cases. In Section 4, we present the results of our experiments. Finally,
Section 5 summarizes our findings and concludes the paper with a brief discussion on the scope for
future work.

2. Related Work

2.1. Semantic IoT

To the best of our knowledge, our framework is the first involving semantics integrated with
machine learning for IoT data of smart cities. The major task of the IoT is to represent the "things" by
standard schemas. The W3C have developed an ontology [5] representing sensors and data, providing
metadata for spatial, temporal, and other objects. However, their work mainly focuses on defining a
standard ontology for annotation of the IoT. In addition, many semantic IoT applications have been
proposed such as naturopathy applications based on multiple datasets [6]. Hu et al. [7] developed a
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SSEO, which is aimed at semantic indexing and event detection by way of machine processing. Other
applications include Open-Multinet [8] and so on. Amelie et al. [9] proposed a a semantic engine
applied to IoT and smart cities. Chen et al. [10] proposed large-scale real-time semantic processing
framework for IoT. However, their work was mostly aimed at specific IoT applications rather than a
generic IoT framework for smart cities. Moreover, the idea of a semantic framework integrated with
machine learning for smart cities has not received much attention.

2.2. Smart City

Urban computing is a process of acquisition, integration, and analysis of a large amount
of heterogeneous data generated by diverse sources in urban spaces, such as sensors, devices,
vehicles, buildings, and humans, with the aim of addressing the major issues cities face (e.g., air
pollution, increased energy consumption, and traffic congestion) [11]. According to [11], there
are three main challenges associated with urban computing: urban sensing and data acquisition,
computing with heterogeneous data, and hybrid systems blending the physical and virtual worlds.
In recent years, many applications have been proposed in different scenarios of smart cities including
transportation [12], the environment [13], energy [14], social [15], the economy [16], and public safety
and security [17,18]. Moreover, the Intelligent Transportation Systems (ITS) have rapidly developed in
Europe. Most of their work constructed features for specific domains and adopted machine-learning
methods. However, this work did not include semantic interpretation of the results and focused on
specific domains. In general, data obtained from smart cities are usually not such that they can easily
be understood by humans. For example, the air quality recorded by sensors is usually represented by
values such as “53” (PM2.5). These representations would be more meaningful if we had the semantic
meaning of the numerical values such as “slight pollution”. Moreover, we can explain the results of
some predictions by using common rules.

3. Approach

3.1. Framework

Figure 1 shows the architecture of our semantic framework of IoT integrated with machine
learning for smart cities. It consists of five parts: (1) Utility layer; (2) Fusion layer; (3) Data stream
layer; (4) Abstract entities layer and; (5) Physical entity layer. The data is transmitted from the bottom
to the top of the framework. Each layer has its necessity of existence.

3.2. Urban Knowledge Graph

We firstly divide the smart city into blocks according to the road networks. The different colors
in the rectangle in the lower right corner of Figure 1 represent different blocks. For each block,
we obtain amounts of stable (time-independent) data from OpenStreetMap [19] and the APIs of
Google [20] and Baidu [21], including POIs, the terrain, and road networks. We also map the locations
of blocks with entities from Yago2 [22], Geoname [23], and WikiData [24] to enrich our knowledge
of a smart city. For instance, we may obtain a POI category “coffee shop” for “Starbucks” in a block.
We can enhance the semantic meanings by matching the entities with the external knowledge bases.
In this way, we may be able to obtain additional knowledge about “Starbucks” and “coffee shop”,
e.g., “where are the closest coffee shops”, or “where is the largest Starbucks outlet in the city”.

Then, physical entities collect raw data in real-time from social media and physical sensors.
Each kind of sensor is to be organized according to its logical entity (AE) and common services entity
(CSE), providing common and logic services for applications. Afterwards, the data is received by
the abstract entities layer to add semantic annotations. This layer hides the complexity of devices by
providing a standard format to represent data from all kinds of devices. Thus, it now becomes possible
to view complex raw data as unified data streams. The data-stream layer extracts the data streams into
windows according to the requirements of the upper applications. The RDF streams in the data-stream
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layer are a quad (< s, p, o, t >), which is defined as ordered pairs constituted of multiple data units.
For example, the data stream is denoted Si = {B0

i , B1
i , ..Bj

i}, where j is the timestamp and i is the id of
the sensor. The window is a subset of RDF streams for a given time range. For real applications such
as traffic monitoring, disaster management, and environmental monitoring, the data take the form of
continuous streams.

Back Ground 
Knowledge 

AE 

Social 
Media 

CSE 

AE 

Air 
Quality 

CSE 

AE 

Taxi 
Trajectory 

CSE 

AE 

Traffic 
Condition 

CSE 

Other 
Devices… 

Time series 
Data 

Stable 
Data 

Urban 
Knowledge 

Graph 

Transfer 
Learning 

ELM 

V1 V2 
Knowledge 

Fusion 

… 

… 

… 

… Utility  
Layer 

Fusion 

Data 
Stream 

Abstract 
Entities 

Physical 
Entities 

… 

… 

… 

… 

T0 

T1 

T2 

T3 

Figure 1. Semantic framework of IoT integrated with machine learning for smart city applications.

The fusion layer is the key to our framework. This layer has three main tasks: (1) receiving
external requests and creating the corresponding virtual entities; (2) knowledge fusion with data
from the background knowledge base, producing continuous results from both social data and sensor
data; and (3) converting these data into an urban knowledge graph. In practice, each virtual entity
is aggregated by the RDF streams from several corresponding windows and auxiliary background
knowledge from external knowledge bases. For example, if a user requests the air quality of a particular
street block, a new entity is generated as a result of the aggregation of data from related sensors and
social media (e.g., PM2.5, AQI, tweets from the department responsible for the environment). We then
obtain the air quality from the newly generated virtual entity. The procedure of knowledge fusion
generates latent feature vectors for each block through background knowledge, social data, and
sensor data according to specific application demands. For instance, if the user requires a forecast
of the traffic conditions yi ∈ {0(Clear), 1(SlowSpeed), 2(Jam)} of street block i, the traffic-related
information (e.g., weather, historical traffic situation, and time ) is fused into feature vectors through
urban knowledge fusion, and this is used to train a model to predict result yi1 . The technical details
are discussed in the next section.

We build the urban knowledge graph based on background knowledge data and the data that is
collected during a subsequent period of time from smart cities. Figure 2 shows a simple concept model
of an urban knowledge graph (the size of the figure is limited to enable more resources of a block to
be shown). The model captures both types of resources for each block (PM2.5, AQI, traffic, terrain,
weather, POIs) and the latent features (represented by a vector and a timestamp) through knowledge
fusion, where “p” is the namespace of the properties. Each sensor has three properties: type, value,
and time.
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Figure 2. Simple concept model of urban knowledge graph.

The urban knowledge graph offers three main advantages: (1) the linkage of different types of
urban data indicates the potential condition of smart cities, which facilitates acquisition of related
features by the real application. Considering traffic prediction as an example, we may have to find all
the features related to a particular block that have an effect on the traffic, but may omit some influential
factors such as those relating to the immediate vicinity. With the urban knowledge graph, all the nodes
linked with blocks have potential effects for specific applications; (2) the knowledge graph may help
to explain the results produced by the machine-leaning method to improve our understanding of
smart cities. For example, the results indicate that one of the blocks experiences a traffic jam every
day at 20:00 (i.e., outside of the rush hour). Although this seems inexplicable while using the urban
knowledge graph, we find that the particular block is located near a train station at which many
trains arrive daily at 20:00; and (3) the integration of machine learning and semantic knowledge is
complementary in terms of the advantages and disadvantages of each of these sources of information.
For example, a certain block with a low population and poor infrastructure presents a data sparsity
problem, which is problematic for semantic technologies. In this regard, machine learning enables
us to transfer knowledge from blocks with adequate data to build a robust model from which to
infer results.

3.3. Typical Technologies

3.3.1. Data Preprocessing for Smart Cities

We divide a city into disjointed blocks, assuming that placement in a block g is uniform. The road
network is usually composed of a number of major roads, such as the ring road, whereas the city is
divided into areas. We map the projection of the vector-based road network onto a plane. Then, the
road network is converted into a raster model by gridding the projected map [15]. Actually, each
pixel of the image of the projected map can be viewed as a block element of the corresponding raster
map. Consequently, the road network is converted into a binary image (1 means road segments
and 0 means blank areas) as Figure 3a shows. Then, we extract the skeleton of the road, while
retaining the original two-value image topology through the iterations of dilation and thinning as the
Figure 3b,c depict. Then, we find the connected 0 pixels (the blank area) in the binary image by classical
algorithm introduced in [25], as Figure 3d shows. Finally, we obtain the blocks g of cities.
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(a) (b) (c) (d)

Figure 3. Procedure of segment maps. (a) Source binary image; (b) Binary image after dilation.
(c) Binary image after thinning; (d) Final segmented regions.

3.3.2. Knowledge Fusion

For each block of smart cities, knowledge fusion is aimed at aggregating multiple disperse
resources and learning latent features according to application demands.

We aggregate the urban knowledge by formalizing the task via concept filtering and
recombination. Given data stream S = {S0, S1, ...Sn}, the filter function is γ : S -> T, which is aimed at
mapping RDF streams to triple set T, and the recombination mapping is δ : T -> T′. For example, in the
case of traffic monitoring, T represents the triples containing the concentration of related sensors. δ

denotes the mapping formula for computing the value representing the real traffic conditions (Jam,
SlowSpeed, Clear). In addition, we adopt a reasoning mechanism to enrich the urban knowledge graph
with implicit knowledge from semantically annotated data. For example, the PM2.5 value representing
the air quality of each block is actually a number. We apply reasoning rules to derive new facts such as
(Blockid, Has Air Qualty, Good) if the value of PM2.5 is smaller than "30". The task can be formalized
as (S, B)

γ−→ F, where S and B are the data stream and background knowledge, γ is the set of rules,
and F is the new facts.

We learn the latent features of each block by obtaining the social data, sensor data, and background
knowledge data separately. According to previous studies [26], treating the features extracted from
different data sources equally does not achieve the best performance. In fact, each kind of data has a
different representation, distribution, scale, and density. In practice, each kind of data is represented as
a set of feature vectors. Social data is composed of social media text, user comment texts, user ratios,
and so on, according to the different application requirements. Sensor data is composed of values
recorded by physical sensors such as the flow of taxis and buses, traffic congestion index, real estate,
air quality, meteorological elements, and so on. The texts in social data are converted to vectors via
a word-embedding procedure from GloVe [27]. We adopt the deep autoencoder [28] to capture the
"middle-level" feature representation from these data. As depicted in Figure 4, the deep auto-encoder
effectively learns (1) a more effective single modality representation with the help of other modalities
and (2) shared representations by capturing the correlations across multiple modalities.

3.3.3. Transfer Learning

The task of transfer learning involves transferring knowledge from rich data regions to regions
with sparse data. For example, because of the large population and perfect infrastructure, social media
data in large cities are relatively easy to obtain. However, less-developed areas or regions with fewer
people have smaller populations and, hence, comparatively inactive social media. Therefore, it would
be difficult to build a smart city system based on such data. To this end, we adopt transfer-learning
technologies to enrich the feature representation for regions experiencing the data sparsity problem.
In fact, the data in different regions have different distributions in terms of features. We adopt existing
consensus-regularized auto-encoders of transfer learning [29] to construct a feature mapping from
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an original instance to a hidden representation, and we use the source domain data jointly to train a
classifier for predictions on the target domain.

……

……

Social Data Reconstruction Sensor Data Reconstruction

…… ……

Background Data Reconstruction

………… ……

Social Data Input Background Data Input

……

…… ……

……

……

……

Sensor Data Input
Figure 4. Urban knowledge fusion of learning latent representation.

3.4. Use Case

3.4.1. Pollution Detection from Vehicles

Pollution from vehicles is mainly effected by the volume and speed of traffic. We mainly calculate
the PM2.5 value and the average value for a fixed time period in this case. For each block, we estimate
the real traffic speed and volume of taxis, which have wide coverage of the city, and obtain the speed
of each taxi and the total number of taxis (n). We adopt the average speed (v) of all sensors (i.e., taxis)
as the traffic speed of this block. There are three reasons for that: (1) the taxis normally are driven
randomly and have an average coverage in the whole city. Moreover, for a certain taxi (id), it is driven
at almost any time in a day. However, for a private car, it normally has fixed routes and cannot appear
on the road all the time; (2) there has been lots of research about using taxi data to estimate traffic
volume such as [14,30,31] and so on; and (3) the taxi data are easy to obtain while data of private cars
are difficult. We adopt φ times the number of sensors as the total volume of the block:

Ni = φ× n, where φ is calculated by φ =


V
T

i f block /∈ Buz

137 i f block ∈ Buz

for Hangzhou, where T is the number of taxis in the city, V is the total number of vehicles in the city,
and Buz is the set of business areas and regions with a large population mobility, such as a train station.
The number 137 is calculated by using the static information of these kinds of regions in Hangzhou.
In fact, there exist different environmental models to quantify the relationship between emissions
and speed, such as MOBILE and COPERT. In this paper, we adopt the COPERT model [32] because
vehicles in Hangzhou currently adopt European-3 standards. In practice, traffic emissions consist of
hot emissions, cold start emissions, and evaporative emissions. The latter two types are omitted from
our estimation due to the scarcity of data; in fact, they are also of less importance in terms of the overall
emissions [33]. The hot emission factor (EF) is calculated by: EF = a+cv+ev2

1+bv+dv2 . The parameters a, b, c, d,
and e are given in the experimental section and are applied for Euro 3. The emission factors of PM2.5
are proportional to EF. For instance, the conversion factor for PM2.5 is 3× 10−5. Finally, the overall

emission for a certain block i is:
Ei = 3× 10−5 × EFi × Ni × Li,
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where EFi is the hot emission factor of block i, Ni is the volume of block i, and Li is the total length of
the road in block i.

3.4.2. Traffic Pattern Analysis

In this section, we discuss the mining of interesting traffic patterns. The problem is defined as
finding the blocks that have vehicles flowing in or out during certain time periods and finding the
reasons, which may be useful for the traffic control department and driver navigation [34]. In fact, this
problem is mainly affected by the volume of traffic. For a block g, we try to use TAXI as the set of taxi
trajectories of a city, each of which is denoted by a tuple < p, d >, where p is a pickup stop and d is a
drop-off stop. We extract the arriving, departing, and transition volumes of taxis. Formally,

Fav
taxi = |< p, d >∈ TAXI : p /∈ g&d ∈ g|,

Flv
taxi = |< p, d >∈ TAXI : p ∈ g&d /∈ g|,

Ftv
taxi = |< p, d >∈ TAXI : p ∈ g&d ∈ g|.

These features and φ (last section) enable us to calculate the traffic volume entering and leaving
each block. We use the linkages of the urban knowledge graph to identify the potential reasons for
this phenomenon.

4. Experiments

4.1. Datasets

All of our experimental data are obtained from the open web services listed in Table 1. We obtain
free-text descriptions of places by adopting geoparsing [35] to convert text into unambiguous
geographic identifiers (lat-lon coordinates). The experimental setup was a SPARK cluster comprising
four machines, with each node consisting of an 8-core Intel Xeon CPU at 2.13 GHz with 32 GB memory
(Hangzhou, China). All the nodes are implemented with CentOS6.4 with JDK-1.7.0, SPARK-0.9.0,
Scala-1.1.0.1. We used Discretized Stream (DStream) to model the window streams. The operator
provided by the SPARK like "map" is semantically translated into an aggregate of the urban knowledge.
We adopt the deep auto-encoder [28] to implement urban knowledge fusion and create latent
representation of blocks according to different applications. For blocks with sparse data, we adopt
consensus regularized auto-encoders of transfer learning [29] to transfer knowledge from blocks with
rich data. We set a = 217, b = 9.6× 10−2, c = 0.253, d = 4.21, e = 0.65 for pollution detection from
vehicles. We evaluate our experiment by using the PM2.5 values from stations as ground truth values.

We adopt the root mean square error (RMSE) defined as RMSE =

√
∑n

1 (yi−ŷi)2

n , where ŷi is a prediction
and yi is the ground truth.

Table 1. Details of the datasets.

Datasets Size (M) Sources

Comments 2523 http://dianping.com
Tweets 11,023 weibo, twitter
Buses 254 http://chelaile.net.cn
Traffic 119 http://nitrafficindex.com
Real-Estate 35 http://soufun.com
Air 534 http://PM25.in
POI, Business Areas 10 http://map.baidu.com
Road Network, Terrain 9 http://openstreetmap.org
Meteorological 98 http://forecast.io,http://noaa.gov

http://dianping.com
http://chelaile.net.cn
http://nitrafficindex.com
http://soufun.com
http://PM25.in
http://map.baidu.com
http://openstreetmap.org
http://forecast.io, http://noaa.gov
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4.2. Case Studies

4.2.1. Pollution Detection from Vehicles

We used our framework to detect the pollution from vehicles in Hangzhou. As seen from
the results in Table 2, the time periods from 8:00–9:00 and 17:00–18:00 show the best performance.
Moreover, the values for the time period 8:00–9:00 gives almost the same as another time period
17:00–18:00 across all districts. The urban knowledge graph indicated it to be rush hour during these
periods. In fact, lots of one-way streets exist in Hangzhou, which result in the very low speed of cars
in rush hours and indirectly create more records that go through one block in the same time interval.
The more taxi records in the same time interval, the higher the accuracy. However, all values across
districts, Column 2 (11:00–12:00) differs almost by one compared to Column 1 (8:00–9:00) and Column 3
(17:00–18:00). This is mainly because of the relatively few data. We collected our experiment data
in the summer while the weather is extremely hot. Few people take taxis in this time period, which
results in the relatively low accuracy. We additionally found differences among the different districts
of the city (Gongshu, Shangcheng, Xiacheng, Xihu, and Binjiang). The Shangcheng and Xiacheng
districts are mainly located in the Central Business District (CBD); thus, they contain larger numbers
of sensors (taxis) or records. Actually, the other three districts are spread across larger areas and have
more blocks. However, they have smaller populations, and, consequently, they generate less sensor
data (fewer taxis).

Table 2. Overall performance of pollution detection from vehicles.

Districts 8:00–9:00 11:00–12:00 17:00–18:00

Gongshu 2.043 3.043 2.025
Xihu 2.712 3.689 2.712

Xiacheng 1.576 2.611 1.691
Shangcheng 1.783 2.691 1.721

Binjiang 2.581 3.511 2.522

4.2.2. Traffic Pattern Analysis

We used our framework to mine the traffic patterns in Hangzhou. As Figure 5 shows, we identified
interesting blocks that may indicate the potential traffic patterns in Hangzhou at 9:00 and 20:00.
The areas outlined in red indicate blocks with considerable traffic inflow, whereas the areas outlined in
blue indicate outflows. Actually, the red outlines in the image on the left recorded at 9:00 are located
in the CBD according to the urban knowledge graph. Many people enter this area when driving to
work, hence a considerable traffic inflow. The areas outlined in blue in the image on the left are mainly
residential districts. However, the red areas in the image on the right (recorded at 20:00) are slightly
unusual. We obtain the reason from the urban knowledge base and determine that these blocks have a
commonality: all of them have a train station located in their immediate vicinity. At approximately
19:40, about 20 trains arrived in Hangzhou and this resulted in large flows of human traffic. This mined
information would be useful for the traffic control department and for drivers for navigation purposes.

4.2.3. Scalability

We used the two case studies to illustrate the scalability of our framework by increasing the
number of blocks. We write the total delay (TD) into the log file after the data has been processed
completely. In this experiment, we set the time slice (D) to 5 s and ran the program for 300 s.
Figure 6 shows the processing time for a single node and for a cluster with different blocks.
Case 1 refers to the case study involving pollution detection from vehicles, whereas Case 2 refers to
the case study involving traffic pattern analysis. The number of blocks is varied from 450 to 1300.
We performed the cluster experiment by duplicating the blocks using 50,000 to 70,000 nodes. For all



Sensors 2016, 16, 1501 10 of 13

figures, TD eventually stabilizes. The TD in the cluster is lower than for a single node, which shows
that our system achieves excellent scalability.

(a) (b)

Figure 5. Traffic pattern analysis in Hangzhou. (a) Traffic pattern at 9:00; (b) Traffic pattern at 20:00.

(a) (b)

Figure 6. Processing time total delay(TD) with increased number of blocks. (a) TD with blocks in single
node; (b) TD with blocks in cluster.

5. Conclusions

In this study, we proposed a semantic framework to integrate the IoT with machine-learning
techniques from the perspective of a smart city. We discussed two case studies based on the
implementation of our framework and obtained interesting results. In addition, we tested our proposed
approach for scalability. The results showed that our approach is applicable in practice and that it is
highly efficient.

There are some limitations to this study, which should be addressed in future work. One major
limitation lies in the partially missing data from some blocks and the limited availability of open data.
For example, some data streams exist that do not have records when malfunction of sensors occur
(a missing data stream in a time interval). We would like to mine the data of blocks more deeply in
the future to estimate the missing data. The adaptability of this approach to real-world circumstances
will also be considered in our future work. First, some visual analytics functions will be added to our
ongoing demonstration system. Through presenting similar historical circumstances or forecasting
results according to different features, the system will be able to provide more information for flexible
decision-making. We are also investigating a new model that utilizes data from similar historical
circumstances through understanding the underlying semantics of the data. We plan to apply our
approach to additional applications. Moreover, we aim to study the distribution of our framework to
enable it to process very large amounts of data.
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Supplementary Materials: The code of data preprocessing for smart cities are available at http://github.com/
zxlzr/Segment-Maps, parts of our datasets are available at http://openkg.cn/dataset.
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Abbreviations

oneM2M Standards for machine to machine and the Internet of Things
PM2.5 Air pollutants with a diameter of 2.5 micrometers or less
SPARK A fast and general engine for large-scale data processing
W3C World Wide Web Consortium
SSEO Smart space event ontology
APIs Application programming interfaces
IoT Internet of Things
AQI Air quality index
JDK Java development kit
POI Point of interest
COPERT Model of air pollutant emissions calculation from road transport in Europe
MOBILE Model of air pollutant emissions calculation from road transport in the USA
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