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Abstract: This paper discusses static stability of a planar object grasped by multifingers
with three joints. Each individual joint (prismatic joint or revolute joint) is modeled as a
linear spring stiffness. The object mass and the link masses are also included. We consider
not only pure rolling contact but also frictionless sliding contact. The grasp stability is
investigated using the potential energy method. This paper makes the following
contributions: (i) Grasp wrench vectors and grasp stiffness matrices are analytically
derived not only for the rolling contact but also for the sliding contact; (ii) It is shown in
detail that the vectors and the matrices are given by functions of grasp parameters such as
the contact conditions (rolling contact and sliding contact), the contact position, the contact
force, the local curvature, the link shape, the object mass, the link masses, and so on;
(ii1) By using positive definiteness of the difference matrix of the grasp stiffness matrices,
it is analytically proved that the rolling contact grasp is more stable than the sliding contact
grasp. The displacement direction affected by the contact condition deviation is derived;
(iv) By using positive definiteness of the differential matrix with respect to the local
curvatures, it is analytically proved that the grasp stability increases when the local
curvatures decrease. The displacement direction affected by the local curvature deviation is
also derived; (v) Effects of the object mass and the joint positions are discussed using
numerical examples. The numerical results are reinforced by analytical explanations. The
effect of the link masses is also investigated.
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1. Introduction

Human beings can grasp and manipulate various shaped objects dexterously. For this reason,
handling skills inherent in human nature are required for accomplishing assembly tasks including
complicated shaped objects and complicated contact conditions. It is required that production lines are
automatized using robot systems in order to improve working conditions and maintain constant and
high quality productions. Multi-fingered robot hands are useful for the handling tasks of various
shaped objects. Grasp stability is an important factor for dexterous grasp and manipulation using the
hands. While external forces are applied to the grasp and the object pose is displaced, the grasp has to
be unbreakable and the robots have to accomplish the handling and assembly tasks. The grasp stability
has been investigated in many works (Table 1).

Table 1. Differences among the previous works.
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Hanafusa [1] 2D - - PC - - - -
Nguyen [2] 3D - - PC, PCWF, - - - - -
Li[3] 3D - - PCWF - - - - -
Cutkosky [4] 3D - - PCWF - 0] (6] - -
Carbone [5] 3D - - PCWF - (6) (6] - -
Kim [6] 3D - - PCWF - - O - -
Babiccini [7] 3D - - PCWF - - - - -
Malvezzi [8] 2D - - PCWF - - - - -
Shapiro [9] 3D - - PC - - - - -
Montana [10] 3D included - RC - - - - -
Xiong [11] 3D included - RC - - - - -
Choi [12] 3D included - RC - - - - -
Michalec [13] 3D included - RC - - 0] 0] -
Funahashi [14] 2D included - RC, SC(1D) - - - - -
Howard [15] 3D included - RC, SC(1D) - 0 0 - -
Howard [16] 3D included - RC, SC(1D) - - - - -
Lin [17] 2D included - SC(1D) - - - - -
Yamada [18] 2D included - RC, SC - - - - -
Yamada [19-21] 3D included - RC, SC - - - - -
Yamada [22] 2D included treated RC, SC treated O 2 - -
This paper 2D included  treated RC, SC treated O 3 0) 0)

O: treated, -: Untreated, PC: Point contact without friction, PCWF: Point contact with friction, RC: Rolling
contact, SC: Sliding contact, SC(1D): Sliding contact with a single spring model.
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Hanafusa and Asada [1] discussed a planar object grasped by mechanical elastic fingers. It was
shown that stable grasps are given at the minimum potential energy stored in the grasp. Nguyen [2]
pointed out that the elastic fingers can be modeled as virtual linear springs. It was shown that stable
grasps are given by using the gradient and the Hessian of the stored energy. That is, the equilibrium
grasp is stable if the Hessian is positive definite. Such a Hessian is called a grasp stiffness matrix. In
his analysis, the object shape is limited to a polyhedral object and the finger shape is a pointed finger.
Li and Kao [3] discussed properties of the grasp stiffness matrix. Cutkosky and Kao [4] included joint
compliance (joint stiffness) and formulated the grasp stiffness matrix. Carbone [5] discussed Cartesian
stiffness matrices for various types of robot systems. Kim et al. [6] discussed task based compliance
for peg-in-hole tasks and investigated a suitable grasp stiffness matrix. Gabiccini et al. [7] and
Malvezzi and Prattichizzo [8] investigated the grasp stiffness in underactuated hands. Shapiro et al. [9]
investigated force closure grasps and allowable external wrenches. In their analysis, local curvature
parameters of the object surface or the finger surface were not included. This means that the local
shape is assumed to be pointed.

Montana [10] pointed out that the local curvatures and the contact distance between contact points
affect the grasp stability. The grasp was formulated as a dynamical system considering the surface
curvatures. Xiong et al. [11] included contact stiffness and investigated dynamic grasp stability.
Choi et al. [12] investigated the spatial grasp stiffness matrix considering the rolling contact and the
local curvature. The elastic finger surface is replaced as spatial spring stiffness. Michalec and
Micaelli [13] formulated the stiffness matrix considering joint stiffness, local curvature and rolling
contact. They treated the rolling contact only.

Funahashi et al. [14] replaced every finger as the linear spring model and investigated the grasp
stability from the stored energy. The finger and the object surfaces at contact points were approximate
circles. Not only pure rolling contact but also frictionless sliding contact were investigated. Howard
and Kumar [15,16] focused on the elastic property of the object and the finger. In the case of
frictionless contact, the contact stiffness was modeled as a single spring along the initial contact
normal direction. In the case of friction contact, the stiffness was replaced as a multiple-springs model.
The spring stiffness and the local curvatures are included in the grasp stiffness matrix.
Lin et al. [17] investigated the grasp stiffness matrix for immobility of the object. The finger is
immobile and the contact stiffness is modeled as a single spring. This means that the contact is limited
to frictionless contact and the finger is considered as a fixture part. In their formulations [6-9], the
spring model was switched depending on the contact friction condition.

Yamada et al. [18] pointed out that the difference between the rolling contact and the sliding contact
is represented not by the difference of the spring models but by the difference of contact point
displacements on the object and the finger. The multiple-springs model was used not only for the
rolling contact but also for the sliding contact. The relationship between the displacements of the
object and the spring was formulated and the grasp stiffness matrix was derived. Yamada ef al. [19-21]
discussed spatial grasp stability with not only rolling contact but also sliding contact. In this analysis,
the contact surface geometry (metric tensor, curvature, and torsion) was included. The wrench vector
and the grasp stiffness matrix were analytically derived. Whereas References [18-21] did not consider
the finger links, References [13,15] included the finger links but did not treat both the rolling and the
sliding contacts with the same spring stiffness.
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Yamada et al. [22] included the finger links and discussed the case that the fingers are constructed
by revolute joints. The grasp stiffness matrix was formulated not only for the rolling contact but also
for the sliding contact. In this analysis, the finger links are included but the number of links was
restricted to two joints and the link masses were not considered. The effects of the object mass and the
link masses on the stability were not investigated. In order for the rolling contact constraint to occur
between the finger and the object, every finger requires at least two joints. Hence, Reference [22]
employed two-joint fingers based on Reference [18].

In general, it is conceivable that an object is grasped by fingers or arms with three or more joints.
In this paper, we discuss the case of three-joint fingers. Moreover, the object mass and the link masses
are included. We investigate not only rolling contact but also sliding contact between the object and
the fingers. The grasp stability is discussed by using the potential energy method. The wrench vectors
and the grasp stiffness matrices are analytically derived. Grasp stability is evaluated by the eigenvalues
and eigenvectors of the matrices. The vectors and the matrices are given by functions of grasp
parameters such as the contact conditions (pure rolling and frictionless sliding), the local curvatures at
contact points, contact forces, the masses, and so on. The effects of the contact conditions and the local
curvatures on the stability are investigated by using positive definiteness of the grasp stiffness
matrices. Effects of the object mass, the link masses, and the joint positions are investigated through
numerical examples.

The analysis for frictionless sliding contact is applicable for the case that the friction coefficient of
an object to be grasped is unknown beforehand, the object is covered with machine oil, or the surface
property is slippery, similar to a cube of ice.

2. Problem Definitions

We suppose an object grasped by multifingers with three joints as shown in Figure 1. We analyze
static stability of the grasp.

Figure 1. An object grasped by multifingers with three revolute joints.
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2.1. Assumptions

For simplicity of discussions, we analyze the stability based on the following assumptions:

(A1) The object and the fingers are rigid bodies;

(A2) A single point contact exists between two bodies;

(A3) Initial grasp pose (position and orientation) is given;

(A4) The local curvature at each contact point is given;

(AS5) An infinitesimal pose displacement of the object occurs due to an external disturbance;

(A6) Each finger is constructed with three joints. The relationship between the joint torque and the
joint position displacement is replaced with a linear stiffness.

Motion of the bodies is simplified from (A1) and (A2). If the material of the bodies is metal, its
property is considered as rigid bodies described in (Al). If the object or the fingers are soft bodies,
deformation of bodies has to be considered. In the case of soft bodies, the representation of the bodies’
motion is much more complicated. If two or more contact points exist between two bodies, the contact
form is represented by a line contact or a face contact and degrees of freedom of finger motion
decrease. The grasp stability is analyzed when the grasp parameters are given from (A3) and (A4). In
our future work, we will discuss grasp position planning algorithms based on our stability analysis.
From (AS5), dynamics is not considered. Stability of the initial grasp is discussed by using the gradient
and the Hessian of the stored potential energy. Our results are applicable for grasping an object in
grasp planning or stabilizing or immobilizing an object in fixture position planning. The two-joints
case was discussed in Reference [22]. If the number of joints is more than three, the joint Jacobian
described in Section 3.3 is not a square matrix. Hence, the matrix is not invertible. In Assumption
(A6), each joint is designed with passive stiffness joint or controlled by a compliance control. In three
dimensional grasps, contact surface geometry (metric tensor, curvature, torsion) has to be included,
joint position displacements and contact position displacements will be much more complicated. These
cases will be addressed in our future work.

2.2. Nomenclature

We use the following coordinate frames (Figures 1 and 2), =, is a base coordinate frame, =, is an
object coordinate frame fixed in the object, 2, and Ty are current contact coordinate frames

moving on the object and the &-th finger surface, respectively. The frames 2., and T4 are curvature

center coordinate frames of the contact point on the object and finger, respectively. The frames =,,,
> and T, are the initial coordinate frames of =,, Ty, and T, , respectively.

Finger 2. Contact coordinate frames.
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The matrix “4, eR¥3 is a homogeneous transformation matrix of £, with respect to %, .

The vector “p, eR? is the position component and the matrix “R, € R**? is the orientation component.

Other vectors and matrices are also used.

a4, :=|:de apb}, “B, :=|:aRb _Qapb}, Wy =

4R
b } =[1"8,1",

0o 1 012 1 “pp®“Ry,
| x _|Rot(&) 07, _|cosd —sing _|0 —11 z
At(x) = |:01><2 1i|9 Ar(g) '_|: lez 1 i|9 ROt(é’) '_Linf COSé/ j|, Q_|:1 0j| _ROt(z): (1)

w =101, wy=[011", I3 =[Iy O], vy =[0.01]", z:=[1-1]",
Fac(ay="ad, (k) 4 P a = A (M)

The symbol ® is used for representing the two-dimensional cross product in order to distinguish it

from the normal product x. The symbol := means that the left hand term is defined by the right hand
terms. The superscript “L” means the local contact frame for £,,, and ¥4, the subscript “C” denotes

the current contact frame for 2c,; and 2.y, and the subscript “k” denotes the curvature center frame

[IPP%2]

for £, and Z,54 . The symbol “a” is a contact point displacement parameter, and the symbol “k” is a

local curvature parameter.
3. Formulation
We focus on the £-th finger in contact with the object.

3.1. Joint Position and Local Coordinate Frame

The pose of the local contact frame =, with respect to =, is represented by

bALok (& ):bAbo bvo (eo)oALak > bvo (&0) = 4;(x,)4,.(&,) » (2)
where the vector ¢, =[x!,,]" is the object pose displacement, the vector x, =[x,,y,]’ is translational
component, and the scalar ¢, is rotational component. The pose of the local contact frame =,, with

respect to ¥, is represented by
b b, kO Kl k2 k3
A Qa)="4k0 " A1 (qar)” Ar2Gar2)" " Ar3(qarz) " Arpe 5 ?3)

where g =[qu1-9ar2-9ai3]” 1S the joint position displacement vector generated by &,. The frame =,

is fixed in the /-th link of the finger. In the case of revolute joint, the matrix is represented by
k-1 k-1
A Ga)=""" Apra Guir + Gex) Ar Qar) » 4
where ¢,,; and ¢, are the natural length and the initial compression of the spring, respectively. In the
case of prismatic joint, the matrix is represented by
k-1 k-1
A Ga)=""Apts s + dex) A G arater) - 5

The frame =, is the initial frame of £, . The link shape is included in the matrix */"'4,,, .
The joint position gy shown in Figure 1 is given by gy =q.u + 9 +qau - The parameter g,y is
separated from g¢,,; and ¢, because g, is most important for our derivations. From these definitions,

we have the following partial derivative (See Appendix A of [22]):
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ak’HAk/ Gar1) k-1 Qv wy =1, v =0, forrevolute joint
— = Au(qan) ) B B R (6)
0q g1 (W 0 oy =0, vy =1, forprismatic joint

3.2. Potential Energy of the Finger

The potential energy stored in the joint springs is represented by
Usk(qar) = %[‘Ick + a1 Silder + dai ] (7)
where the vector g, =[qu1.9er2-913)" denotes the joint compression and the matrix S, e R*? is joint

stiffness. The joint torque vector is given by r; = S;q., . The potential energy affected by the gravity is
represented by

3
b T b
Uge@ar) == M1 Part qai)’8 » 8)
I=1

where my, is the mass of the /-th link, the vector ?g is the gravity acceleration with respect to the
frame ¥, , the frame %, is the center of the link mass.

b b b _b, k0 k-1 ki
Poki =123 Agit@ar Ve >~ Agit @ar) =" Aro ™ Akt (Garr) %> A (qar)™ Aga - 9)

The total potential energy of the finger is given by
Uk@ar) = U (qar) + U g (i) - (10)

The first- and second-order partial derivatives of U (¢, ) with respect to the joint positions are given

by

_ Ugk@ar) . 0°U g (qar)

T K
gk > Dgk T
A |, 04 4 04 g

' (11)

0
These detailed derivations are described in Appendix A. The vector 7z, and the matrix S, depend on

2

the parameter my,, "4y, and ¥ 4,4, . In this paper, the right side symbol “|,” means that the initial

condition is considered for the differentiations (&,=0, a; =0, ¢4 =0).

3.3. Contact Constraint and Its Partial Derivative
The pose of the current contact frame ., with respect to £, is represented by the following form:
b Lk Cfk b Lok
Arp(qar) / Acp(a ) P Aok ="A1o1 (€, Acor (@) (12)

where 9% 4., = 4,(r) . From Equation (12), the vector g, is given by a function of £, and
a; =[ay,a fk]T ,i.e., qu(&,.¢;) . The first-order partial derivative of Equation (12) is given by

Aar| | |ty ~H2 T2 13
0 ¢ Kok _K_fk ’ ( )

Lfk J{ 0q g Z
6ak

63,,T

0

where

)8 I Vil | g Vil | Vi3 3x3
.ka;:|: ﬂ‘Bk{ o } ﬂch{ ons } .fkgk{ o0 ﬂeR . (14)
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The matrix “*J depends on ¥4, , . The second-order partial derivative is shown in Appendix B. The

quantities «,, and «x, are the local curvatures at contact points on the object and the finger,

respectively. The quantity « is positive, zero, and negative if the surface shape is convex, flat, and
concave, respectively.

3.4. Partial Derivatives of the Energy

From Equations (10) and (12), the potential energy is represented by
Uk (qar (€5-1)) = U g (i (€5, 1)) + U g (qui (€5, 1)) - (15)

The first-order partial derivative of the energy with respect to ¢, and «; is given by

Upe, )| | | 24d o)L o
0] e bl % |l |, g
Uk,a aUk(EO,ak) 8{q§k(so,ak)rLfk} _u%" _;k ’ ( )
6ak 0 aak . 2 Sk

where the vector “*w means the wrench (force and moment) vector represented at the local contact
frame 3, . Note that this wrench vector is given as the reaction force from the object to the finger

because ¢, is compression.
Lfk

Ifk, _ gl Lfkfx LA T, _
Tl ok = y | = Lk s Tik =Tsk TTgk - (17)

n
Lfkn

The detailed derivations are described in Appendix B. The second-order partial derivative is given by

Ui (egar)|  O*Uk(en )

|:Uk,g£ Uk,ag} o 6‘90835 0 5.‘:05(1/{ 0
Ukea Ukaa 62Uk (&,.a1) 62Uk (&,.0p)
6ak855 0 6ak8a,{ 0
T 2,.T 2,.T
gk (&, 34y (£4,a1) O Tipdak (8o-@p)}|  O" T pqar (8o-@k)}
I — T T
- os, 0 (S, +5,] oe, ol . Oe,0¢, 0 Og,0ay, 0 (18)
= g
0 (£0,0k) g (£0-2) O’ ipda o)t 0P Tlpqun (£,0p))
oo 0 Oy 0 oa, 08l o oaoal o
T
Lk gT Lfk T
r Lfk ro ve O30 ve O30 !
= —up Kok N —u) Kok + 0 I Skk 0 )i 5
T T » D w2
— llz — ka — llz — Kﬂ(
where
Lhs =t TSy + S g + S 1T (19)

The detailed derivations of the matrices S;; and Sy are shown in Appendix B. The matrix §;4

depends on 4, and “* f, and the matrix S, dependson °4;4, k., x4, and “* £
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Summarizing the above derivations, we have the following terms:

Lfk T Lfk
Uk,g: / B, / w, Uk,a =

T
Uy Kok Lk,
T 9
Uy —Kg

Up,oe=""B; B, [ pT HE flv v ]

—u2 —u2 20
Utas =Ukoa="B; L”‘S{Kk —ka}[”{ R I 0
0
T
—u bl /4 —u —u K K
Uk e = 2 2 Lka 2 2 +[u1TLfkf] ok ok )
’ Kok —Kpx Kok — K Kok —Kpx

3.5. Frictionless Sliding Contact Case

3.5.1. Wrench Vector and Stiffness Matrix

In the case of frictionless sliding contact, the contact displacement parameter a, has to satisfy the

following conditions:

aUk(so,ak) :02 1 azUk(So,ak)
x1 s

> 097 -
da; dagoal 2x2 21)

Under the initial condition of Equation (21), we have U, , =0, and then %7 =0 and “*»=0.
Hence, the contact wrench is represented by
iyt g 110,017 . (22)

Because the finger can apply pushing forces to the object, we have “* r_ = ul % f <0 . Note that the x
axis direction of %,, is opposite to the reaction force direction. We have also Uy 4, > 05 -

This inequality means that positive stiffness has to be generated in the displacement direction «; .
From the first condition of Equation (21), the parameter e, is given by a function of the
parameter ¢, .

Uk:g (80) = Uk (&‘Osa/{& (80 )) s (23)
where the superscript “/s” means the sliding contact between the finger and the object. The wrench
vector generated at the object coordinate frame is given by

oul(e,)

Gl = Y =Wyl f o] (24)

The stiffness matrix of the sliding contact is given by

*ul(e,)
HE ===k 20—y, . +0PU; s
g e, 08! . £ Tk TR (25)
where
aAaf )"
/s k o - _ -1
Qk = 5«‘-‘0 . Uk,aSUk,aa . (26)
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The symbols G and H mean the gradient and the Hessian of the energy. These derivations are
described in Appendix C.

3.5.2. Local Curvature Effect

The wrench vector and the stiffness matrix are given by functions of grasp parameters. The partial
derivatives of the vector and the matrix with respect to the local curvature parameters are given by

oGl oG[

8K0k B axﬂ(

=03 - 27)

This means that the wrench vector is independent of the local curvatures.

oHlF . . oH : :
— R 10l w0 u)" <05, —E="¥7 0L uy 110/ uy1" <035 (28)
aKUk 6Kﬂ€

The properties of these negative semi-definite matrices imply that the grasp stability decreases when
the local curvature parameters increase. The effects are given in the directions Q{S u and Q,{S u, when

the local curvatures «,, and x; deviate, respectively.

3.6. Pure Rolling Contact Case

3.6.1. Wrench Vector and Stiffness Matrix

In the case of a pure rolling contact, we have «, +a 4 =0. The potential energy is represented by

U/: (&05 o) = U (&0, Ui =k ) - (29)
In the case of pure rolling contact, the contact position displacement «,, has to satisfy the following

conditions

Uj (€0 ot) _ s O°Uk(E0:0ok)
aaok ’ aaokﬁaok

(30)

At the initial condition of Equation (30), we have U , =0 and then Uky=0. We have also U faa >0.
This means that a positive stiffness has to be generated in the displacement direction «, .
From the first condition of Equation (30), the parameter «,, is given by a function of &, .

Ul (£,)=Uf (&2l (8,)) » 31)

where the superscript “fr” means the rolling contact between the finger and the object. The wrench
vector at the contact point is given by

ou{(e,)

Gl =
k oe,

=" Wi f - (32)

The stiffness matrix of the pure rolling contact is given by
HF = azU)f(go)

. _rrr iy
T oe,08] ~Yhse + O U (33)
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where

o oali (&,)

. _Tok®o/\ _ _pr r -1
k- ago Uk,ag[Uk,aa] . (34)

These derivations are described in Appendix D.
3.6.2. Local Curvature Effect

The partial derivatives of the wrench vector and the stiffness matrix by the local curvature
parameters are given by
oGl oGl .
Err k) (35)

This means that the wrench vector is independent of the local curvatures.

oH!  om /[
My _ Mk _thr oF1of T <o,
oK, aka ka [Qk 17 <0343 (36)

The properties of these negative semi-definite matrices imply that the grasp stability decreases when
the local curvature parameters increase. The effect of the local curvature deviation appears in the
direction Q]". These derivations are described in Appendix D.

3.7. Contact Condition Effect

To compare the stiffness matrices of the pure rolling contact and the frictionless sliding contact in
the same force condition, we assume U, , =0,,;. The difference matrix is given by

d S -1 T -1 T
H]{ = H]{r _H]{S = Uk,agUk,aaUk,ga _[Uk,agz][z Uk,aaz] [Uk,agz]

-1 T T -1 T

_ Uk,agUk,aa {lz Uk,aaz]Uk,aa - Uk,aazz Uk,owc }Uk,aaUk,wc _ |Uk,aa| {Q S|:1:|}{Q S|:1:|} >0 (37)

B T = k i 3x3 -
< Uk,aaz Ul}c’,aa 1 1

It is shown that the pure rolling contact is more stable than the frictionless sliding contact
because H ,{d is a positive definite matrix. The effect of the contact condition difference appears in the

direction 0/°[L1]" .

3.8. Grasp Wrench and Stiffness Matrix

The total potential energy of the grasp is given by
U(g,) = Ugo(so>+§ukfc (&) (38)
where the superscript “fc” is “fs” for the sliding contact or “fi”” for the rolling contact. The symbol
Ug,(s,) is the potential energy of the object affected by the gravity.
Ugo(&,) = —mo”p§0 &)'g, ngo (&)= 153" 4,7 4, (€0) Agovy - 39)
The frame T, represents the center of the object mass.

The wrench vector and the stiffness matrix of the grasp are given by
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_oU(g,)|
og,

GRUCH)

G:
agoanT 0

Ggo +%ch , H = =Hg0 +%H{C . (40)

0
The grasp stability is evaluated by the eigenvalues of the matrix H when the wrench vector G is zero

(wrench equilibrium). The wrench vector and the grasp stiffness matrix are represented in the object
frame %, .

4. Numerical Examples

We show examples in order to demonstrate the effectiveness of our analysis. In our method, the
number of fingers and the shape of the object and fingers are not limited if «,, +«, >0. In order for
the reader to easily understand our analysis, we show simple examples. Because the effects of the local
curvatures have been analytically derived as shown in Equations (28) and (36), we omit the
explanations on the curvature effects in this section.

4.1. Example 1

Assume the case of an object grasped by two fingers with three revolute joints. The object is
grasped in the palm of the hand. The shape of the fingers and the object is shown in Figure 3. The
physical parameters are set as shown in Table 2.

Finger 2 | Finger 1

@ (v)
4 1 001 7513
Sy ] 0.1—_;’_’__/
. 0 . 0.2}
T 0.3}
2! z 7
! Lflf 1 0.6 741
10 x 0.7 —— ; : : ‘
00 02 04 06 08 1.0 00 02 04 06 08 1.0
m, kg m, kg
(©) (d)

Figure 3. Cont.
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8500
52000" £400
51500 8300
> 51000 ~ 8200
50500 8100
| | | | \ g0, —
00 02 04 06 08 1.0 00 02 04 06 08 10
m, kg m, kg
(e) ()
11.5¢ ‘
300 1.0}
- 105
< < 10.0}
200 25
9.0
00 02 04 06 08 10 00 02 04 06 08 10
m, kg m, kg
(g) (h)

Figure 3. Grasp example 1. (a) An object grasped by two fingers. (b) Contact force
f . (d) Joint torque z; . (e) Finger stability condition U ,,, .

direction. (¢) Contact force “/'

(f) Eigenvalue 4 . (g) Eigenvalue 4,. (h) Eigenvalue.

Table 2. Physical Parameters.

Gravity acceleration 2=9.8 (m/s?)
Gravity acceleration vector be = _gu,
Mass of the object Mo
Mass of the link mi = 0.04 (kg)
Object half length lo=0.02 (m)
Finger link length I =10.03 (m)

Local curvature of the object

ok = 100 (1/m)

Local curvature of the finger

xn = 200 (1/m)

Joint stiffness matrix

Sk = diag[1,1,1] (N-m/rad)

Joint angles of the finger 1

(q11, q12, q13) = (7/4, 7/4, =/4) (rad)

Joint angles of the finger 2

(g21, q22, q23) = (37/4, —x/4, —=/4) (rad)

Directions of the contact points

(01, 02) = (z/4, -n/4) (rad)

Center of the object mass

OAgO =13

Local contact frames on the object

CApor = A (Lwy) 5 ALy = A, (1) AL

Frames of the finger

O di1 =4, (), iy = A4, w4 (gr2)
23 = 4, (ou) A0 (q43)
k3ALfk = A; (lizu) A4, (61) 4, (K]klul)

Finger base frames

P 1o = AUy +x7m), Py = 4, (~(U, + k7w

Center of the link mass

klAgkl = A4, ((ly 1 2)uy)

Contact force

f= Y =10(N)

476
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We have Gy, =myglu} 017 and H 20 =033 - In order to generate the wrench equilibrium
G =Gy, +G" +GJ =05, the contact forces are set to “'f = [, m,g/2]" and “2f = [-f, -m,g/2]" .

The component f means an internal force for preventing the slip between the object and the fingers.

The y components generate forces to resist the object mass. The signs of the components depend on the
relationship between the base frame 3, the object frame =,, and the contact frame ¥,; as shown in

Figure 3b. In the case of the frictionless sliding contact, this grasp is infeasible because of ul 7% f 0.

Hence, in this example, we show the results of the rolling contact case only.
Because of the revolute joints, we have o =1 and v, =0, and then we obtain 7z, Sy, and S;4 .

Figure 3¢ shows the contact force “! £ in the case with f= 10 [N] with respect to the object mass ..

From the above settings, the joint torque is obtained by

Lk T Lfk Lk ;T ok g
Ty =""J w—Tg=""J 0 — Tk - 41

Figure 3d shows the joint torque r,; . Similarly, z,, is obtained because of the bilateral symmetry
grasp. From this figure, it is shown that the absolute values of the joint torques decrease when the
object mass increases. In order to maintain the joint angles, the joint torques vary depending on the
object mass.

Lf1..T
or oty g 0 p 7 pliu,
y y Lf1 4T Lf1 T
. sl _Y%s2 _SLf T\ | __& fplzul . (42)
m, amo 2 0 2 LflpTu
13%1

In this example, we have ¥ plu, <0, (I=1, 2, 3) then the absolute values decrease as shown in Figure

3d. Figure 3e shows the finger stability condition Uy ,, . Because U; ,, is positive, the finger joint
angles are stable. However, its margin decreases when the object mass increases because of

aUl:,aa

om,,

<0. 43)

This partial derivative is described in Appendix E. The grasp stiffness matrix is given by

, | 0 g
H=Hg, +H]"+Hy =| 0 hy 0 |. (44)
my 0 h3

Because the elements of the matrix are complicated, they are omitted. The eigenvalues are

M| (hy+hay) £y (g = hy3) + 4his
M=hy, “r= :

s 2

obtained by

(45)

Figure 3f-h show the eigenvalues. The eigenvalue 4 is given in the y direction (vertical direction).

The second eigenvalue is obtained mainly in the x direction (mainly horizontal direction). The third
eigenvalue is obtained mainly in the rotation of the object. It is shown that the eigenvalues of the grasp
stiffness matrix decrease when the object mass increases. This characteristic is obtained by the partial
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derivative of the matrix with respect to the object mass. From the derivation in Appendix E, we have
the following negative definite matrix:

OH
amo < 03><3 . (46)

This means that the eigenvalues decrease when the mass increases.
4.2. Example 2

We investigate the grasp shown in Figure 4a. Whereas the joint angles are the same as in
Example 1, the direction of the gravity vector is opposite. This means that the object is grasped below
the hand palm as shown in Figure 4a. Figure 4b shows the joint torques. In order to maintain the joint
angles, the absolute values of the joint torques increase when the object mass increases. The required
joint torque of this case is larger than that of Example 1. In Figure 4c, the finger stability condition
increases when the mass increases. In Figure 4d—f, the eigenvalues of the grasp stiffness matrix also
increase when the mass increases. Hence, the grasp stability increases when the mass increases. These
results are obviously obtained from the following values:

Lf1 -/ L2 AR 0Ty _—gIf1,T 0
4 f= - myg |, / f=|myg|, 12 TSl JUL,
N S om, om 2

’ 0 (47)

U}, war OH
——=>0, —>03,3.
om om 3

o o

This stability is similar to a pendulum system. Example 1 implies an inverse pendulum system.

Finger 1 Finger 2
0.3 7s13
g 04
“ 0.5
~ 06
0.7
0.0
55000 9100}
54500/ 9000;
£ 54000 ~ 8900
53500¢ 8800
53000 | | | | ‘ 8700
00 02 04 06 08 10 00 02 04 06 08 1.0
m, kg m, kg
(c) (d)

Figure 4. Cont.
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<

400

350 | | | | ‘ yan | | | |

00 02 04 06 08 1.0 00 02 04 06 08 1.0

m, kg m, kg
(e) ()

Figure 4. Grasp example 2. (a) An object grasped under the palm. Joint torque 7, .
(¢) Finger stability condition U; ,,, . (d) Eigenvalue 4 . (e) Eigenvalue 4, . (f) Eigenvalue 4, .

4.3. Example 3

We investigate the grasp shown in Figure 5a. The gravity direction is the same as in Example 1, but
the joint angles are different. The joint angles are set to (q11, q12, q13) = (#/2, —z/4, #/2) and (g21, g22,

q23) = (#/2, n/4, -=/2). The directions of the contact points are the same as in Example 1. The

absolute values of the joint torque decrease when the object mass increases (Figure 5b). The finger
stability condition decreases and the eigenvalues of the grasp stiffness matrix decreases when the mass
increases (Figure 5c—f). These characteristics are similarly obtained from the analysis of the partial
derivative with respect to the object mass as described in Example 1. The margin of the finger stability
condition is smaller than that of Example 1. The first and the second eigenvalues of this grasp are
larger than those of Example 1, but the third eigenvalue is smaller than that of Example 1. This means
that the rotational stability decreases while the translational stability increases as compared with

Example 1.

Finger 2 0.0 ‘ ‘ ‘ ‘ q
0.1’-——’-—23—___________——/’
0.2¢ ]
0.3t a0 ]
0.4t
0.5¢
0.6/ Tsl1
0.7 —— : : : -

0.0 02 04 06 08 1.0
my kg
(2) (b)

Figure 5. Cont.
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28 000} 13800!
£ 27000; < 13600}
26500} 13500}
26000" | | | | ] 13400‘ | | | N
00 02 04 06 08 1.0 00 02 04 06 08 1.0
m, kg m, kg
(©) (d)
6.5}
900 6.0F
~ . 5.5¢
~ 850 ~ 50
4.5} ]
800
\ 4.0 ~
00 02 04 06 038 1.0 00 02 04 06 0.8 1.0
m, kg m, kg
(e) ()

Figure 5. Grasp case 3. (a) An object grasped by two fingers. (b) Joint torque z; .
(¢) Finger stability condition Uy ,, . (d) Eigenvalue. (e) Eigenvalue 4, . (f) Eigenvalue 7;

4.4. Example 4

We investigate stability of the grasp shown in Figure 6a. Whereas the direction of the gravity is the
same as in Examples 1 and 3, the joint angles and the contact points are different from the examples.
In Figure 6a, the illustration of the fingertip shapes is somewhat different from the previous examples
but the local curvatures at the contact points are the same as in the examples. The joint angles are set to
(qu1, q12, q13) = (z/4, 7/2, —x/4) and (q21, 22, q23) = (3z/4, —-x/2, =/4). The directions of the contact
points are given to ¢, =x/2 and 6, =-x/2. The absolute values of the joint torque decrease when the
object mass increases (Figure 6b). The finger stability condition and the eigenvalues of the grasp
stiffness matrix decrease (Figure 6¢—f). The absolute values of the joint torques are larger than those of
Example 1. The margin of the finger stability condition is smaller than that of Example 1 and larger
than that of Example 3. The first and the third eigenvalues are smaller than those of Example 1.
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Finger 2 03k m—
7513
0.4 —
Z 05 ,
- Ts12
g 0.6
0.7 1l ]
00 02 04 06 08 1.0
m, kg
(b)
38500 6050}
38000 , 6000!
Sﬂ 37500 ] fs 5950F
37000
36500 5900}
00 02 04 06 08 1.0 B0 02 04 06 08 10
m, kg m, kg
(¢) (d)
340
320
300
280
~ 260
240
220
200% | | | | ‘ | | | | ’
00 02 04 06 08 1.0 00 02 04 06 08 1.0
m, kg m, kg
(e) ()

Figure 6. Grasp case 4. (a) An object grasped by two fingers. (b) Joint torque z; .
(¢) Finger stability condition Uy ,,, . (d) Eigenvalue 4 . (e) Eigenvalue 2, .(f) Eigenvalue ;.

4.5. Example 5

We investigate the grasp shown in Figure 7a. Whereas the gravity direction is the same as in
Examples 1, 3 and 4, the joint angles are different from the examples. The joint angles are set to
(qu, q12, q13) = (37/4, -x/2, =/4) and (q21, g22, q23) = (x/4,7/2,-x/4). The directions of the contact
points are the same as in Example 4. Figure 7b shows the torques of the finger 1 with respect to the
object mass. The absolute torques of the joints 1 and 3 decrease but those of the joint 2 increase when
the object mass increases. These results are obtained from “!pliu; <0, ¥ pLu >0, and ¥ pLu; <0 in
Equation (42). These values are obtained from the relation of the joint frame ¥, with respect to the
contact frame ;4 . From Equations (43) and (46), the finger stability condition and the eigenvalues of
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the grasp stiffness matrix decrease when the mass increases. These figures are omitted because similar
figures are obtained.

Finger 2 03 —
7513
0.4+
g
Z 05" ]
Tsi1
0.7 f—= ‘ ‘ ‘ ]
00 02 04 06 08 1.0
m, kg
(a) (b)

Figure 7. Grasp case 5. (a) An object grasped by two fingers. (b) Joint torque 7.

4.6. Example 6

We investigate the effect of the link mass for Example 1. The mass of every link is set as the same
value: mr1 = mr2 = mr3. The object mass is fixed as mo = 0.5 kg. Figure 8 shows the effect of the link
mass. Because the object mass is fixed and the contact force is independent of the link mass, the
contact force is constant as shown in Figure 8a. In order to maintain the joint angles, the joint torques
vary depending on the link mass as shown in Figure 8b. The finger stability margin decreases and the
eigenvalues of the grasp stiffness matrix decrease when the link mass increases as shown in Figure 8c—
f. From Appendix F, these results are obviously obtained by the following derivatives:

0t51 __0Te <0, 0t512 _ 074 -0, 0tq3 _ 0743 S0, 0U} o <0, OH <03 (48)
amk, amk, 6mk, Gmk, amkl 6mk, 6mk1 amk,
If the direction of the gravity vector is given as shown in Example 2, the inequalities of the

derivatives shown in Equation (48) are reversed.

4 0.0p
2,
0.2
Z Ofolfy 7513
2t [ 7512
04— ¢
=5
~
6 0.6} ¢
8t Lflfx s11
10k ‘ ‘ ‘ ‘ .8l ‘
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
myg kg mpy kg
(a) (b)

Figure 8. Cont.
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51400; 8300
51300¢ 82501
-« 51200} —
=) ~ i
51100 8200
51000
| | | | | \ 8150‘ | | | TN
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
my kg my kg
© ‘ ‘ ()]
255¢ ]
250¢ 10.6¢
245} 10.4}
2404 ~ 102!
235¢
2307 10.0’
2255 ‘ ‘ ‘ ‘ J 9.8k ‘ ‘ ‘ ‘
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
mg; kg myy kg
(e) 0)

Figure 8. Grasp example 1 with m, = 0.5 kg and varying mu. (a) Contact force ¥!f .
(b) Joint torque z,; . (¢) Finger stability condition U rae - () Eigenvalue 4 . (e) Eigenvalue
A, . (f) Eigenvalue 2.

5. Conclusions

In this paper, we investigated the case that the individual finger is constructed by three joints.
This analysis is applicable to both prismatic joints and revolute joints. Not only rolling contacts but
also sliding contacts were treated. The masses of the object and the finger links were also included.
From the potential energy method, the wrench vectors and the grasp stiffness matrices were
analytically derived. The vectors and the matrices include grasp parameters such as the contact
conditions, the local curvatures, the masses, and so on. Using positive definiteness, we investigated the
effects of the contact condition and the local curvature analytically. Using the numerical examples, the
effects of the object mass were investigated. From these examples, the finger stability margin and the
grasp stability decrease when the object mass increases if the object is grasped over the palm. If the
object is grasped under the palm, the margin and the stability increase when the mass increases. It was
also shown that the relationship between the joint torques and the object mass depends on the
relationship between the positions of the joint axis and the contact point by using the partial derivative
of the torque with respect to the mass. It was shown that the effect of the link mass was similar to the
effect of the mass.

In the numerical examples, the bilateral symmetry grasps were discussed. The numerical results
were reinforced by the analytical explanations. We omitted tilted grasps, asymmetric grasps, and other
grasps because complicated results were obtained and could not be reinforced by similar analytical
explanations.



Robotics 2015, 4 484

As shown in our analysis, the analytical derivations appear complicated, but the fundamental
characteristics of the grasp can be obtained. In the case of three planar joints with local surface
curvature, the joint Jacobian is invertible, but it is not invertible in the case of more redundant joints.
In our future work, we extend to the case of more redundant joints. Moreover, we attack the case of
spatial revolute joints case, but it is much more complicated.
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Appendix A. Partial Derivatives of the Potential Energy of the Finger Link Mass

We have

a[prd @a)"8)
0 g1

@ Vi
012 0

b T, b, kO Kl k-1 K
={ & Iy Ao Akl(qdk1)|: } Ao (qara) x> A (qpg) Agklvg’}

01 viu r (Al)

b T; b k1 K181 (k1 u k1

="g I Akl|: } Agive =i, 011] 1 g
0o O i Pt ®

where ¥ ¢:="R,”¢ . Finally, the joint torque r; is given by

_ . y .
Ve, @51 bolte
V1> @kl E{mkl{kll’gkl ®}}

c ui k2
= Vk2s @2 12 mua| 1 gl- (A2)

=2 Pt ®
K3
} .
b.T, b, |@a2 Val |, | @0 Vil
=g I Ak1|: } 4 {

OU g (qar) 0 3 b b
Top = —> | = = my" phaa)’g
oqa |, |%a| 5

Pgi3 ®

[Vk3awk3]{mk3[k3

In a similar manner, we have

O’ "l (qa)"8)

09 41204 g1

uf
:|k2 4 uy |
2 kIV¢ = O [Via, 0k2] g
O, O 01,2 0 give = Ol @k —F2pl (A3)

Finally, we have
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00
0°U gt (qar) 3 Wl |a
S =——— = Vet @1 mu kl 2 8 0 00
4 arMax |, I=1 Pkt 0 00
3 ul
~| k2o @2 12 M| g7 g wkl a’kz (A4)
=2 = Pgu

T
k3
—[[Vk3»wk3]{mk3{ k3pT }} g}
k3
& Wpp O3

See (102) of [22] for the derivations of Equations (A1) and (A3).
Appendix B. Partial Derivatives of the Contact Constraint

The contact constraint can be expanded to

b, kO k1 k2 k3
A" A Gan)” Ar2(Qa2)" " Ar3 (Garz) A @)
B

=0 4077 4, (8,) Aot A (K o1 Lo )KOkArgfk A (=K et g )kaAij .

For the first-order partial derivative of the condition with respect to xo, the condition is given by

kg Vil || 0q gx L, Via# || O ako (g, Vishi || O3 _Lfkp, uy || ox,
a)kl 6x0 a)kz 6)(0 0 a)k3 6x0 0 0 axoo

oo 1

3

0

Lk v, , So Lk 0a,y Lk
+7"B +H%B y + "B - B
bo {0 }on 01 o¥ L %, J Kok mk":[ o, Kp ™ BugrVe ox,

Lk
Lfk —1 L —1 L -0
P ok = Kbt s P p = k71 s K By, :KDI{ pmk}{

0

where
_u2 u2
}, Kk LﬂfB,gkvg = {Kﬂj - (B3)

1 Kok

Considering the parameters ¢, and «;, we have Equation (13). The second-order partial derivative of

the constraint is obtained by

¢,
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Then, we have the following form:
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Appendix C. Wrench Vector and Stiffness Matrix of the Sliding Contact Case

The condition is transformed into the following form:

-1 Kok u2T 0 Lk -1 Kok Lfkf
0241 = Uk {_1 _ka:||:01x2 | W=l —kp | L, | (CDH
Because of «, +x4>0, we have L fy=0 and Ukp-0 . The wrench vector is given by the

first-order partial derivative of the potential energy.

Ui | A @ | [ aUe,.ap)
oe, |0 o8, |, o5, | o

_oule,)

6ak (C2)
= Uk,g +Q/{SUk,a = Uk,g :LkaZ" Lﬂ{w =’ WL_fk[Lfkfxul] .

The stiffness matrix is given by the second-order partial derivative

_ i aUk (80 > akfs (80 )
- 880 685
0 0

_PUepay)| | Aaf @) | | U6,
650685 |O 880 |0

o*UL (e,)

H =
k 83063({

(C3)

T = Uk,eg + Q]‘ka,ga .
Bakaao |0

We analyze the effects of the curvature. The partial derivative of the stiffness matrix is given by

OHP  Upse 08U

U oUy !
-1 -1 k,ea k,aa
Uk,aa Uk,ga - Uk,asUk,aa T - Uk,ag 8— Uk,ga (C4)

ok ok
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Each partial derivative included in Equation (C4) is given by
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(C5)

Substituting these derivatives into Equation (C4), we have Equation (28). In a similar manner,

we have

IRl aka _Kok +Kﬂ€ -1

T
aUk,aa — 0 Uk,aa 1 _ Uk,tza 1 0 ! +uTLfkf 0 0 '
oK g 1| &, +5, | —1 K+ K, | —1]]| 1 ol

Then, we have Equation (28).

T
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Appendix D. Wrench Vector and Stiffness Matrix of the Rolling Contact Case
In the case of rolling contact, the parameters are represented by
_| %ok | _| %ok | _
%= ap | |—au| ook -
The first- and the second-order partial derivatives are given by the following form:
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From the first-order partial derivative, we have the following constraint:

T
—Uuy; Kok

O:U;’a:zTUk,a:zT{ }Lfkw:(lcok+rcﬂ{)vgukw.

- Mg - Kﬂc
From this condition, we have “*n= Iy =0.

The partial derivative of the stiffness matrix by the local curvature parameter is given by
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Each partial derivative included in Equation (D4) is given by

aUg,gg _ aUI:,ss _ aUl}c’,ag _ aUIC,ag _ _Q}(rUlg,aa
6K0k 6K/k 33> aK‘Ok 6Kﬂ( Kop + ka
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6K0k 6ka Kok +Kﬂ€
Finally, we have Equation (36).
Appendix E. Partial Derivatives with Respect to the Object Mass in Example 1
The partial derivatives of the contact forces with respect to the object mass is given by
oy __6Lf2f oy
om,, om, 2 (ED
The partial derivative of §,, with respect to the object mass is given by
1 00 010 0 01
oS Lik Lk
a2 Lﬂ‘,{afooo+ﬂ‘p,{26f110+L-”‘p;{36f001. (E2)
om,, om om,,
000 0 0O 1 11

Because of “'pLu, >0, ¥ phuy>Yplhu, , and ¥ plu,>¥phu, in the case of finger 1, we have the
following negative definite matrix:

e 11 T
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0

Because this example is a bilateral symmetry grasp, we have 2 plu, =—%'plu, and then

—= = <03,3.
om, om,, 3 (E4)

Hence, we have
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Finally, we have
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The partial derivatives of Equation (D2) with respect to the object mass is given by
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Because of “* pI'u, =0, the partial derivative of the grasp stiffness matrices is obtained by

k=1 o

Appendix F. Partial Derivatives with Respect to the Link Mass in Example 1

The partial derivative of the joint torque is obtained by

k1 k1 k1 k1 Th k1 k1 k1
s or CPgr1+ Pgrat Pei3)®" 8 ui "R P+ Pkt Pak3)
Tsk gk k2 k2 k2 Tbh k2 k2
—F=-—"= Pyt Pa3)® g  |=-g w Rp("Pgart Pes3)
amkl 6mk[
k3 ®F3 Tbp k3
Pgi3 4 uyp Rp3 o Pgis

In Example 1, we have

Thy, kl Kl Kl Thy, k2 k2 Thp K3
Ui "R (" P+ Pakat Pa3) >0, ui "Rip (TPt Per3) <0, up "Rz pgiz <0.

Finally, we have Equation (48).

The partial derivatives of Uy ,, and H ,{’ with respect to the link mass are formulated by

ouU;, oS
k,aa = (K, +ka) vT Lfk y=T 22 gk gk Lfk j-1,,
6mk1 Gmkl
and
oH[" Ul . oU} Uy ouy
k_ _ k,ga k,ag [ri] +ri k,ea +ri k,aa [ri]
amkl 6mkl 6mkl 6m 6m
_ k _
[ijBT+(K0k+ka)ervT Lk y Tamg Lk I[LkaT+(K0k+K/k)Q vg] ,
ki
where
s 1 010 3 0 01
k
gl zkl T kl 110 Zkngkl k2g+ 00 1 k3p£k3k3g
6mk1
000 0 0 0=2 111
T T T

1|1 1 1|1

1
Thy kl Kl Th, k2 k2 Th, k3
==g410] 0| wy "Rg[" g1 +2" pr2l+| 1| 1| w3 "Rio[" poro+" Pzl +| 1| 1| w3 "Ri3™ " P i3
0

0fo0 0 1|1

In Example 1, we have
Thp (kl Kl Th, k2 k2 Th, k3
) "Ria[" Pt +2" Pr2l> 0, w3 "Rio["piat+" pi3] >0, uy "Ri3™ pgr3 > 0.

Finally, we have the following conditions and then Equation (48).

2 Lfk
r.o%*s
=S *B] +(x, +x )0 vE1—= — 2B 4k, +x )0 VET <055,
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