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Abstract: To realize real time object tracking in complex environments, a kernel based MIL (KMIL)
algorithm is proposed. The KMIL employs the Gaussian kernel function to deal with the inner product
used in the weighted MIL (WMIL) algorithm. The method avoids computing the pos-likely-hood
and neg-likely-hood many times, which results in a much faster tracker. To track an object with
different motion, the searching areas for cropping the instances are varied according to the object’s
size. Furthermore, an adaptive classifier updating strategy is presented to handle with the occlusion,
pose variations and illumination changes. A similar score range is defined with respect to two
given thresholds and a similar score from the second frame. Then, the learning rate will be set to
be a small value when a similar score is out of the range. In contrast, a big learning rate is used.
Finally, we compare its performance with that of the state-of-art algorithms on several classical videos.
The experimental results show that the presented KMIL algorithm is faster and robust to the partial
occlusion, pose variations and illumination changes.
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1. Introduction

Object tracking is a fundamental task in the fields of surveillance, robotics, human
computer interaction, and so on. Recently, researchers have proposed many successful algorithms.
However, the problem is still challenging due to factors such as occlusions, appearance variations,
abrupt motion, and illumination changes [1].

The existing object tracking algorithms can be mainly classified into two groups: the generative
method and the discriminative method [2]. The generative object tracking is one of the important
problems, which learns an object model in the first frame and detects the area with the most similar
appearance in the successive frames [3]. The MS tracker [4], IVT tracker [5], and VTD tracker [6] are
the famous generative object tracking algorithms.

The discriminative tracking method learns and updates a binary classifier by using online training.
The tracking-by-detection algorithm stems directly from the discriminative methods, which trains a
classifier online and finds the most likely location from many candidate image patches as tracking
evolves [7–11]. The Online-Boosting tracker updates a classifier by considering the tracked result as the
positive sample [10]. However, it often fails when the tracked results drift from the real object location.
Then, an improved algorithm (semi-supervised tracker) is proposed by Gabor [11]. The algorithm
labels the positive samples in the first frame. However, the ambiguity problem exists in the tracking
process. Zhang [3] describes a real-time CT tracker by utilizing the compressed features for training a
Bayes classifier. In recent years, the researchers focus mainly on studying the real-time object tracking
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algorithms. The correlation filter-based tracking algorithms are proposed and have provided excellent
performance. The algorithms include MOSSE [12], CSK [13], KCF [14], DCF [15], CN [16], DAT [17],
Staple [18], and DSST [19]. These trackers have shown the advantage of being computationally efficient,
which is especial useful for real-time applications. The KCF [14] tracker generates samples by applying
a circulate matrix, which speeds up the computing of matrixes. As a result, the algorithm runs at
hundreds of FPS [14]. However, it often suffers from drift problem due to the occlusion, illumination
changes, and pose variations. The deep learning algorithm has been widely studied in the fields
of computer vision including object tracking. The DeepSRDCF [20], GOTURN [21], C-COT [22],
and ECO [23] benefiting from big data for learning a net model are proposed for object tracking.
The experimental results have addressed that the obtained convolution features have a powerful
ability of representation. However, the processing of training networks is time consuming due to
the complexity network. Normally, to realize real-time object tracking, the deep learning algorithm
runs on GPU and can achieve about 100 FPS (e.g., the GOTURN tracker). However, the GOTURN
operates at 2.7 FPS for the only CPU [21]. To overcome the ambiguity problem in the online-boosting
algorithm, the MIL tracker-related algorithms are proposed to learn a strong classifier from multiple
instances in the positive and negative bags [24,25]. The WMIL tracker [25] runs at about 14FPS on
a single CPU. Moreover, the WMIL tracker performs well over the CF related trackers in terms of
occlusion, illumination variations and pose changes.

In this paper, we propose a Kernel based MIL (KMIL) object tracking algorithm. To further reduce
the computational cost, the Gaussian kernel function is presented for resolving the inner product
used in the WMIL algorithm. The WMIL algorithm often fails to track the object with different speed.
To deal with the problem, the searching areas for cropping the instances are varied according to the
object’s size. Finally, an adaptive classifier updating strategy is presented. The similar score of the
tracking result in the second frame is remembered as a reference. Then, two thresholds are defined
and a range is obtained with respect to the reference. As tracking evolves, the updating rate of the
classifier is adjusted to suit for the appearance changes when the maximum similar score of the
sample is out of the range at the current frame. At last, the proposed algorithm is compared with the
state-of-art algorithms.

The paper is organized as follows. The Section 1 is the introduction of the paper. The WMIL
tracker is detailed in the Section 2. The Section 3 addresses the KMIL tracker. The experimental results
are shown in the Section 4. The Section 5 summaries the paper.

2. The WMIL Tracker

Babenko [24] proposed an online MIL Boosting method for visual tracking. It detects an object
by maximizing the bag likelihood function. Consequently, it suffers from being time consuming
because the bag probability and instance probability are computed many times before selecting a most
discriminative weak classifier. To deal with this problem, Zhang [25] proposed an efficient online
approach (WMIL algorithm) to approximately maximize the bag likelihood function. In the algorithm,
“positive” and “negative” bags are extracted for training classifiers. The positive bag is constructed
by using the instances extracted from a circle centered at the object’s location, while the negative
bag is obtained by cropping the instances from an annular region around the object’s location. Then,
a strong classifier is trained in the Online Boosting frame by using the positive and negative bags.
In the successive frame, candidate samples are cropped around the object’s position in the previous
frame. At last, the trained classifier detects the candidate sample with the maximum score as the final
result. Furthermore, to deal with the problem of occlusion, illumination changes, and pose variations,
the classifier is updated by using the positive and negative bags constructed by cropping instances
according to the tracked result in the current frame.

It is assumed that the location of each instance x is denoted as lt(x) and the location of the object
is denoted as l∗t in the tth frame. The instances for constructing a positive bag X+ are cropped as:
X+ = {x : ||lt(x)− l∗t || < r}, r is the searching radius centered as the location l∗t , while the instances for
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constructing a negative bag X− are cropped from an annular region X− = {x : r < ||l(x)− l∗t || < β},
r and β (r < β) are the radius of the annular region. In the Online Boosting frame, the algorithm trains
K weak classifiers φ = {h1, h2, · · · , hK}, which is defined as:

hk(x) = In
p(vk(x)|y = 1)
p(vk(x)|y = 0)

(1)

where v(x) = (v1(x), · · · , vk(x), · · · , vK(x))T is a feature vector function of the instances. yi is the
label of the bag Xi. y = 1 means the bag is positive, while y = 0 means the bag is negative.

Then, M discriminative weak classifiers are selected to generate a strong classifier:

h(·) =
M

∑
k=1

hk(·) (2)

The learned strong classifier detects an area with the maximum similar score as the final
tracking location :

l∗t = l(arg max
x∈Xs

p(y|x)) (3)

After detecting an object, the weak classifiers are updated according to the new location with a
constant learning rate:

µ1
i = λµ1

i + (1− λ)µ̄

σ1
i =

√
λ(σ1

i )
2 + (1− λ) 1

N

N−1
∑

j=0|yi=1
(vk(xij)− µ̄)2 + λ(1− λ)(µ1

i − µ̄)2 (4)

where λ is the learning rate. µ̄ = 1
N

N−1
∑

j=0|yi=1
(vk(xij)) is the average of the kth feature vk(xij) of the

instances in the positive bag extracted around the tracking result at current frame.

3. The KMIL Object Tracking System

This section details the presented KMIL object tracking algorithm illustrated in Figure 1.
Postive and negative bags are extracted around the object’s location. Then, a strong classifier is
learned from the first frame by using the online boosting WMIL algorithm [25], and the object image is
saved as a reference. In the successive frame, the classifier is used to detect the most similar sample as
the tracking result. Finally, the classifiers are updated according to the reference frame and current
tracking result.

In the WMIL algorithm, the inner product is presented for selecting a weak classifier with the
most discriminative ability, which reduces the computational time by avoiding computing the bag
probability and instance probability many times [25]. However, the inner product is also computed M
times, which is also time consuming. Recently, the kernel based approaches have been proposed for
real time object tracking [26]. Inspired by the ideas in the WMIL [25] and DLSSVM [26] algorithms,
we present a kernel based inner product method to select the most discriminative weak classifiers to
further reduce the computational complexity.

As tracking evolves, the sample with the maximum similar score in the candidate area is detected
by using the learned classifier. Normally, we assume that the object moves with the same speed and
appearances around the object location from the previous frame. Therefore, the candidate samples are
extracted in a fixed circle around the previous tracking location. To account for the size of an object,
we change the circle adaptively. After tracking an object, the weak classifiers are updated with the
new cropped samples for handling the appearance changes. Normally, a constant learning rate is used,
which may lead to “over-updating” or “less-updating”. To further handle these problems, an adaptive
weak classifiers strategy are presented.
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Figure 1. The flow chart of the Kernel based MIL algorithm.

3.1. The Kernel Based MIL Tracker

We assume that there are N instances in the positive bag and L instances in the negative bag.
The tracking location at current frame is denoted as l10. The positive bag and negative bag {X+, X−}
are considered as the training data. Different from the method of computing bag probability used in the
WMIL algorithm, we compute the bag probability with respect to the included instances’ probability.

p(y = 1|X+) =
1
N

N−1

∑
j=0

p(y = 1|x1j) (5)

The method means that each instance contributes equally to the bag probability according to the
including instances probability. Then, the bag probability mainly depends on the instances with higher
probability. Especially in the case of tracking drift, the instances near the real object but far away from
the center of the previous location contribute more to the bag probability.

Similar to the positive bag, the probability of the negative bag is computed with respect to the
including instances equally.

p(y = 1|X−) = 1
L

N+L−1

∑
j=N

p(y = 0|x0j) (6)

Similar to the WMIL tracker, our KMIL tracker trains weak classifiers φ = {h1, h2, · · · , hK},
and selects the most discriminative weak classifiers by using an efficient criterion [25].

hk = arg max
h∈φ

< h,∇η(H) > |H=Hk−1 (7)

where h is the weak classifier in the classifier pool and H is the learned strong classifier constructed by
K− 1 selected weak classifiers.

The inner product is computed as:

< h,∇η(H) >=
1

N + L

N+L−1

∑
j=0

h(xij∇η(H)(xij)). (8)
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η =
1

∑
s=0

(yslog(p(y = 1|X+)) + (1− ys)log(p(y = 0|X−))) (9)

η(H) =
1

∑
s=0

(yslog(
N−1

∑
j=0

p(y = 1|x1j)) + (1− ys)log(
N+L−1

∑
j=N

(1− p(y = 1|x0j)))) (10)

η(H)(xij) = yi
wj0σ(H(xij))(1− σ(H(xij))

N−1
∑

m=0
wj0σ(H(xim))

= −(1− yi)
σ(H(xij))(1− σ(H(xij))

N+L−1
∑

m=N
(1− σ(H(xim))

(11)

where σ(z) = 1
(1+e−z)

is the sigmoid function and σ(H(xij)) is the jth instance probability in the ith bag.
The results from the WMIL tracker [25] shown that the criterion is efficient because it can avoid

computing the bag probability and instance probability K times before selecting a weak classifier.
Therefore, it is more efficient than the log-likelihood function used in the MIL tracker [25].

However, there is higher dimension computing in the inner product 1
N+L

N+L−1
∑

j=0
h(xij∇η(H)(xij)),

which is also time consuming. To handle with the problem, we use the kernel function. The inputs h
and ∇η(H) are mapped to the feature space by using φ(h) and φ(∇η(H)), where φ(·) is the Hilbert
mapping of the inputs. The kernel is defined as:

k(h,∇η(H)) = φ(h)Tφ(∇η(H)) (12)

In practice, we choose to use the Gaussian kernel [26]:

k(h,∇η(H)) = exp(
−||h−∇η(H)||2

ρ2 ) (13)

where ρ is the bandwithd of the Gaussian function.
As new frames come, candidate samples are extracted around the tracking result: Xs = {x :

‖lt+1(x)− l∗t ‖ < s}, where s(r < s < β) is the radius.Then,the learned strong classifier detects the
sample with the maximum similar score as tracking result. In the WMIL, MIL, and CT trackers, it is
assumed that the object moves around the previous tracking location. And the candidate samples are
cropped in a fixed circle. These trackers have shown continuous performance in term of accuracy on
tracking large object with continuous motion. However, they often fail to track a small object because
of their fast motion. To deal with the problem, we present a method to vary the radius for extracting
the candidate sample with respect to the target’s size. The radius is set to be 25 if the object is big.
On the contrary, the radius is 35 for tracking the small object.

3.2. The Classifiers Update Strategy

After detecting an object, the classifier is updated to deal with the problems of occlusion,
pose variations, and illumination changes. Normally, a learning rate is set to make a balance between
the previous frame and the current frame [25]. We have tried the updating method with a fixed learning
rate and found that the experimental results are unstable when there are appearance variations. With a
small learning rate, the parameters of the classifier will be updated mainly with the mean and variance
of the new tracked location’s features. As a result, the interference from background will be introduced
to update the classifier, which results in “over-updating”. If the learning rate is too large, the new
tracked area will affect the parameters of the classifier rarely. Then, the classifier will be “less-updating”
and can’t deal with the illumination changes and pose variations.
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To address the problem mentioned above, we present an adaptive classifier updating strategy.
From experimental results of the WMIL tracker, we found that the similar scores of the tracking results
vary frequently from the tracked locations in the beginning frames. Therefore, we define the similar
score S0 of the tracking location in the second frame as a reference. Two thresholds H1 and H2 are also
defined. Then, a similar score range (S0 − H1, S0 + H2) is obtained with respect to the two thresholds
and the reference. As tracking evolves, we consider the tracking results with the similar score outside
the defined range as the appearance changes case. Then, a large learning rate is defined for updating
the parameters of the classifier. If the similar score of tracking results are within the defined range,
we use a small learning rate to update the classifier. The learning rate is defined as follows:

r =

{
0.25 if s ∈ (S0 − H1, S0 + H2)

0.85 if s /∈ (S0 − H1, S0 + H2)
(14)

4. Experiments

We compared KMIL tracker with the state-of-art object tracking algorithms, such as MIL [7],
CT [3], WMIL [25], KCF [14], and DSST [19]. The binary code released by the authors are used for
testing these trackers. The videos “Tiger2”, “Lemming”, “Shaking”, “Deer”, “Sylvester”, “Faceocc1”,
“Tiger1”, and “Football1” from the OTB25 database are downloaded from the Network for testing these
trackers. There are illumination changes and pose variations in the “Tiger1”, “Tiger2”, “Sylvester” and
“Lemming” sequences. The serious occlusions exist in the sequences “Occluded face”, “Football1”,
“Shaking” and “Lemming” videos. The objects move fast and vary their pose frequently in the “Tiger2”,
“Tiger1”, and “Lemming” sequences. All the algorithms are implemented in the MATLAB and run on
a core 2 CPU, 2.33GHz and 2GB RAM computer.

4.1. Parameters Setting

In these algorithms, the parameters r, α, and β determine the instances in the positive and negative
bags. The s determines the area for cropping the candidate samples. The algorithms with bigger r, α, β, s
can extract more instances which make the algorithms perform well to track an object, but result in time
consuming. The K is the number of the weak classifiers, while M is that of the selected discriminative
weak classifier for constructing a strong classifier. The classifier with bigger K and M can discriminate
an object easily, which also lead to computing complexity. The parameters are set to be the same as
the presented papers [3,7,19,25], which are illustrated in Table 1. The results of these algorithms have
shown that these algorithms perform the best with the parameters. In the KMIL tracker, the radius
for extracting candidate samples is set to be 25. In contrast, the radius is 35. Different from the fixed
learning rate of the CT, MIL, WMIL trackers, the learning rate of the KMIL tracker is adapted according
to the maximum score of the candidate sample at current frame. When the maximum score is in a
given range, the learning rate is set to be 0.25, or else it is 0.85. The number of weak classifiers is 150,
while that of the selected discriminative weak classifiers is 50. The KCF tracker employs the HOG
feature and Gaussian kernel. In the first frame, a model is learned with the image patch centered at the
initial position. In the successive frames, the position with the maximum value is detected over the
candidate patch. Finally, a new model is trained at the new tracking position [14].

The CT, MIL, WMIL, KMIL, KCF, DSST trackers are implemented on the mentioned videos.
After training the classifiers, the area with the maximum similar score is considered as the tracking
result. Then, the classifiers are updated to overcome the drawbacks of occlusion, pose variations,
and illumination variations.
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Table 1. The parameters for the MIL, CT, WMIL and KMIL trackers. r is the radius for positive bag,
α and β are the radius for the negative bag, s is for the searching area, K is the number of the weak
classifiers, M is the number of the selected most discriminative weak classifiers. λ is the learning rate.

Parameters r α β s K M λ

CT 4 8 30 20 / / 0.85
MIL 4 / 50 35 250 50 0.85

WMIL 4 α = 2r β = 1.5s 25 150 15 0.85
KMIL(big object) 4 α = 2r β = 1.5s 25 150 15 0.25/0.85

KMIL(small object) 4 α = 2r β = 1.5s 35 150 50 0.25/0.85

4.2. Tracking Object Location

Here, we detail the tracking object locations of the above trackers evaluated on the eight classical
videos. The results are shown in Figure 2. The MIL tracker is time consuming because of its
classifier selecting strategy. As a result, it often suffers from failure for the long time object tracking.
The KCF tracker uses the circulate matrix and kernel function for completing real time object tracking.
However, its searching area and learning rate are constant. Therefore, it often fails to track the object
in the complex environment, especially when the object is small and moves fast. The WMIL and CT
trackers update the classifier with a constant learning rate. Therefore, they result in tracking drift in
the complex environment. Furthermore, the WMIL tracker computes the bag probability according to
instances’ distance. Consequently, the tracking drift will be aggregated. Benefiting from the constant
learning rate, adaptive searching radius and the bag probability, the KMIL tracker can deal with the
drift problem in the complex environment. The tracking object locations in Figure 2 demonstrate that
the KMIL tracker performs well over the CT, MIL, WMIL, KCF, DSST trackers.

Figure 2. The illustration of the tracking locations on the sequences: “Deer”, “Tiger2”, “Faceocc2”,
“Sylvester”, “Football1”, “Shaking”, “Tiger1”, “Lemming”.

4.3. Quantitative Analysis

We use the precision curves to evaluate the performance of the proposed algorithm. The precision
curves illustrate the percentage of correctly tracked frames for a range of distance thresholds [14].
The correctly tracked frame is the one with target center within a distance threshold of the ground
truth. The tracker with a higher precision at low threshold is more accurate. Similar to the previous
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works [7,13,27], we choose the 20 pixels as the threshold. The experimental results are shown in
Figure 3. From the experimental results, we found that the precision of the KMIL tracker is higher
than the other algorithms at 20 pixels for the “Tiger2”, “Lemming”, “Deer”, “Slyvery”, and “Faceocc1”
sequences. For the “Tiger1” sequence, the KMIL tracker achieves the second higher precision at the
20 pixels. The MIL tracker has the highest precision for tracking the “Football man” shown in the
Figure 3h at 20 pixels. All of the algorithms can achieve 1 precision at 35 pixels. The experimental
results have shown the effectiveness of the proposed KMIL tracker. Especially, the KMIL tracker is
more efficient in term of precision than the popular kernel based trackers KCF and DSST.

Another performance criteria we chose for our evaluation is the success plot. In the tracking
process, the tracking result is denoted as a bounding box (called a ) and the real position is the ground
truth (called b). Then, an overlap score is defined with respect to the two regions.

OS =

∣∣∣∣ a⋂ b
a
⋃

b

∣∣∣∣ (15)

where
⋂

and
⋃

mean the intersection and union, respectively. |·| counts the number of the pixels.
The tracked targets with the overlap score larger than the given threshold (0.5 is used) are considered
as the successful results. The success curve is the ratios of the success frames to the whole frames.
The experimental results are shown in Figure 4. The higher the success curve is, the stronger tracking
ability the tracker has. It shows that the “red” line obtained by using the KMIL tracker on the
sequences: “Tiger2”, “Lemming”, “Shaking”, “Deer”, “Sylvester”, “Faceocc1”, and “Tiger1” is higher
than other line. In the Figure 4h, the higher success curve is obtained by using the MIL tracker on
the “Football1” sequences. However, it is time consuming, which will be detailed in the next section.
Furthermore, the well known fast KCF and DSST trackers run at a low success rate especially for
tracking the small object (e.g., on the “Tiger1” sequence).

4.4. Computational Cost

This section details the computational cost of the above trackers. The average computing time
processing an image is defined as: tavr =

tall
N f ra

. tall is the total computing time processing all of the
images in the whole video sequence. N f ra is the total number of frames. tavr is the obtained average
computing time. There are four factors lead to computational cost in the CT, MIL, WMIL, and KMIL
trackers. The first factor is the total number of weak classifiers in the classifier pool. The number of
the selected discriminative weak classifiers is the second factor influencing the computational time.
The number of the instances due to big searching area also results in computational complexity. At last,
the method for selecting discriminative weak classifiers which computes high dimension matrix is also
time consuming. We did experiments by using the parameters in the Table 1. The Frames Per Second
(FPS) of all the trackers are illustrated in Table 2. The KCF and DSST trackers run faster than the MIL,
CT, WMIL, and KMIL trackers. However, it has low precision and success rate. Benefiting from the
kernel function, the KMIL tracker avoids computing the (h

(
xij
)
5 η (H)

(
xij
)
)M times. As a result,

it is with lower computational time than the MIL, WMIL trackers.

Table 2. The FPS (Frames Per Second) for different algorithms conducted on sequences “Tiger2”,
“Lemming”, “Shaking”, “Deer”, “Sylvester”, “Faceocc1”, “Tiger1”, “Football1”.

Video Clip MIL CT WMIL KCF KMIL DSST

Tiger2 3.52 10.14 7.34 54.33 9.96 260
Lemming 3.13 9.41 8.96 35.73 9.98 103
Shaking 3.38 13.03 14.69 30.12 18.14 279
Animal 3.52 11.40 8.87 28.76 10.25 479

Sylvester 3.65 13.32 7.98 42.31 14.37 137
Faceocc2 3.46 13.21 13.85 38.28 17.70 260

Tiger1 3.02 10.4 7.93 10.94 9.22 265
Football1 3.73 13.59 8.77 224 13.04 500



Electronics 2018, 7, 97 9 of 13

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold

P
re
c
is
io
n

(a) Tiger2

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re
c
is
io
n

(b) Lemming

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Threshold

P
re
c
is
io
n

(c) Shaking

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re
c
is
io
n

(d) Deer

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re
c
is
io
n

(e) Sylvester

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re
c
is
io
n

(f) Faceocc1

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re
c
is
io
n

(g) Tiger1

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re
c
is
io
n

(h) Football1

CT KCF MIL WMIL KMIL DSST

Figure 3. Precision plot for sequences: “Tiger2”, “Lemming”, “Shaking”, “Deer”, “Sylvester”,
“Faceocc1”, “Tiger1”, “Football1”.
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Figure 4. Success plot for sequences: “Deer”, “Tiger2”, “Faceocc2”, “Sylvester”, “Football1”, “Shaking”,
“Tiger1”, “Lemming”.
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5. Conclusions

In this paper, we revisit the core of the WMIL formulation to counter the issues of computation
complexity and drift problem. We introduce a Gaussian kernel based multiple instance learning
algorithm for real-time vision applications. We also suggest a simple yet effective searching circle
update strategy that is especially suitable for small but moving fast objects. Lastly, we also present
a classifier update method for handling the appearance changes with respect to two thresholds and
reference similar score. The experiments conducted on several classical videos demonstrated that the
KMIL tracker was efficient in terms of time-consumption and robustness.
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The following abbreviations are used in this manuscript:

MS Mean Shift
IVT Incremental Visual Tracking
VTD Visual Tracking Decomposition
MOSSE Minimum Output Sum of Squared Errors
CSK Circulant Structure with Kernels
CN Color Names
DCF Discriminative Correlation Filter
DAT Distractor Aware Tracking
C-COT Continuous Convolution Operator
DeepSRDCF Deep Spatially Regularized Discriminative Correlation Filter
DLSSVM Dual Linear Structure Support Vector Machine
ECO Efficient Convolution Operators
CT Compressive Tracking
WMIL Weighted Multiple Instance Learning
KMIL Kernel based Weighted Multiple Instances Learning
KCF Kernelized Correlation Filter
DSST Discriminative Scale Space Tracking
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