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Abstract: This paper discusses static stability of a planar object grasped by multifingers 

with three joints. Each individual joint (prismatic joint or revolute joint) is modeled as a 

linear spring stiffness. The object mass and the link masses are also included. We consider 

not only pure rolling contact but also frictionless sliding contact. The grasp stability is 

investigated using the potential energy method. This paper makes the following 

contributions: (i) Grasp wrench vectors and grasp stiffness matrices are analytically 

derived not only for the rolling contact but also for the sliding contact; (ii) It is shown in 

detail that the vectors and the matrices are given by functions of grasp parameters such as 

the contact conditions (rolling contact and sliding contact), the contact position, the contact 

force, the local curvature, the link shape, the object mass, the link masses, and so on;  

(iii) By using positive definiteness of the difference matrix of the grasp stiffness matrices, 

it is analytically proved that the rolling contact grasp is more stable than the sliding contact 

grasp. The displacement direction affected by the contact condition deviation is derived; 

(iv) By using positive definiteness of the differential matrix with respect to the local 

curvatures, it is analytically proved that the grasp stability increases when the local 

curvatures decrease. The displacement direction affected by the local curvature deviation is 

also derived; (v) Effects of the object mass and the joint positions are discussed using 

numerical examples. The numerical results are reinforced by analytical explanations. The 

effect of the link masses is also investigated. 
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1. Introduction 

Human beings can grasp and manipulate various shaped objects dexterously. For this reason, 

handling skills inherent in human nature are required for accomplishing assembly tasks including 

complicated shaped objects and complicated contact conditions. It is required that production lines are 

automatized using robot systems in order to improve working conditions and maintain constant and 

high quality productions. Multi-fingered robot hands are useful for the handling tasks of various 

shaped objects. Grasp stability is an important factor for dexterous grasp and manipulation using the 

hands. While external forces are applied to the grasp and the object pose is displaced, the grasp has to 

be unbreakable and the robots have to accomplish the handling and assembly tasks. The grasp stability 

has been investigated in many works (Table 1). 

Table 1. Differences among the previous works. 
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Hanafusa [1] 2D - - PC - - - - - 
Nguyen [2] 3D - - PC, PCWF, - - - - - 

Li [3] 3D - - PCWF - - - - - 
Cutkosky [4] 3D - - PCWF - O O - - 
Carbone [5] 3D - - PCWF - O O - - 

Kim [6] 3D - - PCWF - - O - - 
Babiccini [7] 3D - - PCWF - - - - - 
Malvezzi [8] 2D - - PCWF - - - - - 
Shapiro [9] 3D - - PC - - - - - 

Montana [10] 3D included - RC - - - - - 
Xiong [11] 3D included - RC - - - - - 
Choi [12] 3D included - RC - - - - - 

Michalec [13] 3D included - RC - - O O - 
Funahashi [14] 2D included - RC, SC(1D) - - - - - 
Howard [15] 3D included - RC, SC(1D) - O O - - 
Howard [16] 3D included - RC, SC(1D) - - - - - 

Lin [17] 2D included - SC(1D) - - - - - 
Yamada [18] 2D included - RC, SC - - - - - 

Yamada [19–21] 3D included - RC, SC - - - - - 
Yamada [22] 2D included treated RC, SC treated O 2 - - 
This paper 2D included treated RC, SC treated O 3 O O 

O: treated, -: Untreated, PC: Point contact without friction, PCWF: Point contact with friction, RC: Rolling 

contact, SC: Sliding contact, SC(1D): Sliding contact with a single spring model. 
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Hanafusa and Asada [1] discussed a planar object grasped by mechanical elastic fingers. It was 

shown that stable grasps are given at the minimum potential energy stored in the grasp. Nguyen [2] 

pointed out that the elastic fingers can be modeled as virtual linear springs. It was shown that stable 

grasps are given by using the gradient and the Hessian of the stored energy. That is, the equilibrium 

grasp is stable if the Hessian is positive definite. Such a Hessian is called a grasp stiffness matrix. In 

his analysis, the object shape is limited to a polyhedral object and the finger shape is a pointed finger. 

Li and Kao [3] discussed properties of the grasp stiffness matrix. Cutkosky and Kao [4] included joint 

compliance (joint stiffness) and formulated the grasp stiffness matrix. Carbone [5] discussed Cartesian 

stiffness matrices for various types of robot systems. Kim et al. [6] discussed task based compliance 

for peg-in-hole tasks and investigated a suitable grasp stiffness matrix. Gabiccini et al. [7] and 

Malvezzi and Prattichizzo [8] investigated the grasp stiffness in underactuated hands. Shapiro et al. [9] 

investigated force closure grasps and allowable external wrenches. In their analysis, local curvature 

parameters of the object surface or the finger surface were not included. This means that the local 

shape is assumed to be pointed. 

Montana [10] pointed out that the local curvatures and the contact distance between contact points 

affect the grasp stability. The grasp was formulated as a dynamical system considering the surface 

curvatures. Xiong et al. [11] included contact stiffness and investigated dynamic grasp stability.  

Choi et al. [12] investigated the spatial grasp stiffness matrix considering the rolling contact and the 

local curvature. The elastic finger surface is replaced as spatial spring stiffness. Michalec and  

Micaelli [13] formulated the stiffness matrix considering joint stiffness, local curvature and rolling 

contact. They treated the rolling contact only. 

Funahashi et al. [14] replaced every finger as the linear spring model and investigated the grasp 

stability from the stored energy. The finger and the object surfaces at contact points were approximate 

circles. Not only pure rolling contact but also frictionless sliding contact were investigated. Howard 

and Kumar [15,16] focused on the elastic property of the object and the finger. In the case of 

frictionless contact, the contact stiffness was modeled as a single spring along the initial contact 

normal direction. In the case of friction contact, the stiffness was replaced as a multiple-springs model. 

The spring stiffness and the local curvatures are included in the grasp stiffness matrix.  

Lin et al. [17] investigated the grasp stiffness matrix for immobility of the object. The finger is 

immobile and the contact stiffness is modeled as a single spring. This means that the contact is limited 

to frictionless contact and the finger is considered as a fixture part. In their formulations [6–9], the 

spring model was switched depending on the contact friction condition. 

Yamada et al. [18] pointed out that the difference between the rolling contact and the sliding contact 

is represented not by the difference of the spring models but by the difference of contact point 

displacements on the object and the finger. The multiple-springs model was used not only for the 

rolling contact but also for the sliding contact. The relationship between the displacements of the 

object and the spring was formulated and the grasp stiffness matrix was derived. Yamada et al. [19–21] 

discussed spatial grasp stability with not only rolling contact but also sliding contact. In this analysis, 

the contact surface geometry (metric tensor, curvature, and torsion) was included. The wrench vector 

and the grasp stiffness matrix were analytically derived. Whereas References [18–21] did not consider 

the finger links, References [13,15] included the finger links but did not treat both the rolling and the 

sliding contacts with the same spring stiffness. 
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Yamada et al. [22] included the finger links and discussed the case that the fingers are constructed 

by revolute joints. The grasp stiffness matrix was formulated not only for the rolling contact but also 

for the sliding contact. In this analysis, the finger links are included but the number of links was 

restricted to two joints and the link masses were not considered. The effects of the object mass and the 

link masses on the stability were not investigated. In order for the rolling contact constraint to occur 

between the finger and the object, every finger requires at least two joints. Hence, Reference [22] 

employed two-joint fingers based on Reference [18]. 

In general, it is conceivable that an object is grasped by fingers or arms with three or more joints.  

In this paper, we discuss the case of three-joint fingers. Moreover, the object mass and the link masses 

are included. We investigate not only rolling contact but also sliding contact between the object and 

the fingers. The grasp stability is discussed by using the potential energy method. The wrench vectors 

and the grasp stiffness matrices are analytically derived. Grasp stability is evaluated by the eigenvalues 

and eigenvectors of the matrices. The vectors and the matrices are given by functions of grasp 

parameters such as the contact conditions (pure rolling and frictionless sliding), the local curvatures at 

contact points, contact forces, the masses, and so on. The effects of the contact conditions and the local 

curvatures on the stability are investigated by using positive definiteness of the grasp stiffness 

matrices. Effects of the object mass, the link masses, and the joint positions are investigated through 

numerical examples. 

The analysis for frictionless sliding contact is applicable for the case that the friction coefficient of 

an object to be grasped is unknown beforehand, the object is covered with machine oil, or the surface 

property is slippery, similar to a cube of ice. 

2. Problem Definitions 

We suppose an object grasped by multifingers with three joints as shown in Figure 1. We analyze 

static stability of the grasp. 
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Figure 1. An object grasped by multifingers with three revolute joints. 
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2.1. Assumptions 

For simplicity of discussions, we analyze the stability based on the following assumptions: 

(A1) The object and the fingers are rigid bodies; 

(A2) A single point contact exists between two bodies; 

(A3) Initial grasp pose (position and orientation) is given; 

(A4) The local curvature at each contact point is given; 

(A5) An infinitesimal pose displacement of the object occurs due to an external disturbance; 

(A6) Each finger is constructed with three joints. The relationship between the joint torque and the 

joint position displacement is replaced with a linear stiffness. 

Motion of the bodies is simplified from (A1) and (A2). If the material of the bodies is metal, its 

property is considered as rigid bodies described in (A1). If the object or the fingers are soft bodies, 

deformation of bodies has to be considered. In the case of soft bodies, the representation of the bodies’ 

motion is much more complicated. If two or more contact points exist between two bodies, the contact 

form is represented by a line contact or a face contact and degrees of freedom of finger motion 

decrease. The grasp stability is analyzed when the grasp parameters are given from (A3) and (A4). In 

our future work, we will discuss grasp position planning algorithms based on our stability analysis. 

From (A5), dynamics is not considered. Stability of the initial grasp is discussed by using the gradient 

and the Hessian of the stored potential energy. Our results are applicable for grasping an object in 

grasp planning or stabilizing or immobilizing an object in fixture position planning. The two-joints 

case was discussed in Reference [22]. If the number of joints is more than three, the joint Jacobian 

described in Section 3.3 is not a square matrix. Hence, the matrix is not invertible. In Assumption 

(A6), each joint is designed with passive stiffness joint or controlled by a compliance control. In three 

dimensional grasps, contact surface geometry (metric tensor, curvature, torsion) has to be included, 

joint position displacements and contact position displacements will be much more complicated. These 

cases will be addressed in our future work. 

2.2. Nomenclature 

We use the following coordinate frames (Figures 1 and 2), b  is a base coordinate frame, o  is an 
object coordinate frame fixed in the object, Cok  and Cfk  are current contact coordinate frames 

moving on the object and the k-th finger surface, respectively. The frames ok  and fk  are curvature 

center coordinate frames of the contact point on the object and finger, respectively. The frames bo , 

Lfk , and Lok  are the initial coordinate frames of o , Cfk , and Cok , respectively. 

 

ok
fk

Lok Lfk

Cok
Cfk

Finger k

Object

 

Finger 2. Contact coordinate frames. 
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The matrix 33R b
a A  is a homogeneous transformation matrix of b  with respect to a .  

The vector 2Rb
a p  is the position component and the matrix 22R b

a R  is the orientation component. 

Other vectors and matrices are also used. 
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(1)

The symbol   is used for representing the two-dimensional cross product in order to distinguish it 

from the normal product  . The symbol := means that the left hand term is defined by the right hand 
terms. The superscript “L” means the local contact frame for Lok  and Lfk , the subscript “C” denotes 

the current contact frame for Cok  and Cfk , and the subscript “κ” denotes the curvature center frame 

for ok  and fk . The symbol “α” is a contact point displacement parameter, and the symbol “κ” is a 

local curvature parameter. 

3. Formulation 

We focus on the k-th finger in contact with the object. 

3.1. Joint Position and Local Coordinate Frame 

The pose of the local contact frame Lok  with respect to b  is represented by 

Lok
o

oo
bo

bo
b

oLok
b AAAA )()(   , )()()( orotoo

bo AAA x , (2)

where the vector T
o

T
oo ],[ x  is the object pose displacement, the vector T

ooo yx ],[x  is translational 
component, and the scalar o  is rotational component. The pose of the local contact frame Lfk  with 

respect to b  is represented by 

Lfk
k

dkk
k

dkk
k

dkk
k

k
b

dkLfk
b AqAqAqAAA 3

33
2

22
1

11
0

0 )()()()( q , (3)

where T
dkdkdkdk qqq ],,[ 321q  is the joint position displacement vector generated by o . The frame kl  

is fixed in the l-th link of the finger. In the case of revolute joint, the matrix is represented by 

)()()( 1,1,
dklrcklnklbkl

lk
dklkl

lk qAqqAqA   , (4)

where nklq  and cklq  are the natural length and the initial compression of the spring, respectively. In the 

case of prismatic joint, the matrix is represented by 

)()()( 1
1,1, udkltcklnklbkl

lk
dklkl

lk qAqqAqA   . (5)

The frame bkl  is the initial frame of kl . The link shape is included in the matrix bkl
lk A1,  .  

The joint position klq  shown in Figure 1 is given by dklcklnklkl qqqq : . The parameter dklq  is 

separated from nklq  and cklq  because dklq  is most important for our derivations. From these definitions, 

we have the following partial derivative (See Appendix A of [22]): 
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3.2. Potential Energy of the Finger 

The potential energy stored in the joint springs is represented by 

][][:)(
2
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where the vector T
ckckckck qqq ],,[ 321q  denotes the joint compression and the matrix 33R kS  is joint 

stiffness. The joint torque vector is given by ckksk S q: . The potential energy affected by the gravity is 

represented by 
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where klm  is the mass of the l-th link, the vector gb  is the gravity acceleration with respect to the 
frame b , the frame gkl  is the center of the link mass. 
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The total potential energy of the finger is given by 

)()(:)( dkgkdkskdkk UUU qqq  . (10)

The first- and second-order partial derivatives of )( dkgkU q  with respect to the joint positions are given 
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These detailed derivations are described in Appendix A. The vector gk  and the matrix gkS  depend on 

the parameter klm , kl
b A , and gkl

kl A . In this paper, the right side symbol “ 0| ” means that the initial 

condition is considered for the differentiations ( o =0, k =0, dkq =0). 

3.3. Contact Constraint and Its Partial Derivative 

The pose of the current contact frame Cok  with respect to b  is represented by the following form: 
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Cfk AA  . From Equation (12), the vector dkq  is given by a function of o  and 
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fkokk ],[:  , i.e., ),( kodk q . The first-order partial derivative of Equation (12) is given by 
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The matrix JLfk  depends on Lfk
kl A . The second-order partial derivative is shown in Appendix B. The 

quantities ok  and fk  are the local curvatures at contact points on the object and the finger, 

respectively. The quantity   is positive, zero, and negative if the surface shape is convex, flat, and 

concave, respectively. 

3.4. Partial Derivatives of the Energy 

From Equations (10) and (12), the potential energy is represented by 
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The first-order partial derivative of the energy with respect to o  and k  is given by 
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where the vector wLfk  means the wrench (force and moment) vector represented at the local contact 
frame Lfk . Note that this wrench vector is given as the reaction force from the object to the finger 

because ckq  is compression. 
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The detailed derivations are described in Appendix B. The second-order partial derivative is given by 














,,

,,

kk

kk

UU

UU









































0

2

0

2
0

2

0

2

),(),(

),(),(

:

T
kk

kok
T
ok

kok

T
ko

kok
T
oo

kok

UU

UU















 

T

k

ko
T
dk

o

ko
T
dk

gkk

k

ko
T
dk

o

ko
T
dk

SS





























































0

0

0

0

),(

),(

][
),(

),(













q

q

q

q









































0

2

0

2
0

2

0

2

)},({)},({

)},({)},({

T
kk

kodk
T
Lfk

T
ok

kodk
T
Lfk

T
ko

kodk
T
Lfk

T
oo

kodk
T
Lfk

















qq

qq

 

T

fk
T

ok
T

T
o

Lfk

Lfk

fk
T

ok
T

T
o

Lfk B

S

B













































2

2

2

2

u

u

u

u
T

k I
S

I 

























212

23

212

23

0

0

0

0 


 vv
, 

(18)

where 

1][:   JSSSJS Lfk
Lfkgkk

TLfkLfk . (19)
The detailed derivations of the matrices LfkS  and kS  are shown in Appendix B. The matrix LfkS  

depends on Lfk
kl A  and fLfk , and the matrix kS  depends on Lfk

o A , ok , fk , and fLfk . 
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Summarizing the above derivations, we have the following terms: 
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3.5. Frictionless Sliding Contact Case 

3.5.1. Wrench Vector and Stiffness Matrix 

In the case of frictionless sliding contact, the contact displacement parameter k  has to satisfy the 

following conditions: 
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Under the initial condition of Equation (21), we have 12, 0 kU  and then 0y
Lfk f  and 0nLfk .  

Hence, the contact wrench is represented by 

T
x

LfkLfk f ]0,0,1[w . (22)

Because the finger can apply pushing forces to the object, we have 01  fu LfkT
x

Lfk f . Note that the x 
axis direction of Lfk  is opposite to the reaction force direction. We have also 22, 0 kU .  

This inequality means that positive stiffness has to be generated in the displacement direction k . 

From the first condition of Equation (21), the parameter k  is given by a function of the  

parameter o . 
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where the superscript “fs” means the sliding contact between the finger and the object. The wrench 

vector generated at the object coordinate frame is given by 
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The stiffness matrix of the sliding contact is given by 
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The symbols G and H mean the gradient and the Hessian of the energy. These derivations are 

described in Appendix C. 

3.5.2. Local Curvature Effect 

The wrench vector and the stiffness matrix are given by functions of grasp parameters. The partial 

derivatives of the vector and the matrix with respect to the local curvature parameters are given by 
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. (27)

This means that the wrench vector is independent of the local curvatures. 
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The properties of these negative semi-definite matrices imply that the grasp stability decreases when 
the local curvature parameters increase. The effects are given in the directions 1ufs

kQ  and 2ufs
kQ  when 

the local curvatures ok  and fk  deviate, respectively. 

3.6. Pure Rolling Contact Case 

3.6.1. Wrench Vector and Stiffness Matrix 

In the case of a pure rolling contact, we have 0 fkok  . The potential energy is represented by 

),( oko
r
kU  ),,(: okokokU    . (29)

In the case of pure rolling contact, the contact position displacement ok  has to satisfy the following 

conditions 
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At the initial condition of Equation (30), we have 0, r
kU   and then 0nLfk . We have also 0, r

kU  . 

This means that a positive stiffness has to be generated in the displacement direction ok . 

From the first condition of Equation (30), the parameter ok  is given by a function of o . 
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k UU   , (31)

where the superscript “fr” means the rolling contact between the finger and the object. The wrench 

vector at the contact point is given by 
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The stiffness matrix of the pure rolling contact is given by 

r
k

fr
k

r
kT

oo

o
fr

kfr
k UQU

U
H  ,,

0

2 )(
: 









, (33)



Robotics 2015, 4 474 

 

 

where 

1
,,

0

][
)(

: 



 r

k
r
k

o

o
fr

okfr
k UUQ 





. 
(34)

These derivations are described in Appendix D. 

3.6.2. Local Curvature Effect 

The partial derivatives of the wrench vector and the stiffness matrix by the local curvature 

parameters are given by 
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This means that the wrench vector is independent of the local curvatures. 
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The properties of these negative semi-definite matrices imply that the grasp stability decreases when 

the local curvature parameters increase. The effect of the local curvature deviation appears in the 
direction fr

kQ . These derivations are described in Appendix D. 

3.7. Contact Condition Effect 

To compare the stiffness matrices of the pure rolling contact and the frictionless sliding contact in 
the same force condition, we assume 12, 0 kU . The difference matrix is given by 
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(37)

It is shown that the pure rolling contact is more stable than the frictionless sliding contact  
because fd

kH  is a positive definite matrix. The effect of the contact condition difference appears in the 

direction Tfs
kQ ]1,1[ . 

3.8. Grasp Wrench and Stiffness Matrix 

The total potential energy of the grasp is given by 


k

o
fc

kogoo UUU )()()(  , (38)

where the superscript “fc” is “fs” for the sliding contact or “fr” for the rolling contact. The symbol 
)( ogoU   is the potential energy of the object affected by the gravity. 

gp b
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b
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o
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b
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b AAAI )()( 23   . (39)

The frame go  represents the center of the object mass.  

The wrench vector and the stiffness matrix of the grasp are given by 
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The grasp stability is evaluated by the eigenvalues of the matrix H when the wrench vector G is zero 

(wrench equilibrium). The wrench vector and the grasp stiffness matrix are represented in the object 
frame bo . 

4. Numerical Examples 

We show examples in order to demonstrate the effectiveness of our analysis. In our method, the 
number of fingers and the shape of the object and fingers are not limited if 0 fkok  . In order for 

the reader to easily understand our analysis, we show simple examples. Because the effects of the local 

curvatures have been analytically derived as shown in Equations (28) and (36), we omit the 

explanations on the curvature effects in this section. 

4.1. Example 1 

Assume the case of an object grasped by two fingers with three revolute joints. The object is 

grasped in the palm of the hand. The shape of the fingers and the object is shown in Figure 3. The 

physical parameters are set as shown in Table 2. 
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Figure 3. Cont. 
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Figure 3. Grasp example 1. (a) An object grasped by two fingers. (b) Contact force 
direction. (c) Contact force f1Lf . (d) Joint torque 1s . (e) Finger stability condition r

kU , . 

(f) Eigenvalue 1 . (g) Eigenvalue 2 . (h) Eigenvalue. 

Table 2. Physical Parameters. 

Gravity acceleration g = 9.8 (m/s2) 

Gravity acceleration vector bg = 2ug  
Mass of the object mo 
Mass of the link mkl = 0.04 (kg) 

Object half length lo = 0.02 (m) 
Finger link length lkl = 0.03 (m) 

Local curvature of the object κok = 100 (1/m) 
Local curvature of the finger κfk = 200 (1/m)

Joint stiffness matrix Sk = diag[1,1,1] (N·m/rad) 

Joint angles of the finger 1 (q11, q12, q13) = ( 4 , 4 , 4 ) (rad) 

Joint angles of the finger 2 (q21, q22, q23) = ( 43 , 4 , 4 ) (rad) 

Directions of the contact points (θ1, θ2) = ( 4 , 4 ) (rad) 

Center of the object mass 3IAgo
o 

Local contact frames on the object )( 11 uotLo
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o
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Finger base frames ))(( 1
1

10 u fkot
b lAA  , ))(( 1

1
20 u fkot

b lAA   

Center of the link mass ))2/(( 1ukltgkl
kl lAA   

Contact force f := x
Lfk f  = 10 (N) 



Robotics 2015, 4 477 

 

 

We have TT
ogo gmG ]0,[ 2u  and 330 goH . In order to generate the wrench equilibrium 

G frfr
go GGG 21  130  , the contact forces are set to f1Lf  = T

ogmf ]2,[  and f2Lf  = T
ogmf ]2,[  . 

The component f means an internal force for preventing the slip between the object and the fingers. 

The y components generate forces to resist the object mass. The signs of the components depend on the 
relationship between the base frame b , the object frame o , and the contact frame Lfk  as shown in 

Figure 3b. In the case of the frictionless sliding contact, this grasp is infeasible because of 02 fu LfkT . 

Hence, in this example, we show the results of the rolling contact case only.  
Because of the revolute joints, we have 1kl  and 0klv , and then we obtain gk , gkS , and LfkS . 

Figure 3c shows the contact force f1Lf  in the case with f = 10 [N] with respect to the object mass mo. 

From the above settings, the joint torque is obtained by 
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Figure 3d shows the joint torque 1s . Similarly, 2s  is obtained because of the bilateral symmetry 

grasp. From this figure, it is shown that the absolute values of the joint torques decrease when the 

object mass increases. In order to maintain the joint angles, the joint torques vary depending on the 

object mass. 
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In this example, we have 011
1 upT

l
Lf , (l = 1, 2, 3) then the absolute values decrease as shown in Figure 

3d. Figure 3e shows the finger stability condition r
kU , . Because r

kU ,  is positive, the finger joint 

angles are stable. However, its margin decreases when the object mass increases because of 

0, 
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r
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U  . (43)

This partial derivative is described in Appendix E. The grasp stiffness matrix is given by 
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Because the elements of the matrix are complicated, they are omitted. The eigenvalues are  

obtained by 
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Figure 3f–h show the eigenvalues. The eigenvalue 1  is given in the y direction (vertical direction). 

The second eigenvalue is obtained mainly in the x direction (mainly horizontal direction). The third 

eigenvalue is obtained mainly in the rotation of the object. It is shown that the eigenvalues of the grasp 

stiffness matrix decrease when the object mass increases. This characteristic is obtained by the partial 
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derivative of the matrix with respect to the object mass. From the derivation in Appendix E, we have 

the following negative definite matrix: 

330 



om

H . (46)

This means that the eigenvalues decrease when the mass increases. 

4.2. Example 2 

We investigate the grasp shown in Figure 4a. Whereas the joint angles are the same as in  

Example 1, the direction of the gravity vector is opposite. This means that the object is grasped below 

the hand palm as shown in Figure 4a. Figure 4b shows the joint torques. In order to maintain the joint 

angles, the absolute values of the joint torques increase when the object mass increases. The required 

joint torque of this case is larger than that of Example 1. In Figure 4c, the finger stability condition 

increases when the mass increases. In Figure 4d–f, the eigenvalues of the grasp stiffness matrix also 

increase when the mass increases. Hence, the grasp stability increases when the mass increases. These 

results are obviously obtained from the following values: 
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(47)

This stability is similar to a pendulum system. Example 1 implies an inverse pendulum system. 
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Figure 4. Grasp example 2. (a) An object grasped under the palm. Joint torque 1s .  

(c) Finger stability condition r
kU , . (d) Eigenvalue 1 . (e) Eigenvalue 2 . (f) Eigenvalue 3 . 

4.3. Example 3 

We investigate the grasp shown in Figure 5a. The gravity direction is the same as in Example 1, but 
the joint angles are different. The joint angles are set to (q11, q12, q13) = ( 2 , 4 , 2 ) and (q21, q22, 

q23) = ( 2 , 4 , 2 ). The directions of the contact points are the same as in Example 1. The 

absolute values of the joint torque decrease when the object mass increases (Figure 5b). The finger 

stability condition decreases and the eigenvalues of the grasp stiffness matrix decreases when the mass 

increases (Figure 5c–f). These characteristics are similarly obtained from the analysis of the partial 

derivative with respect to the object mass as described in Example 1. The margin of the finger stability 

condition is smaller than that of Example 1. The first and the second eigenvalues of this grasp are 

larger than those of Example 1, but the third eigenvalue is smaller than that of Example 1. This means 

that the rotational stability decreases while the translational stability increases as compared with 

Example 1.  
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Figure 5. Grasp case 3. (a) An object grasped by two fingers. (b) Joint torque 1s .  

(c) Finger stability condition r
kU , . (d) Eigenvalue. (e) Eigenvalue 2 . (f) Eigenvalue 3  

4.4. Example 4 

We investigate stability of the grasp shown in Figure 6a. Whereas the direction of the gravity is the 

same as in Examples 1 and 3, the joint angles and the contact points are different from the examples.  

In Figure 6a, the illustration of the fingertip shapes is somewhat different from the previous examples 

but the local curvatures at the contact points are the same as in the examples. The joint angles are set to 
(q11, q12, q13) = ( 4 , 2 , 4 ) and (q21, q22, q23) = ( 43 , 2 , 4 ). The directions of the contact 

points are given to 21    and 22   . The absolute values of the joint torque decrease when the 

object mass increases (Figure 6b). The finger stability condition and the eigenvalues of the grasp 

stiffness matrix decrease (Figure 6c–f). The absolute values of the joint torques are larger than those of 

Example 1. The margin of the finger stability condition is smaller than that of Example 1 and larger 

than that of Example 3. The first and the third eigenvalues are smaller than those of Example 1. 
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Figure 6. Grasp case 4. (a) An object grasped by two fingers. (b) Joint torque 1s .  

(c) Finger stability condition r
kU , . (d) Eigenvalue 1 . (e) Eigenvalue 2 .(f) Eigenvalue 3 .  

4.5. Example 5 

We investigate the grasp shown in Figure 7a. Whereas the gravity direction is the same as in 

Examples 1, 3 and 4, the joint angles are different from the examples. The joint angles are set to  
(q11, q12, q13) = ( 43 , 2 , 4 ) and (q21, q22, q23) = ( 4 , 2 , 4 ). The directions of the contact 

points are the same as in Example 4. Figure 7b shows the torques of the finger 1 with respect to the 

object mass. The absolute torques of the joints 1 and 3 decrease but those of the joint 2 increase when 
the object mass increases. These results are obtained from 0111

1 upTLf , 0112
1 upTLf , and 0113

1 upTLf  in 

Equation (42). These values are obtained from the relation of the joint frame kl  with respect to the 
contact frame Lfk . From Equations (43) and (46), the finger stability condition and the eigenvalues of 
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the grasp stiffness matrix decrease when the mass increases. These figures are omitted because similar 

figures are obtained. 
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Figure 7. Grasp case 5. (a) An object grasped by two fingers. (b) Joint torque 1s . 

4.6. Example 6 

We investigate the effect of the link mass for Example 1. The mass of every link is set as the same 

value: mk1 = mk2 = mk3. The object mass is fixed as mo = 0.5 kg. Figure 8 shows the effect of the link 

mass. Because the object mass is fixed and the contact force is independent of the link mass, the 

contact force is constant as shown in Figure 8a. In order to maintain the joint angles, the joint torques 

vary depending on the link mass as shown in Figure 8b. The finger stability margin decreases and the 

eigenvalues of the grasp stiffness matrix decrease when the link mass increases as shown in Figure 8c–

f. From Appendix F, these results are obviously obtained by the following derivatives: 
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If the direction of the gravity vector is given as shown in Example 2, the inequalities of the 

derivatives shown in Equation (48) are reversed. 
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Figure 8. Grasp example 1 with mo = 0.5 kg and varying mkl. (a) Contact force f1Lf .  

(b) Joint torque 1s . (c) Finger stability condition r
kU , . (d) Eigenvalue 1 . (e) Eigenvalue 

2 . (f) Eigenvalue 3 . 

5. Conclusions 

In this paper, we investigated the case that the individual finger is constructed by three joints.  

This analysis is applicable to both prismatic joints and revolute joints. Not only rolling contacts but 

also sliding contacts were treated. The masses of the object and the finger links were also included. 

From the potential energy method, the wrench vectors and the grasp stiffness matrices were 

analytically derived. The vectors and the matrices include grasp parameters such as the contact 

conditions, the local curvatures, the masses, and so on. Using positive definiteness, we investigated the 

effects of the contact condition and the local curvature analytically. Using the numerical examples, the 

effects of the object mass were investigated. From these examples, the finger stability margin and the 

grasp stability decrease when the object mass increases if the object is grasped over the palm. If the 

object is grasped under the palm, the margin and the stability increase when the mass increases. It was 

also shown that the relationship between the joint torques and the object mass depends on the 

relationship between the positions of the joint axis and the contact point by using the partial derivative 

of the torque with respect to the mass. It was shown that the effect of the link mass was similar to the 

effect of the mass. 

In the numerical examples, the bilateral symmetry grasps were discussed. The numerical results 

were reinforced by the analytical explanations. We omitted tilted grasps, asymmetric grasps, and other 

grasps because complicated results were obtained and could not be reinforced by similar analytical 

explanations. 
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As shown in our analysis, the analytical derivations appear complicated, but the fundamental 

characteristics of the grasp can be obtained. In the case of three planar joints with local surface 

curvature, the joint Jacobian is invertible, but it is not invertible in the case of more redundant joints.  

In our future work, we extend to the case of more redundant joints. Moreover, we attack the case of 

spatial revolute joints case, but it is much more complicated.  
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Appendix A. Partial Derivatives of the Potential Energy of the Finger Link Mass 

We have 

0
1

])([

dk

b
dk

T
gkl

b

q

 gqp

0

1,
22

1

21

111
11

0
023 )()(

00
)(




















 
 





v

u
g gkl

kl
klkl

lk
dkk

kkk
dkk

k
k

bTb AqAqA
v

qAAI 




v
u

g gkl
kkk

k
bTb A

v
AI 1

21

111
123 00 







 



g

p

u 1
1

1
11 ],[ k

gkl
k

T

kkv













  , 

(A1)
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In a similar manner, we have 
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Finally, we have 
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See (102) of [22] for the derivations of Equations (A1) and (A3). 

Appendix B. Partial Derivatives of the Contact Constraint 

The contact constraint can be expanded to 
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For the first-order partial derivative of the condition with respect to xo, the condition is given by 
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Considering the parameters o  and k , we have Equation (13). The second-order partial derivative of 

the constraint is obtained by 
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Appendix C. Wrench Vector and Stiffness Matrix of the Sliding Contact Case 

The condition is transformed into the following form: 
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Because of 0 fkok  , we have 0y
Lfk f  and 0nLfk . The wrench vector is given by the  

first-order partial derivative of the potential energy. 
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The stiffness matrix is given by the second-order partial derivative 
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We analyze the effects of the curvature. The partial derivative of the stiffness matrix is given by 
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Each partial derivative included in Equation (C4) is given by 
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(C5)

Substituting these derivatives into Equation (C4), we have Equation (28). In a similar manner,  

we have 
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(C6)

Then, we have Equation (28). 

Appendix D. Wrench Vector and Stiffness Matrix of the Rolling Contact Case 

In the case of rolling contact, the parameters are represented by 
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The first- and the second-order partial derivatives are given by the following form: 
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From the first-order partial derivative, we have the following constraint: 
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From this condition, we have nLfk 0wv LfkT
 . 

The partial derivative of the stiffness matrix by the local curvature parameter is given by 
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Each partial derivative included in Equation (D4) is given by 
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Finally, we have Equation (36). 

Appendix E. Partial Derivatives with Respect to the Object Mass in Example 1 

The partial derivatives of the contact forces with respect to the object mass is given by 
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Because of 0213
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following negative definite matrix: 
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Because this example is a bilateral symmetry grasp, we have 21
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Hence, we have 
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Finally, we have 
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The partial derivatives of Equation (D2) with respect to the object mass is given by 
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Appendix F. Partial Derivatives with Respect to the Link Mass in Example 1 

The partial derivative of the joint torque is obtained by 
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In Example 1, we have  
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Finally, we have Equation (48).  
The partial derivatives of r
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In Example 1, we have  
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Finally, we have the following conditions and then Equation (48). 
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