
photonics
hv

Review

Integrated Microwave Photonics for Wideband
Signal Processing

Xiaoke Yi 1,2,*, Suen Xin Chew 1, Shijie Song 1, Linh Nguyen 1 and Robert Minasian 1

1 School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
suenxin.chew@sydney.edu.au (S.X.C.); shijie.song@sydney.edu.au (S.S.); linh.n@sydney.edu.au (L.N.);
robert.minasian@sydney.edu.au (R.M.)

2 Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney,
NSW 2006, Australia

* Correspondence: xiaoke.yi@sydney.edu.au; Tel.: +61-2-9351-2110

Received: 1 November 2017; Accepted: 24 November 2017; Published: 30 November 2017

Abstract: We describe recent progress in integrated microwave photonics in wideband signal
processing applications with a focus on the key signal processing building blocks, the realization
of monolithic integration, and cascaded photonic signal processing for analog radio frequency (RF)
photonic links. New developments in integration-based microwave photonic techniques, that have
high potentialities to be used in a variety of sensing applications for enhanced resolution and speed
are also presented.
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1. Introduction

The quest for greater speed, bandwidth, and reconfigurability has led to an active pursuit in
the field of microwave photonics (MWP) for the generation, transmission, and processing of radio
frequency (RF) signals in the optical domain. While initially, defense and radar applications were the
main beneficiaries of this technology, the scope has since expanded to encompass many new areas of
developments. Bringing together the worlds of radiofrequency (RF) engineering and optoelectronics,
the field of MWP has recently attracted great interest from both the research and the commercial
communities where its importance has been identified in emerging applications including medical
imaging, future 5G networks, and subterahertz systems. It offers the unique abilities to enable key
functionalities in microwave systems such as filtering, arbitrary waveform generation, frequency
up/down conversion and instantaneous measurement that are either complex or even not directly
possible in the radiofrequency domain [1–9]. As the role of MWP develops from niche to widespread
applications, it becomes important to replace systems that rely exclusively on discrete optoelectronic
devices and fiber-based components. These systems are bulky, expensive, and power-hungry, making
them economically unfeasible to be mass produced for a widespread use. The challenge has thus
intensified to implement reproducible, compact, lightweight, low power consumption and low-cost
MWP systems that are physically and economically competitive against their electronic counterparts.
This calls for an evolution of MWP components in the form of integrated circuits which aims to
incorporate many devices and optical functionalities on a single photonic chip to achieve high speed
and wideband signal processing functions [4–9].

The area of integrated MWP signal processors has been a tremendously active area of current
research and development, and is the technology best positioned to realize compact versions of existing
MWP systems with similar or even better performance. Work in this field has attracted a great deal of
attention in recent years and has been reported by several groups spanning various platforms such as
silicon photonics [5–7], III–V semiconductors [8], and Si4N3 (TripleX) technologies [9].
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In this paper, we present recent new developments in integrated microwave photonic signal
processing with a focus on the key signal processing building blocks for RF systems and photonic
links, which include an integrated microwave photonic phase shifter, time delay line, and frequency
tunable microwave filter for amplitude control. Finally, we will give a broad view on the realization
of these full functionalities from a system link perspective of a general-purpose MWP system.
Specifically, the future of inline photonic signal processing systems with cascaded functionalities and
the potential approaches for realizing full platform integration of MWP systems will be discussed.
The attractive use of MWP techniques such as optoelectronic oscillators (OEO) for sensing applications
is also explored. We present the prospects of transferring these OEO technologies onto an integrated
platform with a demonstration of an on-chip sensing probe for enhanced resolution and interrogation
speed. Because of the vast scope of research in this area and the high volume of publications, we would
like to point out that this paper, although covering a wide range of integrated MWP, will not provide
an exhaustive list of published papers in the field.

2. Integrated MWP Phase Shifter

Microwave phase shifting plays a central role as one of the key components making up the
backbone of a wide range of signal conditioning functionalities such as programmable filters [10] and
phased-array beamforming networks for radar, defense, and satellite communication systems [11,12].
In contrast with traditional microwave phase shifters which are typically limited by their electrical
bandwidth, tuning speed, and phase shifting range, the use of photonic techniques to perform RF
phase manipulation has been a popular area of research where the appeal of employing MWP phase
shifters lies in the expansion of the bandwidth potential and high speed configurability which is often
difficult to achieve using purely RF components.

The exacting requirements of microwave phase shifters demand not only the ability to provide
a full, tunable range of 0–360◦ phase shifts but also to have the ability to operate over a wide bandwidth
while introducing minimal RF power variations. Phase shifters based on the use of various discrete
photonic components such as 2D liquid crystal on silicon [12], stimulated Brillouin scattering (SBS)
effect in optical fibers [13], vector sum [14], optical filters [15], semiconductor optical amplifiers [16],
fiber Bragg gratings (FBGs) [17], and electro-optic modulators [18–20], have been demonstrated.

Exploring the direction of nanophotonics, several platforms have already been identified as
promising solutions for implementing integrated MWP phase shifters. Silicon photonics has been
widely investigated due to its complementary metal-oxide-semiconductor (CMOS) compatible nature
which allows silicon based MWP phase shifters to be seamlessly integrated together with electronic
circuits [21,22]. The development of phase shifter structures also enables the achievement of high
performance MWP phase shifting functions. On-chip integrated MWP phase shifters based on
silicon-on-insulator (SOI), where the high index contrast allows for an extremely compact footprint for
key components such as ring resonators, have been demonstrated by using a single ring resonator [22].
The phase shifter operation shows a continuous RF phase tuning from 0 to 270◦, as depicted in
Figure 1a. The corresponding RF amplitude response of the MWP phase shifter is shown in Figure 1b.
The inset of Figure 1b illustrates the optical response of the phase shifter which was measured by
using an optical analyzer (Finisar Wave Analyzer), showing a notch depth of approximately 7 dB
at the resonance location. As the MWP phase shifter is implemented based on a single microring
configuration, the RF power variation due to the high extinction ratio of the microring filter can be
minimized by reducing the loss of the microring and optimizing the coupling coefficient between the
straight waveguide and racetrack waveguide [23]. Moreover, the use of cascaded microring resonators
to implement phase shifting can also be adopted to enlarge the phase shifting range and present a more
controllable RF power variation [24].

Other platforms with integration potential involve silicon nitride [9] and charcolgenide
waveguides [25]. The further investigation of new platforms has also aided in the discovery of
graphene based waveguides [26] which provides tunability with relatively low electrical energy and
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PbS colloidal quantum dot based waveguide [27], which displays fast tunability. Recently, aluminum
nitride [28] which exhibits second order optical nonlinearity has also been explored to implement ring
resonator based phase shifters with increased phase tuning speed. Moreover, it has been demonstrated
that different platforms can be integrated through heterogeneous integrated technology [29],
which provides additional flexibilities.
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Figure 1. Measured responses of the microwave photonics (MWP) phase shifter where the different 
colour lines show the phase shifter operation as the carrier is tuned from 1554.30nm to 1554.55nm (a) 
continuous radio frequency (RF) phase tuning (b) superimposed RF power variations at various RF 
phase shifts. Inset: Optical response of the phase shifter. 

3. Integrated MWP Delay Line 

Optical delay lines, which delay an optical signal by a selected increment of time, play a key 
role in the implementation of a variety of microwave photonic signal processing functionalities 
[30,31]. For example, one important application is optically controlled beamforming for phased 
array antennas, where the delay element is an essential component for compensating the frequency 
dependency of beam direction, or beam squint effect.  

Non-resonant delay lines are of great interest due to their ability to form a large time delay as 
well as a wide operating bandwidth. Thanks to the CMOS-compatible fabrication technology which 
promises a more cost effective, robust and compact solution, delay elements based on various 
chip-scale platforms have been intensively investigated. In particular, low propagation loss has been 
demonstrated in optical waveguides of wedge geometry, high-aspect-ratio Si3N4, and high-quality 
silicon oxynitride films [32–36]. In [32], an optical delay line fabricated on a silicon chip has been 
presented, exhibiting an average measured waveguide loss of 0.08 ± 0.01 dB/m in long spirals.  

Employing resonance behavior of the whispering-gallery-mode [37,38] and microring cavities 
[39–43] forms another class to realize time delay functions. To extend the operating bandwidth of the 
delay lines, multiple microring resonators cascaded in versatile topologies such as coupled 
resonators optical waveguide (CROWs) [39–42], and side-coupled integrated spaced sequence of 
resonators (SCISSORS) [40] have been proposed. In [43], an optical delay with high bandwidth and 
continuous tunability was achieved by employing microring resonators in a balanced SCISSORS 
configuration. A 10 GHz operating bandwidth using thermally tuned silicon microring resonators 
was experimentally demonstrated. Microring resonators in an eye-like configuration as a 
continuously tunable delay line has also been reported [44]. The eye-like delay line unit consists of 
the outer (Ring 1) and inner (Ring 2) racetrack resonators as shown in Figure 2a, where the group 
delay exists at the through port of the unit. The optical power in Ring 1 is partly coupled between the 
bus waveguides by the temperature-controlled Mach Zehnder Interferometer (MZI) power splitters 
in Block 1 and 2, and also Ring 2 by the static directional couplers in Block 3 and 4. The 
temperature-controlled MZI power splitters are regarded as the tunable coupling devices such that 
the tunable coupling ratios κ1 and κ2 are obtained in Block 1 and 2, respectively. The dependences of 
group delays on coupling ratios are plotted in Figure 2b,c. The analysis is conducted on the eye-like 

Figure 1. Measured responses of the microwave photonics (MWP) phase shifter where the different
colour lines show the phase shifter operation as the carrier is tuned from 1554.30 nm to 1554.55 nm
(a) continuous radio frequency (RF) phase tuning (b) superimposed RF power variations at various RF
phase shifts. Inset: Optical response of the phase shifter.

3. Integrated MWP Delay Line

Optical delay lines, which delay an optical signal by a selected increment of time, play a key role
in the implementation of a variety of microwave photonic signal processing functionalities [30,31].
For example, one important application is optically controlled beamforming for phased array antennas,
where the delay element is an essential component for compensating the frequency dependency of
beam direction, or beam squint effect.

Non-resonant delay lines are of great interest due to their ability to form a large time delay
as well as a wide operating bandwidth. Thanks to the CMOS-compatible fabrication technology
which promises a more cost effective, robust and compact solution, delay elements based on various
chip-scale platforms have been intensively investigated. In particular, low propagation loss has been
demonstrated in optical waveguides of wedge geometry, high-aspect-ratio Si3N4, and high-quality
silicon oxynitride films [32–36]. In [32], an optical delay line fabricated on a silicon chip has been
presented, exhibiting an average measured waveguide loss of 0.08 ± 0.01 dB/m in long spirals.

Employing resonance behavior of the whispering-gallery-mode [37,38] and microring
cavities [39–43] forms another class to realize time delay functions. To extend the operating bandwidth
of the delay lines, multiple microring resonators cascaded in versatile topologies such as coupled
resonators optical waveguide (CROWs) [39–42], and side-coupled integrated spaced sequence of
resonators (SCISSORS) [40] have been proposed. In [43], an optical delay with high bandwidth and
continuous tunability was achieved by employing microring resonators in a balanced SCISSORS
configuration. A 10 GHz operating bandwidth using thermally tuned silicon microring resonators
was experimentally demonstrated. Microring resonators in an eye-like configuration as a continuously
tunable delay line has also been reported [44]. The eye-like delay line unit consists of the outer (Ring 1)
and inner (Ring 2) racetrack resonators as shown in Figure 2a, where the group delay exists at the
through port of the unit. The optical power in Ring 1 is partly coupled between the bus waveguides
by the temperature-controlled Mach Zehnder Interferometer (MZI) power splitters in Block 1 and 2,
and also Ring 2 by the static directional couplers in Block 3 and 4. The temperature-controlled
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MZI power splitters are regarded as the tunable coupling devices such that the tunable coupling
ratios κ1 and κ2 are obtained in Block 1 and 2, respectively. The dependences of group delays on
coupling ratios are plotted in Figure 2b,c. The analysis is conducted on the eye-like resonator with
the outer ring circumference of 397 µm which occupies the space smaller than 0.019 mm2. With the
temperature-controlled MZI power splitter between the resonator and the bus waveguides, the eye-like
resonator based delay line can be operated in over-coupling and under-coupling regimes. It should
be noted that a considerable delay of 627 ps can be achieved in the over-coupling condition while
maintaining the optical loss less than 25 dB. Optical delay lines can also be realized via adopting a series
of Mach Zehnder Interferometer (MZI) or microring resonator-based optical switches, thus generating
a tunable time delay controlled by the optical path change [45–48]. In [48], for example, a delay element
based on microring resonators in combination with graphene-based Mach–Zehnder interferometer
switches is reported on a silicon nitride platform, demonstrating an optical delay up to 920 ps with
optical loss less than 27 dB.

Additionally, optical delay lines based on photonic crystal (PhC) waveguides [49,50], which allow
flexible dispersion control, offer an attractive solution to support the realization of an on-chip
signal processor.
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Figure 2. (a) Schematic of eye-like ring resonator delay line with unbalanced temperature-controlled
Mach Zehnder Interferometer (MZI) power splitter. (b) The dependence of the through port group
delay τg and optical power transmission |HR|2 on field coupling ratio κ1 or 2 in (b) fast light and
(c) slow light regimes.

4. Integrated MWP Filter

Filtering of microwave signals in the optical domain provides the means to achieve fast
re-configurability with direct ease, which also enables flexibility to operate at high frequencies while
achieving a wide tuning range [51]. Such dynamic filtering performance is essential in applications such
as radar and surveillance where RF disturbances are very likely to occur at random frequencies [2,52,53].
The ability to provide continuous tuning for arbitrary frequencies allows the system to adapt to the
constant changes in the front-end operational requirements, where achieving such performance in the
electronic domain still remains a challenge.

There are three main approaches categorizing MWP filters. One method of implementation builds
upon the configuration of finite-impulse response (FIR) filters, which makes use of the summation
of a number of time-delayed and weight tailored multi-wavelength optical taps to generate the RF
output at the photodetector end [54]. The high programmability of such filters which permits agile
controllability and reshaping capabilities have spurred an invigorated drive to replace fiber and bulky
optics devices with integrated based components. Immense effort has since been put into investigating
on-chip programmable filters based on this approach. These have been successfully demonstrated
on various integrated platforms such as InP-InGaAs, SOI and hybrid silicon [55–57]. The FIR based
scheme being discrete in nature, however, exhibits a periodic transfer function, which gives rise to the
presence of multiple harmonic passbands within the spectral range of interest [4]. Recognizing the
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limitation this poses on the rejection range of unwanted frequencies, a single passband can be achieved
by combining optical and RF filtering techniques to eliminate all the unwanted periodic passbands
arising from structures based on a discrete multi-wavelength optical source [58].

The second category is based on the direct filtering method, where phase modulation to intensity
conversion is used to directly map the response of an optical filter to reflect a single RF passband MWP
filter in the electrical domain [59–62]. The simplicity of this method allows for the direct manipulation
of the RF amplitude response and permits the execution of continuous tuning of the RF passband
with a high resolution. A broader operational bandwidth without spectral overlapping is achieved,
where the undesired multiple harmonic passbands caused by the discrete time nature in FIR filters is
eliminated. High extinction ratios for rejection of unwanted RF signals can be achieved with optical
filters exhibiting very narrowband optical response such as phase-shifted FBG [59], a pair of FBGs [60],
optical bandpass filters [61], and Brillouin selective sideband amplification [62,63].

Finally, infinite impulse response (IIR) integrated optical filters based on SOI microring resonators
have been used to demonstrate their feasibility in implementing single passband MWP filters [64,65].
The resulting RF filters show 3-dB bandwidths of several GHz, and sideband suppression of less than
10 dB in [64] and 12 dB in [65], respectively. In [50], a tunable and reconfigurable MWP filter based
on a highly dispersive, low-loss 1.55 mm-long PhC waveguide delay line, which is characterized by
an anti-symmetric shift of the first row of holes, has been presented. A tuning capability over the
0–50-GHz spectral band and a broadband operation bandwidth up to 50 GHz have been demonstrated
for both notch and band-pass microwave filters. Whilst photonic integrated circuit technology has
made it possible to realize compact and lightweight photonic devices, the miniaturization of photonic
components also render them susceptible to fabrication mismatch, thus making it challenging to
cascade devices for very high Q integrated optical filters. Moreover, the resulting MWP filter typically
suffers from degradation in the extinction ratio of the filter passband due to the additional phase
variations introduced by the optical filter onto the carrier and sidebands. As a result, the amount of
cancellation in the phase-to-intensity modulation conversion process is far from ideal.

To overcome the RF distortion induced by the unwanted phase variation, a phase compensated
SOI microring resonator topology was proposed [66]. The proposed structure was able to reduce
the phase variation over the bandpass region of the notch filter thus achieving a RF filter response
with an improved sideband suppression of over 20 dB while exhibiting a wideband frequency tuning
range between 5 GHz and 40 GHz and high selectivity with a 3-dB bandwidth of just above 1 GHz.
However, as the proposed technique requires the use of a discrete phase compensator, this prevents
the system from being fully integrated. In order to overcome this limitation, a new technique has
been proposed which is based on an integrated double microring resonator configuration to enhance
the selectivity of the RF passband filter as shown in Figure 3 [67]. This novel concept allows the
realization of an RF filter whose bandwidth is directly related to the difference in bandwidths of
the two unequal optical notch filters. This fully integrated approach simply uses a cascaded pair
of microring resonators with slightly different bandwidths to enhance the selectivity of the single
passband microwave photonic filter (SPMPF). As the 3 dB-bandwidth of the resulting SPMPF is not
governed by the absolute bandwidth of a single optical filter, precise tuning of the device to achieve
high Q resonator-based filters in critical coupling condition can be avoided. Experimental results have
demonstrated a SPMPF with an improved out-of-band suppression ratio of around 20 dB, as well as
a wide and shape invariant tuning of the SPMPF showing continuous tuning capabilities from 6 GHz
to 17 GHz by using a fixed wavelength laser. The filter bandwidth was kept to less than 1.9 GHz while
maintaining the shape factor under 1.78 with a maximum variation of only ±0.05 throughout the entire
tuning range.

One strategy to maintain the fidelity of the processed radiofrequency (RF) signal is by
implementing rectangular MWP filters which are characterized by their flat-top passbands. A few
schemes have been reported to obtain microwave photonic filters with flattened passband such
as directly synthesized complex impulse response technique [68], spectrally shaping the optical
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pump source in SBS-based filters [69] or elaborate programming of FIR filters to construct a flat-top
passband [70]. To aid the implementation of MWP filters with flat passband characteristics on
an integrated platform, new synthesis methods to design integrated optical filters with flat top
characteristics based on multiple stages of stagger-tuned microring resonator filters have also been
proposed [71]. Integrated optical filters with a flat-top can also be utilized to achieve the desired
rectangular MWP filter response via direct filtering method [72].
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filter (SPMPF).

The concept of using integration based RF filtering for amplitude control can also be extended to
other applications such as the fifth generation (5G) mobile communication network to lower the cost
of deployment of radio-over-fiber (RoF) based networks. For example, in [73], an analog 60 GHz RoF
fronthaul link employing integrated MWP filters was presented to provide a compact and low-cost
optical filtering solution. In the proposed fronthaul link, a SOI ring-based dual-passband optical filter
was presented to enable the transmission of millimeter wave radio signals.

5. Integrated MWP for Optical Sensing Applications

In traditional optical sensing systems, where a change in the sensor measurand is converted
into a shift in the optical sensing resonant wavelength, an optical interrogator such as an optical
spectrum analyzer is required to convert the wavelength shift into an electrical signal. This, however,
raises the issues of sensitivity and speed limitations. In contrast, sensors based on microwave
photonic signal processing techniques can conveniently convert the change in the optical domain to
a corresponding variation in the microwave domain. The ability to perform measurements in the RF
domain, which provides higher frequency resolution, enables a superior method for high resolution
monitoring of miniscule changes in the measurand, thus enabling high performance sensing [74].
A much higher interrogation speed can also be obtained since the microwave frequency can readily be
measured by a digital signal processor (DSP) with high speed and high resolution. One technique to
implement the interrogation of optical sensors is via an optoelectronic oscillator (OEO) system, which is
an important system for microwave photonics that enables the generation of high-frequency and stable
microwave signals by combining the unique advantages of electronic and photonic components [75,76].

The conventional optoelectronic oscillator structure requires an electrical bandpass filter in
an optoelectronic feedback path to select the desired oscillation frequency. However, the low-frequency
operating range and limited tunability of typical electronic filters impose restrictions on the bandwidth,
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noise and stability of generated oscillations, making these optoelectronic oscillators unsuitable for
high-frequency applications. To overcome this fundamental limitation, MWP filters based on the
direct filtering method can be employed to replace electronic filters. Using these optical filtering
devices as the sensing probe, the microwave oscillation frequency can be determined by the resonant
wavelength of the optical device. However, the practicality of current OEO-based sensor schemes,
which are typically comprised of bulk components of large physical size, is limited. The challenge is
now to transfer the OEO-based topologies onto an integrated platform in order to develop compact
and portable solutions for sensing environment variables.

The first steps to developing an integrated OEO-based system was first initiated in [77] where we
presented an integrated photonic sensor based on an optoelectronic oscillator with an on-chip sensing
probe that is capable of realizing high sensitivity and high resolution. This work engaged the use of
a SOI microring resonator to continuously select different RF oscillation modes. As an application
example, the targeted measurand was chosen to be temperature. Figure 4a shows the working
principle of the proposed OEO based optical sensor that employs an integrated microring resonator as
the sensing probe element. The chip was placed under a heat sink with temperature controllability
provided by a thermoelectric cooler (Newport) to emulate the effects of disturbance in the ambient
temperature. The frequency response of the generated electrical signal at 24.78 ◦C is shown in Figure 4b,
which depicts an electrical signal at 14.3 GHz. The inset of Figure 4b shows the zoomed in response
which illustrates a narrowband signal with a linewidth of 0.1 MHz. The next most dominant mode is
located at 4.9 MHz away from the peak oscillation mode and shows a mode suppression of 30.6 dB.
To investigate the temperature sensing performance, the temperature of the nanochip sensor was varied
from 24.27 ◦C to 25.29 ◦C. Figure 4c shows the superimposed spectra of the generated microwave
frequencies at different temperature points. As the temperature increases, the signal is shifted to
a higher frequency where a linear relationship is formed between the temperature change and RF
frequency shift, as shown in the linear fit in Figure 4d. The linear dependence of the frequency shift on
temperature is estimated to be around 7.7 GHz/◦C, thus demonstrating its high sensitivity.
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(c) Measured RF oscillation frequency shift with temperature variations (d) Measured oscillation 
frequency shift as a function of the temperature 
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6. Integrated MWP for Inline Photonic Signal Processing and Full Platform Integration

The proliferating interest in low-cost, compact MWP subsystems has continued to push the
boundaries of scalability to develop multi-functional MWP subsystems. A majority of the existing
MWP systems were designed to be implemented as stand-alone systems which are segregated
according to different key signal processing functionalities such as RF amplitude manipulation,
delay line, and phase control capabilities. The challenges arises when the same system is expected to
incorporate an additional signal processing function. For example, in radar applications where the
system may not only need to perform RF phase shifts to steer the signal in a specified direction but it
may also need to concurrently reject unwanted out-of-band interference via RF filtering.

To achieve a multi-functional MWP signal processor, the direct cascade of multiple MWP
subsystems is a possible option. The MWP link should be efficiently utilized to its fullest potential
and have the ability to handle a variety of functionalities. In microwave fiber-optic systems where the
signal is already in the optical domain, it is thus attractive to continuously process the signal directly in
the optical domain itself, thus eliminating the unnecessary rounds of conversions between the electrical
and optical domain of the individual functions. For photonic chips to be on a competitive edge over
their electronic counterparts from an economic and practical standpoint, a radically different approach
needs to be considered to establish the means to realize a distributed variety of functionalities within
a single MWP link.

A practical MWP signal processing system that combines the cascaded usage of different optical
signal processing subsystems into one compound MWP system was proposed [22]. The novel
photonic link with distributed functionalities is capable of performing separately controlled,
cascaded microwave bandpass filter and on-chip phase shifter functions. This demonstration is relevant
to radar applications, for example in RF phased array antennas [15]. Meanwhile, highly selective
frequency filtering in multioctave radar systems with tuning capabilities is also needed to suppress
and adapt to the constant change in the unwanted out-of-band interferences.

As shown in Figure 5, the proposed system configuration in [22] cascades a SBS based MWP
bandpass filter and an on-chip phase shifter based on a single all-pass microring resonator. In order to
preserve the independent functionality of each subsystem, a new SBS configuration was utilized to
support the cascaded signal processing functions which is otherwise not achievable using conventional
structures. In contrast with previous implementations of the SBS-based filtering function where a pure



Photonics 2017, 4, 46 9 of 14

optical carrier derived directly from the source laser was used as the pump signal, the new system
adopts the concept of re-modulating the transmitted phase modulated light in the lower arm of the
first signal processor via an intensity modulator (IM). The reused modulated optical carrier can then
be continuously frequency shifted and filtered to act as a tunable pump signal. The tunability of the
MWP filter passband is realized by tuning the optical pump driven by an external RF source generator.
The RF signals within the SBS amplification profile is then transmitted together with the optical carrier
along the MWP subsystem to the next stage of signal processing, which comprises the MWP phase
shifter. Due to the selective amplification of the RF signals from the previous stage, the optical signals at
this stage can be viewed as a narrow array of single sideband RF frequencies. Therefore, a phase shifter
based on an optical single sideband modulation format can conveniently provide a one-to-one mapping
of optical to RF phase shifts. The carrier wavelength is aligned with the resonance of the phase change
induced by the MWP phase shifter so that an optical phase change is induced at the optical carrier.
The tunability of the MWP phase shifter is performed by tuning the wavelength of the optical carrier.
Alternatively, the tunability of the phase shifter can also be accomplished by using a microheater to
individually tune the ring resonator. The wideband operation of the phase shifter allows the same
phase shifts to be achieved for different RF frequencies selected by the tunable MWP bandpass filter.
Combining the two operations into one MWP subsystem as depicted in Figure 5, we demonstrate that
the two functions can be cascaded and controlled independently and the capability of the proposed
system in executing the two individual functions simultaneously is demonstrated. Experimental
results show that the system can achieve the cascaded multiple functions of a tunable single passband
filter over a span of up to 20 GHz and a phase shifter with continuous phase tunability of 0–215◦.
This system demonstrates the feasibility of cascading on-chip based functionalities within the same
photonic link, thus paving the way towards realizing a fully multi-functional MWP signal processor.
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Figure 5. Schematic diagram of the distributed optical signal processing MWP subsystem with
cascaded functionalities.

In order to realize a fully integrated platform for MWP systems, it is certainly necessary to
not only be able to implement the individual functions by means of integration based approaches,
but also demonstrate the practicality of integration of all the required optoelectronic components in
a single chip. This demands the miniaturization of the optical source, optical isolator, optical circulator,
optical modulator, optical detector, as well as optical amplifier so that they can all be embedded
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onto a single photonic chip. The advances in silicon photonics have successfully demonstrated
several high performance passive reconfigurable devices [5,6]. Silicon photonic integration could
significantly benefit a monolithically integrated MWP signal processor, owing to its CMOS-compatible
fabrication technology that offers cost effectiveness, advantages of reduced footprint and power
consumption, and wide functionality. Regarded as a promising platform, researchers in this field have
ventured into the development of silicon photonic-based devices for high performance modulators,
lasers and photodetectors. Besides the high-bandwidth photodiodes that have been demonstrated
on silicon [78,79], heterogeneous integration of III–V on silicon provides an attractive way to achieve
tunable lasers, broadband light sources [80], as well as optical amplifiers [81] to overcome system
loss. The cross section of such directly bonded heterogenous integration incorporating a silicon
waveguide with a III–V gain medium is used to demonstrate a hybrid silicon evanescent amplifier.
The optical mode of the hybrid silicon amplifier is mostly confined to the silicon waveguide and
evanescently coupled to the multiple quantum-well (MQW) region where optical gain is provided
by electrical current injection. The realization of optical isolators and optical circulators have also
been demonstrated in [82] fabricated by bonding cerium-substituted yttrium iron garnet (Ce:YIG)
on silicon microring resonators, which shows promising solution for large-scale integration of
nonreciprocal components. Several other platforms such as InP and group III–V materials have
demonstrated the capability to support light generation, amplification, modulation, and detection,
which are inherent properties that can be exploited to fill in the missing gap in silicon based integrated
photonic circuits [83]. For example, reconfigurable photonic integrated signal processors based on the
InP–InGaAsP material system have been reported in [8,84]. In [8], an example of a MWP filter with
a reconfigurable RF response is demonstrated. It includes a laser, an optical single-sideband (SSB)
modulator, a tunable optical filter, and a photodiode, where the tunable optical filter is implemented
based on a ring-assisted Mach Zehnder interferometer.

7. Conclusions

Photonic signal processing offers the advantages of high bandwidth capabilities to overcome
inherent electronic limitations and finds uses not only for radar and defense applications, but also
recently in communications and sensing systems. The field of integrated microwave photonics, which
is a booming technology driven by the rapid demand for compact, lightweight, and low power
consumption devices, has now become one of the most active areas of research. Thanks to the
significant research interest in this area, we have witnessed an impressive leap in knowledge and
technology developed in the last decade alone, evidenced by the overwhelming volume of papers
being published in this area. Recent developments in integrated MWP for wideband signal processing
have been presented at both the device and subsystem level, which include phase shifters, true time
delay lines, and frequency tunable microwave filters as MWP building blocks, monolithic integration
for broadband wireless, and cascaded MWP functions for photonic links. The many varieties of
integration platforms and the ongoing investigation of new materials provides an optimistic outlook
for the future of microwave photonics to eventually find an optimal solution in integrated photonics,
be it a hybrid or a single monolithic approach.
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