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Abstract: A set of many identical interacting agents obeying a global additive constraint
is considered. Under the hypothesis of equiprobability in the high-dimensional volume
delimited in phase space by the constraint, the statistical behavior of a generic agent over
the ensemble is worked out. The asymptotic distribution of that statistical behavior is derived
from geometrical arguments. This distribution is related with the Gamma distributions found
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Also, as a collateral result, a formula for the volume of high-dimensional symmetrical bodies
is proposed.
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1. Introduction

Nowadays different approaches to study economic systems can be taken within a multi-agent
framework. Econophysics applies the techniques and tools of statistical physics to the understanding
of this type of systems [1]. From this point of view, an economic system is regarded as a set of many
agents exchanging money or trading with products of the most diverse origins. This exchange, which can
be done in a deterministic or in a random way, finally generates an asymptotic wealth distribution. One
of the goals of econophysics is to propose different models for the agents’ interactions and, by making
the respective simulation experiments, to try to reproduce in a statistical way the real asymptotic wealth
distribution in society [2].

In this paper, a general multi-agent system evolving under an additive constraint is considered. The
geometrical properties of this system in phase space are exploited in order to obtain its statistical
behavior. A striking coincidence is observed. Some dynamical mechanisms that have been proposed
in the literature to model the interaction among agents in economic systems [3–9] provoke the same
statistical results in the asymptotic wealth distribution than those derived from the geometrical properties
in our multi-agent system under the assumption of equiprobability. This fact bring us to speculate on
the possible close relationship that there exists between the local interactions among the agents in the
former economic systems and the global geometrical conformation in phase space of our general system.
Hence, with an adequate change of coordinates, we suggest that those economic systems asymptotically
evolve in an equiprobable way over the volume of accessible states in the transformed phase space.

We start in Section 2 by recalling the derivation done for some particular geometries for the cases in
which the constraint has a linear or quadratic dependence on the variables defining the agents. Then, in
Section 3, the statistical behavior for a more general constraint is obtained. In Section 4, we speculate
on the possible relationship with some economic systems [3–9] in which the Gamma distributions
are also obtained. A formula for the volume of high-dimensional symmetrical bodies is proposed in
Section 5. The last Section 6 contains our conclusions.

2. Recalling Some Results

2.1. Linear constraint

Let us assume N agents interacting in an open economy, each one with coordinate xi, i = 1, . . . , N ,
with xi ≥ 0 representing the wealth or money of the agent i, and a total available amount of money E.
The additive linear constraint reads:

x1 + x2 + · · · + xN−1 + xN ≤ E (1)

The result here explained for an open economy is also obtained when constraint (1) is an equality, i.e.,
when the economy is closed [10]. Under random evolution rules for the exchanging of money among
agents [3], let us suppose that this system evolves in the interior of the N -dimensional pyramid given by
Equation (1). We can suppose that the state or the bank system of western societies plays in this model
the role of a heat reservoir that supplies money instead of energy. The formula for the volume VN(E)

of an equilateral N -dimensional pyramid formed by N + 1 vertices linked by N perpendicular sides of
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length E is

VN(E) =
EN

N !
(2)

If each point on the N -dimensional pyramid is equiprobable, then the probability f(xi)dxi of finding
the agent i with money xi, with normalization condition

∫ E
0 f(xi)dxi = 1, is proportional to the volume

formed by all the points into the (N − 1)-dimensional pyramid having the ith-coordinate equal to xi.
Then f(xi) verifies

f(xi) =
VN−1(E − xi)

VN(E)
(3)

If we call ϵ the mean wealth per agent, E = Nϵ, then in the limit of large N (N → ∞), we have

lim
N≫1

VN−1(E − x)

VN(E)
=

1

ϵ
e−x/ϵ (4)

where the index i has been removed because the distribution is the same for each agent, and thus the
wealth distribution can be obtained by averaging over all the agents,

f(x)dx = ϵ−1 e−x/ϵdx (5)

This Boltzmann-Gibbs distribution has been found to fit the real distribution of incomes in western
societies [3].

2.2. Quadratic constraint

Now let us suppose a one-dimensional ideal gas of N non-identical classical particles with masses
mi, with i = 1, . . . , N , and total maximum energy E. If particle i has a momentum mivi, we define a
kinetic energy:

K ≡ p2
i ≡

1

2
miv

2
i (6)

where pi is the square root of the kinetic energy. Then the quadratic constraint reads:

p2
1 + p2

2 + · · · + p2
N−1 + p2

N ≤ E (7)

The distribution for pi here derived for an open system is also obtained when constraint (7) is an equality,
i.e., when the energy is fixed [11]. When a finite number of particles are present in the system the
asymptotic distribution maximizes the Tsallis entropy [12]. In the case with constraint (7) the system
has accessible states with different energy, which is supposed to be supplied by a heat reservoir. These
states are all those enclosed into the volume of the N -sphere given by Equation (7), with radius E1/2.
The formula for the volume VN(R) of an N -sphere of radius R is

VN(R) =
π

N
2

Γ(N
2

+ 1)
RN (8)

where Γ(·) is the Gamma function. If we suppose that each point into the N -sphere is equiprobable,
then the probability f(pi)dpi of finding the particle i, with coordinate pi (energy p2

i ) and normalization
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condition
∫ R
−R f(pi)dpi = 1, is proportional to the volume formed by all the points into the (N−1)-sphere

having the ith-coordinate equal to pi. Then f(pi) verifies

f(pi) =
VN−1((E − p2

i )
1/2)

VN(E1/2)
(9)

If we call ϵ the mean energy per particle, E = Nϵ, then in the limit of large N (N → ∞), we have

lim
N≫1

VN−1((E − p2)1/2)

VN(E1/2)
=

√
1

2π
ϵ−1/2 e−p2/2ϵ (10)

where the index i has been removed because the distribution is the same for each particle. Thus the
asymptotic distribution

f(p) =

√
1

2π
ϵ−1/2 e−p2/2ϵ (11)

can be obtained by averaging over all the particles. If the change of variables p =
√

m
2
v is

performed, with v the generic velocity of a particle, then the Maxwellian distribution is just derived from
geometrical arguments.

3. Multi-Agent Systems and Equiprobability: General Derivation of the Asymptotic Distribution

In this section, we address the same problem above presented but in a general way. Let b be a positive
real constant (cases b = 1, 2 have been indicated in the former section). If we have a set of positive
variables (x1, x2, . . . , xN) verifying the constraint

xb
1 + xb

2 + · · · + xb
N−1 + xb

N ≤ E (12)

with an adequate mechanism assuring the equiprobability of all the possible states (x1, x2, . . . , xN) into
the volume given by expression (12), will we have for the generic variable x the distribution

f(x)dx ∼ ϵ−1/b e−xb/bϵdx (13)

when we average over the ensemble in the limit N,E → ∞, with E = Nϵ, and constant ϵ?. Now it is
shown that the answer is affirmative. Similarly, we claim that if the weak inequality (12) is transformed
in equality the result will be the same, as it has been proved for the cases b = 1, 2 in References [10, 11].

From the cases b = 1, 2, (see Equations (3) and (9)), we can extrapolate the general formula that
will give us the statistical behavior f(x) of the generic variable x, when the system runs equiprobably
into the volume defined by a constraint of type (12). The probability f(x)dx of finding an agent with
generic coordinate x is proportional to the volume VN−1((E − xb)1/b) formed by all the points into the
(N − 1)-dimensional symmetrical body limited by the constraint (E − xb). Thus, the N -dimensional
volume can be written as

VN(E1/b) =
∫ E1/b

0
VN−1((E − xb)1/b) dx (14)

Taking into account the normalization condition
∫ E1/b

0 f(x)dx = 1, the expression for f(x) is obtained:

f(x) =
VN−1((E − xb)1/b)

VN(E1/b)
(15)
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The N -dimensional volume, VN(b, ρ), of a b-symmetrical body with side of length ρ is proportional
to the term ρN and to a coefficient gb(N) that depends on N :

VN(b, ρ) = gb(N) ρN (16)

The parameter b indicates the original Equation (12) that defines the boundaries of the volume VN(b, ρ).
Thus, for instance, from Equation (2), we have gb=1(N) = 1/N !.

Coming back to Equation (15), we can manipulate VN((E − xb)1/b) to obtain (the index b is omitted
in the formula of VN ):

VN((E − xb)1/b) = gb(N)
[
(E − xb)1/b

]N
= gb(N)E

N
b

(
1 − xb

E

)N
b

(17)

If we suppose E = Nϵ, then ϵ represents the mean value of xb in the collectivity, that is, ϵ =< xb >. If
N tends toward infinity, it results:

lim
N≫1

(
1 − xb

E

)N
b

= e−xb/bϵ (18)

Thus,
VN((E − xb)1/b) = VN(E1/b) e−xb/bϵ (19)

Substituting this last expression in formula (15), the exact form for f(x) is found in the thermodynamic
limit (N,E → ∞):

f(x)dx = cb ϵ
−1/b e−xb/bϵdx (20)

with cb given by

cb =
gb(N − 1)

gb(N)N1/b
(21)

Hence, the conjecture (13) is proved.
Doing a thermodinamical simile, we can calculate the dependence of ϵ on the temperature

by differentiating the entropy with respect to the energy. The entropy can be written as
S = −kN

∫∞
0 f(x) ln f(x) dx, where f(x) is given by Equation (20) and k is the Boltzmann constant. If

we recall that ϵ = E/N , we obtain

S(E) =
kN

b
ln
(
E

N

)
+
kN

b
(1 − b ln cb) (22)

where it has been used that ϵ =< xb >=
∫∞
0 xbf(x)dx

The calculation of the temperature T gives

T−1 =

(
∂S

∂E

)
N

=
kN

bE
=

k

bϵ
(23)

Thus ϵ = kT/b, a result that recovers the theorem of equipartition of energy for the quadratic case b = 2.
The distribution for all b is finally obtained:

f(x)dx = cb

(
b

kT

)1/b

e−xb/kTdx (24)
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4. Gamma Distributions, Economic Gas Models and Geometry: A Speculation

If we perform the change of variables y = ϵ−1/bx in the normalization condition of f(x),
∫∞
0 f(x)dx =

1, where f(x) is expressed in (20), we find that

cb =
[∫ ∞

0
e−yb/b dy

]−1

(25)

If we introduce the new variable z = yb/b, the distribution f(x) as function of z reads:

f(z)dz =
cb

b1−
1
b

z
1
b
−1 e−z dz (26)

Let us observe that the Gamma function appears in the normalization condition,∫ ∞

0
f(z)dz =

cb

b1−
1
b

∫ ∞

0
z

1
b
−1 e−z dz =

cb

b1−
1
b

Γ
(

1

b

)
= 1 (27)

This implies that

cb =
b1−

1
b

Γ
(

1
b

) (28)

By using Mathematica the positive constant cb is plotted versus b in Figure 1. We see that limb→0 cb = ∞,
and that limb→∞ cb = 1. The minimum of cb is reached for b = 3.1605, taking the value cb = 0.7762.
Still further, we can calculate from Equation (28) the asymptotic dependence of cb on b:

lim
b→0

cb =

√
1

2π

√
b e1/b

(
1 − b

12
+ · · ·

)
(29)

lim
b→∞

cb = b−1/b
(
1 +

γ

b
+ · · ·

)
(30)

where γ is the Euler constant, γ = 0.5772. The asymptotic function (29) is obtained after substituting
in (28) the value of Γ(1/b) by (1/b − 1)!, and performing the Stirling approximation on this last
expression, knowing that 1/b → ∞. The function (30) is found after looking for the first Taylor
expansion terms of the Gamma function around the origin x = 0. They can be derived from the Euler’s
reflection formula, Γ(x)Γ(1 − x) = π/ sin(πx). We obtain Γ(x → 0) = x−1 + Γ′(1) + · · ·. From
here, recalling that Γ′(1) = −γ, we get Γ(1/b) = b − γ + · · ·, when b → ∞. Although this last term
of the Taylor expansion, −γ, is negligible we maintain it in expression (30). The only minimum of cb
is reached for the solution b = 3.1605 of the equation ψ(1/b) + log b + b − 1 = 0, where ψ(·) is the
digamma function (see Figure 1).

Let us now recall two interesting statistical economic models that display a statistical behavior given
by distributions of the form (26), that is, the standard Gamma distributions with shape parameter 1/b,

f(z)dz =
1

Γ(1
b
)
z

1
b
−1 e−z dz (31)
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Figure 1. Normalization constant cb versus b, calculated from Equation (28). The asymptotic
behavior is: limb→0 cb = ∞, and limb→∞ cb = 1. This last asymptote is represented by the
dotted line. The minimum of cb is reached for b = 3.1605, taking the value cb = 0.7762.
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ECONOMIC MODEL A: The first one is the saving propensity model introduced by Chakraborti
and Chakrabarti [4]. In this model a set ofN economic agents, having each agent i (with i = 1, 2, · · · , N )
an amount of money, ui, exchanges it under random binary (i, j) interactions, (ui, uj) → (u′i, u

′
j), by the

following the exchange rule:

u′i = λui + ϵ(1 − λ)(ui + uj) (32)

u′j = λuj + ϵ̄(1 − λ)(ui + uj) (33)

with ϵ̄ = (1 − ϵ), and ϵ a random number in the interval (0, 1). The parameter λ, with 0 < λ < 1, is
fixed, and represents the fraction of money saved before carrying out the transaction. Let us observe that
money is conserved, i.e., ui + uj = u′i + u′j , hence in this model the economy is closed. Defining the
parameter n(λ) as

n(λ) =
1 + 2λ

1 − λ
(34)

and scaling the wealth of the agents as z̄ = nu/ < u >, with < u > representing the average money
over the ensemble of agents, it is found that the asymptotic wealth distribution in this system obeys the
standard Gamma distribution[5]

f(z̄)dz̄ =
1

Γ(n)
z̄n−1 e−z̄ dz̄ (35)

The case n = 1, which means a null saving propensity, λ = 0, recovers the model of Dragulescu and
Yakovenko [3] in which the Gibbs distribution is observed. If we compare Equations (35) and (31),
a close relationship between this economic model and the geometrical problem solved in the former
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section can be established. It is enough to make

n = 1/b (36)

z̄ = z (37)

to have two equivalent systems. This means that, from Equation (36), we can calculate b from the saving
parameter λ with the formula

b =
1 − λ

1 + 2λ
(38)

As λ takes its values in the interval (0, 1), then the parameter b also runs in the same interval (0, 1). On
the other hand, recalling that z = xb/bϵ, we can get the equivalent variable x from Equation (37),

x =
[

ϵ

< u >
u
]1/b

(39)

where ϵ is a free parameter that determines the mean value of xb in the equivalent geometrical system.
Formula (39) means to perform the change of variables ui → xi, with i = 1, 2, · · · , N , for all the
particles/agents of the ensemble. Then, we conjecture that the economic system represented by the
generic pair (λ, u), when it is transformed in the geometrical system given by the generic pair (b, x),
as indicated by the rules (38) and (39), runs in an equiprobable form on the surface defined by the
relationship (12), where the inequality has been transformed in equality. This last detail is due to the
fact the economic system is closed, and then it conserves the total money, whose equivalent quantity in
the geometrical problem is E. If the economic system were open, with an upper limit in the wealth,
then the transformed system would evolve in an equiprobable way over the volume defined by the
inequality (12), although its statistical behavior would continue to be the same as it has been proved
for the cases b = 1, 2 in [10, 11].

ECONOMIC MODEL B: The second one is a model introduced in [6]. In this model a set of N
economic agents, having each agent i (with i = 1, 2, · · · , N ) an amount of money, ui, exchanges it under
random binary (i, j) interactions, (ui, uj) → (u′i, u

′
j), by the following the exchange rule:

u′i = ui − ∆u (40)

u′j = uj + ∆u (41)

where
∆u = η(xi − xj) ϵωxi − [1 − η(xi − xj)] ϵωxj (42)

with ϵ a continuous uniform random number in the interval (0, 1). When this variable is transformed
in a Bernouilli variable, i.e., a discrete uniform random variable taking on the values 0 or 1, we
have the model studied by Angle [7], that gives very different asymptotic results. The exchange
parameter, ω, represents the maximum fraction of wealth lost by one of the two interacting agents
(0 < ω < 1). Whether the agent who is going to loose part of the money is the i-th or the j-th
agent, depends nonlinearly on (xi − xj), and this is decided by the random dichotomous function
η(t): η(t > 0) = 1 (with additional probability 1/2) and η(t < 0) = 0 (with additional probability
1/2). Hence, when xi > xj , the value η = 1 produces a wealth transfer from agent i to agent j with
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probability 1/2, and when xi < xj , the value η = 0 produces a wealth transfer from agent j to agent i
with probability 1/2. Defining in this case the parameter n(ω) as

n(ω) =
3 − 2ω

2ω
(43)

and scaling the wealth of the agents as z̄ = nu/ < u >, with < u > representing the average money
over the ensemble of agents, it is found that the asymptotic wealth distribution in this system obeys the
standard Gamma distribution[6]

f(z̄)dz̄ =
1

Γ(n)
z̄n−1 e−z̄ dz̄ (44)

The case n = 1, which means an exchange parameter ω = 3/4, recovers the model of Dragulescu and
Yakovenko [3] in which the Gibbs distribution is observed. If we compare Equations (44) and (31), a
close relationship between this economic model and the geometrical problem solved in the last section
can be established. It is enough to make

n = 1/b (45)

z̄ = z (46)

to have two equivalent systems. This means that, from Equation (45), we can calculate b from the
exchange parameter ω with the formula

b =
2ω

3 − 2ω
(47)

As ω takes its values in the interval (0, 1), then the parameter b runs in the interval (0, 2). It is curious
to observe that in this model the interval ω ∈ (3/4, 1) maps on b ∈ (1, 2), a fact that does not occur
in MODEL A. On the other hand, recalling that z = xb/bϵ, we can get the equivalent variable x from
Equation (46),

x =
[

ϵ

< u >
u
]1/b

(48)

where ϵ is a free parameter that determines the mean value of xb in the equivalent geometrical system.
Formula (48) means to perform the change of variables ui → xi, with i = 1, 2, · · · , N , for all the
particles/agents of the ensemble. Then, we conjecture that the economic system represented by the
generic pair (λ, u), when it is transformed in the geometrical system given by the generic pair (b, x),
as indicated by the rules (47) and (48), runs in an equiprobable form on the surface defined by the
relationship (12), where the inequality has been transformed in equality. As explained above, this last
detail is due to the fact the economic system is closed, and then it conserves the total money, whose
equivalent quantity in the geometrical problem is E. If the economic system were open, with an upper
limit in the wealth, then the transformed system would evolve in an equiprobable way over the volume
defined by the inequality (12), although its statistical behavior would continue to be the same as it has
been proved for the cases b = 1, 2 in References [10, 11].

5. Other Geometrical Questions

We shall proceed now to derive an asymptotic formula (N → ∞) for the volume of theN -dimensional
symmetrical body enclosed by the surface

xb
1 + xb

2 + · · · + xb
N−1 + xb

N = E (49)
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The linear dimension ρ of this volume, i.e., the length of one of its sides verifies ρ ∼ E1/b. As argued in
Equation (16), the N -dimensional volume, VN(b, ρ), is proportional to the term ρN and to a coefficient
gb(N) that depends on N . Thus,

VN(b, ρ) = gb(N) ρN (50)

where the characteristic b indicates the particular boundary given by Equation (49).
For instance, from Equation (2), we can write in a formal way:

gb=1(N) =
1

N
1

Γ(N
1

+ 1)
(51)

From Equation (8), if we take the diameter, ρ = 2R, as the linear dimension of the N -sphere, we obtain:

gb=2(N) =

(
π
4

)N
2

Γ
(

N
2

+ 1
) (52)

These expressions (51) and (52) suggest a possible general formula for the factor gb(N), let us say

gb(N) =
a

N
b

Γ
(

N
b

+ 1
) (53)

where a is a b-dependent constant to be determined. For example, a = 1 for b = 1 and a = π/4 for
b = 2.

In order to find the dependence of a on the parameter b, the regime N → ∞ is supposed. Applying
Stirling approximation for the factorial (N

b
)! in the denominator of expression (53), and inserting it in

expression (21), it is straightforward to find out the relationship:

cb = (ab)−1/b (54)

From here and formula (28), we get:

a =
[
Γ
(

1

b
+ 1

)]b
(55)

that recovers the exact results for b = 1, 2. The behavior of a is monotonous decreasing when b is varied
from b = 0, where a diverges as a ∼ 1/b + · · ·, up to the limit b → ∞, where a decays asymptotically
toward the value a∞ = e−γ = 0.5614.

Hence, the formula for gb(N) is obtained:

gb(N) =
Γ
(

1
b
+ 1

)N

Γ
(

N
b

+ 1
) (56)

It would be also possible to multiply this last expression (56) by a general polynomial K(N) in the
variable N , and all the derivation done from Equation (53) would continue to be correct. We omit
this possibility in our calculations. For a fixed N , we have that gb(N) increases monotonously from
gb(N) = 0, for b = 0, up to gb(N) = 1, in the limit b → ∞ (see Figure 2). For a fixed b, we have that
gb(N) decreases monotonously from gb(N) = 1, for N = 1, up to gb(N) = 0, in the limit N → ∞ (see
Figure 3).
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Figure 2. The factor gb(N) versus b for N = 10, 40, 100, calculated from Equation (56).
Observe that gb(N) = 0 for b = 0, and limb→∞ gb(N) = 1.
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Figure 3. The factor gb(N) versus N for b = 10, 40, 100, calculated from Equation (56).
Observe that gb(N) = 1 for N = 1, and limN→∞ gb(N) = 0.
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The final result for the volume of an N -dimensional symmetrical body of characteristic b given by the
boundary (49) reads:

VN(b, ρ) =
Γ
(

1
b
+ 1

)N

Γ
(

N
b

+ 1
) ρN (57)
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with ρ ∼ E1/b.

6. Conclusions

In this work, we have considered a general multi-agent open system verifying an additive constraint.
Its statistical behavior has been derived from geometrical arguments. The Maxwellian and the
Boltzmann-Gibbs distributions are particular cases of this type of systems. Also, other multi-agent
economy models, such as the Dragalescu and Yakovenko’s model [3], the Chakraborti and Chakrabarti’s
model [4] and the modified Angle’s model [6], show similar statistical behaviors compared to our general
system. This fact fosters a geometrical interpretation of all those models. This geometrical speculation
allows us to suggest the equivalence with the Chakraborti and Chakrabarti’s model when the geometrical
characteristic b of our model runs in the interval (0, 1). The equivalence with the modified Angle’s
model is suggested when b varies in the interval (0, 2). As a particular case of both types of models, the
Dragulescu and Yakovenko’s model is obtained for b = 1.

We have not found in the literature other multi-agent models to establish an equivalence with our
system in the range b ∈ (2,∞). This point remains an open question and a challenge that will probably
trigger other works in this direction.
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