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Abstract: Cross-efficiency evaluation, an extension of data envelopment analysis (DEA), can
eliminate unrealistic weighing schemes and provide a ranking for decision making units (DMUs).
In the literature, the determination of input and output weights uniquely receives more attentions.
However, the problem of choosing the aggressive (minimal) or benevolent (maximal) formulation for
decision-making might still remain. In this paper, we develop a procedure to perform cross-efficiency
evaluation without the need to make any specific choice of DEA weights. The proposed procedure
takes into account the aggressive and benevolent formulations at the same time, and the choice of
DEA weights can then be avoided. Consequently, a number of cross-efficiency intervals is obtained
for each DMU. The entropy, which is based on information theory, is an effective tool to measure the
uncertainty. We then utilize the entropy to construct a numerical index for DMUs with cross-efficiency
intervals. A mathematical program is proposed to find the optimal entropy values of DMUs for
comparison. With the derived entropy value, we can rank DMUs accordingly. Two examples are
illustrated to show the effectiveness of the idea proposed in this paper.
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1. Introduction

Data Envelopment Analysis (DEA)—originally developed by Charnes, Cooper, and Rhodes
(CCR) [1]—is an effective method for evaluating the efficiencies of decision making units (DMUs)
with the same inputs and outputs. The idea of DEA models is to generate a set of optimal weights for
each DMU to maximize the ratio of its sum of weighted outputs to its sum of weighted inputs while
keeping all the DMU ratios at most the unity. Although DEA has been widely used as an effective
approach in finding the frontiers, its flexibility in weighting multiple inputs and outputs and its nature
of self-evaluation may lead to the situation that many DMUs are evaluated as efficient, and the DEA
efficient units cannot be further discriminated. Rating too many units as efficient is a commonly
recognized problem of DEA.

As an extension of DEA, cross-efficiency evaluation is to provide a ranking for CCR-efficient
units [2,3]. The purpose of this method is to employ DEA to do peer-evaluation, rather than to have it
perform in a self-evaluation mode. There are mainly two advantages of the cross-efficiency evaluation
method. It provides an ordering among DMUs, and it eliminates unrealistic weight schemes without
requiring the elicitation of weight restrictions from experts [4]. These merits let the method be widely
used for ranking performance of DMUs, for example: advanced manufacturing technology selection [5],
economic-environmental performance [6], measuring the performance of the nations participating
in Olympic Games [7], supply chain management [8], public resource management [9], fixed cost
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and resource allocation [10], portfolio selection [11], premium allocation for academic faculty [12],
and baseball player ranking [13].

However, the multiple optimum solutions for DEA weights might reduce the effectiveness of the
cross-efficiency. Specifically, cross-efficiency scores obtained from the original DEA methodology are
generally not unique [3]. It may be possible to improve a DMU’s (cross-efficiency) performance rating,
but generally only by worsening the ratings of others [14]. In this regard, the methods of Sexton et al. [2]
and Doyle and Green [3] use a secondary-goal methodology to deal with the multiple DEA solutions.
They develop aggressive (minimal) and benevolent (maximal) formulations to identify optimal weights
that not only maximize the efficiency of a particular DMU under evaluation, but also minimize the
average efficiency of other DMUs. In addition to the well-known aggressive (minimal) and benevolent
(maximal) formulations, other secondary-goal techniques are proposed and investigated [14–28].
Since it is possible that these two different formulations produce two different ranking results, decision
makers may need to make a choice between these two formulations.

There is another direction of studies, where all the possible weights are considered in the proposed
approaches, and a cross-efficiency interval is derived for a DMU being evaluated. Yang et al. [29]
calculate both the minimal and maximal game cross-efficiency scores for each given DMU according
to the idea of Liang et al. [14]. The holistic acceptability index (HAI) provides a measure of the overall
acceptability of the obtained cross-efficiency scores for ranking DMUs. Alcaraz et al. [30] take into
consideration all the possible choices of weights that all DMUs can make, and yields for each DMU
a range for its possible ranking rather than a single ranking. Ramón et al. [31] develop a pair of
models that allow for all possible weights for all DMUs, and a cross-efficiency interval is obtained
for each DMU. Existing order relations for interval numbers are used to identify dominance relations
among DMUs and a ranking result of DMUs is derived. These approaches perform the cross-efficiency
evaluation without choosing the DEA weights.

Information entropy is an effective tool to measure the uncertainty. According to the idea
of entropy, the amount or quality of information is one of the determinants for making decisions
accurately [32]. For this reason, it has been widely applied to different cases of assessments, such as
physics, social sciences, and so on [33–36]. There are several studies that integrate entropy and DEA
models. Soleimani-Damaneh et al. [37] integrate a series of efficiency scores of a DMU, which are
calculated from different DEA models, into a comprehensive efficiency score via using Shannon
entropy to calculate the degree of importance of each model. Hsiao et al. [38] propose an entropy-based
approach to deal with the problem of the distorted efficiency measurement in the non-proportional
radial measure. Bian and Yang [39] extend the Shannon-DEA procedure to establish a comprehensive
efficiency measure for appraising DMUs’ resource and environment efficiencies. Xie et al. [40] employ
Shannon entropy theory to calculate the degree of the importance of each DMU. Then they combined
the obtained efficiencies and the degrees of importance to improve the discrimination of traditional
DEA models. Qi and Guo [41] propose a modified weight restricted DEA model for calculating
non-zero optimal weights, and the non-zero optimal weights are aggregated to be the common weights
using Shannon entropy. Storto [42] investigates an index that calculates the ecological efficiency of
a city through combining the Shannon’s entropy and the cross-efficiency model. Wang et al. [43]
use the DEA entropy model to calculate the intervals of all cross-efficiency values with imprecise
inputs and outputs, and all DMUs are evaluated and ranked based upon the distance to ideal positive
cross efficiency.

The current approaches for cross-efficiency evaluation are often averaging the entries of the
cross-efficiency matrix column-wise for comparison of DEA efficient units, or concentrate on how to
determine DEA weights uniquely. In these cases, however, the problem of choosing the aggressive
(minimal) or benevolent (maximal) formulation for decision-making might still remain. In this paper,
we treat the cross-efficiency of a DMU as an interval, where the lower bound and upper bound are
derived by minimal and maximal formulations, respectively. That is, the cross-efficiency interval
takes the minimal and maximal formulations into account at the same time, and the choice of DEA
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weights can then be avoided. To rank DMUs with their cross-efficiency intervals, a numerical index
is required for comparison. The entropy, which is based on information theory, is an effective tool
to measure the uncertainty. We utilize the concept of entropy to construct a numerical index for
ranking DMUs with cross-efficiency intervals. Following the idea of Yang et al. [29], a number of
cross-efficiency intervals are obtained for DMUs in the cross-efficiency evaluation. The entropy values
are then calculated for the DMUs with cross-efficiency intervals. A nonlinear fractional program with
bound constraints is formulated to find the optimal value of entropy among cross-efficiency intervals.
By variable substitution, this nonlinear fractional program is transformed into a convex optimization
problem for deriving the global optimum solution. With the obtained entropy values, the DMUs are
ranked accordingly.

In the sections that follow, we first introduce the aggressive and benevolent formulations in the
cross-efficiency evaluation method. Next, the concept of entropy is introduced, and a nonlinear
fractional program with cross-efficiency intervals is formulated. Then we develop the solution
procedure to find the optimal entropy value for comparison of DMUs. Two numerical examples
are employed to illustrate the ideal proposed in this study. Finally, some conclusions of this study
are presented.

2. Solution Procedure

2.1. Cross-Efficiency Intervals

Let Xij and Yrj denote the i-th input, i = 1, . . . , m, and r-th output, r = 1, . . . , s, respectively, of the
j-th DMU, j = 1, . . . , n. The DEA model proposed by Charnes et al. [1] for calculating the efficiency of
DMU d under the assumption of constant returns-to-scale, referred to as the CCR model, is:

Edd = max
s

∑
r=1

urdYrd (1)

s.t.
m

∑
i=1

vidXid = 1

s

∑
r=1

urdYrj −
m

∑
i=1

vidXij ≤ 0, j = 1, ..., n

urd, vid ≥ 0, r = 1, ..., s, i = 1, ..., m

where urd and vid are the weights assigned to the s outputs and m inputs, respectively.
In the cross-efficiency evaluation we use the optimal solutions of (1) to calculate the

cross-efficiencies. To be specific, if v∗id (i = 1, . . . , m) and u∗rd (r = 1, . . . , s) is an optimal solution
of (1) for a given DMU d, then the cross-efficiency of DMU j (j = 1, . . . , n, j 6= d) peer-evaluated by
DMU d is given by

Edj =
∑s

r=1 u∗rdYrj

∑m
i=1 v∗idXij

, d, j = 1, ..., n (2)

The cross-efficiency score of DMU j, j = 1, . . . , n, is usually defined as the average of its
cross-efficiencies obtained with the weights of all the DMUs. That is, the cross-efficiency of DMU j is
defined as

Ej =
1
n

n

∑
d=1

Edj, j = 1, ..., n (3)

Generally, the cross-efficiency scores, which are calculated from DEA models, are not unique due
to the multiple optimum solutions for DEA weights, and one may obtain different efficiency scores
with different optimum solutions of the DEA weights. One remedy to eliminate the non-uniqueness,
as suggested by Sexton et al. [2], is to use secondary goals to choose the weights among the optimal
solutions. The most commonly used secondary goals are proposed by Doyle and Green [3], and they
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present aggressive and benevolent formulations. In the case of the benevolent formulation, for example,
the idea is to identify optimal weights that maximize not only the efficiency of a particular DMU
under evaluation but also the average efficiency of other DMUs. In the aggressive formulation,
however, one seeks weights that minimize the average efficiency of those other units. Each DMU in
Liang et al. [14] is viewed as a player that seeks to maximize its own efficiency, under the condition
that the cross-efficiency of each of the other DMUs does not deteriorate. The cross efficiency derived
by using the model of [14] is called the game cross-efficiency. Consider two DMUs, that is, DMU d and
DMU j. Based on the idea of [14], the aggressive and benevolent game cross-efficiencies are calculated,
respectively, by the following formulations [29].

EL
dj = min

s

∑
r=1

urdYrj (4)

s.t.
m

∑
i=1

vidXij = 1

s

∑
r=1

urdYrd − Edd

m

∑
i=1

vidXid = 0

s

∑
r=1

urdYrj −
m

∑
i=1

vidXij ≤ 0, j = 1, ..., n, j 6= d

urd, vid ≥ 0, r = 1, ..., s, i = 1, ..., m

EU
dj = max

s

∑
r=1

urdYrj (5)

s.t.
m

∑
i=1

vidXij = 1

s

∑
r=1

urdYrd − Edd

m

∑
i=1

vidXid = 0

s

∑
r=1

urdYrj −
m

∑
i=1

vidXij ≤ 0, j = 1, ..., n, j 6= d

urd, vid ≥ 0, r = 1, ..., s, i = 1, ..., m

Under maintaining the efficiency score Edd of DMU d unchanged, Models (4) and (5), respectively,
search for the minimization and maximization of the cross-efficiency scores that DMU j would reach.

From viewpoints of the cross-efficiency, the values of EL
dj and EU

dj solved from (4) and (5),
respectively, are the lower bound and upper bound of the cross-efficiency interval between DMU
d and DMU j. In other words, for DMUs d and j, their cross-efficiency lies in the range of [EL

dj, EU
dj].

The conventional single-valued data can be regarded as degenerate interval data with only one value
in that interval. Table 1 shows a generalized cross-efficiency matrix, where all the cross-efficiency
scores are interval-valued rather than a single value, for DMUs. Note that the elements in the diagonal
are Ej = EL

jj = EU
jj , ∀j.

To rank all DMUs with cross-efficiency intervals, a numerical index for each DMU is required
for easy comparison. In this study we use the concept of Gibbs’ entropy for ranking DMUs with
cross-efficiency intervals. The major difficulty is how to deal with the lying ranges of the cross-efficiency
intervals in calculating the entropy. In the next section, a methodology is proposed to find the optimal
entropy among the cross-efficiency intervals for discrimination of DMUs.
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Table 1. Cross-efficiency interval matrix.

DMU 1 2 . . . n

1 [EL
11, EU

11] [EL
12, EU

12] . . . [EL
1n, EU

1n]
2 [EL

21, EU
21] [EL

22, EU
22] . . . [EL

2n, EU
2n]

. . . . . . . . . . . . . . .
n [EL

n1, EU
n1] [EL

n2, EU
n2] . . . [EL

nn, EU
nn]

Average [EL
1 , EU

1 ] [EL
2 , EU

2 ] . . . [EL
n , EU

n ]

2.2. Entropy of Cross-Efficiency Intervals

In this section, we adopt Gibbs’ entropy to consider all the cross-efficiency intervals derived in
Models (4) and (5) for determining the rankings of DMUs. Information entropy is a measurement
of uncertainty of the system state, when the system is in limited states with the probability Pi (i = 1,
2, ..., n) of each state, then the entropy of the system is [32]

h = −K
n

∑
i=1

Pi ln Pi (6)

where K is a constant and 0 ≤ Pi ≤ 1,
n
∑

i=1
Pi = 1.

Without loss of generality, we discuss the case where all the cross-efficiency scores are of
interval-valued type because the single-valued cross-efficiency can be treated as the degenerated
interval with only one value in the interval. When the cross-efficiency is a constant value, the entropy
of DMU j can be defined as:

Hj = −Kj

n

∑
d=1

Gdj ln Gdj = −Kj

n

∑
d=1

 Edj
n
∑

d=1
Edj

ln
Edj

n
∑

d=1
Edj

 (7)

where Gdj =
Edj

n
∑

d=1
Edj

and Kj =
(EL

j +EU
j )

2 is a constant value. Note that EL
j and EU

j are, respectively,

aggressive and benevolent efficiencies that are defined in (3).
Since EL

dj and EU
dj are calculated, respectively, from (4) and (5), the cross-efficiency is an

interval rather than a constant value. Then Equation (7) becomes the following formulation with
cross-efficiency intervals

Ĥj = −Kj

n

∑
d=1

 Êdj
n
∑

d=1
Êdj

ln
Êdj

n
∑

d=1
Êdj

 (8)

where Êdj ∈
[

EL
dj, EU

dj

]
.

To find the smallest uncertainty of a DMU with cross-efficiency intervals, we need to find the
minimum value of entropy in (8). If every evaluated DMU has its own smallest entropy (uncertainty),
then we can use this obtained entropy for comparison of DMUs. The minimization of Ĥj is equal to
min{Ĥj|EL

dj≤Êdj≤EU
dj, ∀d}. In symbols, it can be expressed as:

Ĥj = min
EL

dj ≤ Êdj ≤ EU
dj

∀d

= −Kj

n

∑
d=1

 Êdj
n
∑

d=1
Êdj

ln
Êdj

n
∑

d=1
Êdj

 (9)
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Model (9) can be reduced to the following formulations:

Ĥj = min(−Kj

n

∑
d=1

 Êdj
n
∑

d=1
Êdj

ln
Êdj

n
∑

d=1
Êdj

) (10)

s.t. EL
dj ≤ Êdj ≤ EU

dj, d = 1, ..., n. (10a)

Model (10) is a nonlinear fractional program with bound constraints, where there is no guarantee
to have stationary points. In (10), we want to find a set of Êdj, d = 1, ..., n, that produces the smallest
objective value. Following the variable substitution of Charnes and Cooper [44], we let t = 1/∑n

d=1 Êdj
and wdj = tÊdj. Because the value of t > 0, one can multiply constraint (10a) by t and transform (10)
into the following mathematical program:

Ĥj = min(−Kj

n

∑
d=1

wdj ln wdj) (11)

s.t.
n

∑
d=1

wdj = 1

EL
djt ≤ wdj ≤ EU

djt, d = 1, ..., n. t > 0.

Since ln wdj and wdj ln wdj are both increasing functions and Kj is a constant value, the objective
function is a concave function. The values of EL

dj and EU
dj are the lower bound and upper bound of Êdj,

d = 1, ..., n, respectively, and they are constant values. Therefore, EL
djt ≤ wdj ≤ EU

djt, d = 1, ..., n, are
linear constraints. Model (11) is minimizing a concave function subject to linear constraints, and we
can derive a stationary point—the global optimum solution for (11). Moreover, because the objective
function is concave upward and the constraints are linear and boxed in (11), the optimal solution
should occur at extreme points [45].

With the derived value of Ĥ∗j , we are able to rank all DMUs accordingly. The larger the value of

Ĥ∗j the better the DMU is since the minimum uncertainty is assured in the solution processes.

3. Examples

3.1. Academic Departments in a University

To illustrate the methodology proposed in this paper, we first use an example, which is taken
from Wong and Beasley [46] that is an evaluation of seven academic departments in a university.
This example is also used for the illustrations by related studies [20,23,29]. Wong and Beasley [46]
evaluate seven academic departments in a university in terms of three inputs and three outputs.
The number of academic staff (X1), academic staff salaries in thousands of pounds (X2), and support
staff salaries in thousands of pounds (X3) are used as input items, and number of undergraduate
students (Y1), number of postgraduate students (Y2), number of research papers (Y3) are selected
as output items. Table 2 shows their input and output data together with their calculated CCR
efficiency scores.

Clearly, there are six of seven departments being evaluated as CCR-efficient in Table 2, and it is
hard to discriminate among them. Table 3 reports the lower bound and upper bound cross-efficiencies,
EL

dj and EU
dj, d, j = 1, ..., 7, of the seven departments, which are calculated from Models (4) and (5),

respectively. The last row of Table 3 lists the average cross-efficiency scores, which stand for the
aggressive and benevolent cross-efficiencies, respectively, for all DMUs.
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Table 2. Input and output data for seven departments.

Department
Inputs Outputs

CCR Efficiency
x1 x2 x3 y1 y2 y3

1 12 400 20 60 35 17 1
2 19 750 70 139 41 40 1
3 42 1500 70 225 68 75 1
4 15 600 100 90 12 17 0.8197
5 45 2000 250 253 145 130 1
6 19 730 50 132 45 45 1
7 41 2350 600 305 159 97 1

To find the optimal objective of entropy, Ĥ1, for Department 1, we need to put the data listed
in the first two and three columns of Table 3 into (10), and the mathematical formulation for Ĥ1 is
as follows:

Ĥ1 = min(− (0.7050 + 0.9462)
2

7

∑
d=1

 Êd1
7
∑

d=1
Êd1

ln
Êd1

n
∑

d=1
Êd1

) (12)

s.t. Ê11 = 1.0, 0.6856 ≤ Ê21 ≤ 0.9361, 0.7933 ≤ Ê31 ≤ 1.0, Ê41 = 0.6874,

0.4904 ≤ Ê51 ≤ 1.0, 0.6499 ≤ Ê61 ≤ 1.0, 0.6336 ≤ Ê71 ≤ 1.0.

Based on (11), Model (12) can be rewritten to the following mathematical form:

Ĥ1 = min(−0.8256
7

∑
d=1

wd1 ln wd1) (13)

s.t.
7

∑
d=1

wd1 = 1

w11 = t, 0.6856t ≤ w21 ≤ 0.9361t, 0.7933t ≤ w31 ≤ t,

w41 = 0.6847t, 0.4904t ≤ w51 ≤ t, 0.6499t ≤ w61 ≤ t,

0.6336t ≤ w71 ≤ t, t > 0.

The objective value of Ĥ1 is solved as 1.5805 occurring at t∗ = 0.1819, w∗11 = 0.1819, w∗21 = 0.1247,
w∗31 = 0.1819, w∗41 = 0.1251, w∗51 = 0.0892, w∗61 = 0.1819, and w∗71 = 0.1153. After transformation, we have
Ê∗11 = 1.0, Ê∗21 = 0.6856, Ê∗31 = 1.0, Ê∗41 = 0.6874, Ê∗51 = 0.4904, Ê∗61 = 1.0, and Ê∗71 = 0.6336. The solutions of
Ê∗21, Ê∗51, and Ê∗71 are at their lower bounds. On the contrary, the solutions of Ê∗31 and Ê∗61 are at their
upper bounds. This verifies that the optimal solution occurs at extreme point, which is discussed
in the previous section. One can calculate the optimal entropies for the other departments with the
same solution procedure, and we have Ĥ2 = 1.5632, Ĥ3 = 1.4771, Ĥ4 = 0.8701, Ĥ5 = 1.4171, Ĥ6 = 1.7232,
and Ĥ7 = 1.2197.

Table 4 lists the aggressive and benevolent game cross-efficiencies measured by [14], holistic
acceptability indices (HAI) calculated by [29], and the entropy calculated in this paper and their
rankings (in parentheses) by different formulations, from which it is observed that the aggressive and
benevolent formulations lead to different cross-efficiency rankings for the seven academic departments.
Interestingly, the ranking result of this paper is the same as that of the aggressive formulation suggested
by [14].
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Table 3. Lower bound and upper bound cross efficiencies of seven departments.

Dep.
Dep. 1 Dep. 2 Dep. 3 Dep. 4 Dep. 5 Dep. 6 Dep. 7

L U L U L U L U L U L U L U

1 1.0000 1.0000 0.3347 0.9850 0.5181 1.000 0.0686 0.6836 0.3314 1.0000 0.5143 1.0000 0.1514 1.0000
2 0.6856 0.9361 1.0000 1.0000 0.7346 0.8481 0.6868 0.8197 0.6620 0.9208 0.9506 1.0000 0.6044 1.0000
3 0.7933 1.0000 0.5533 0.8584 1.0000 1.0000 0.1515 0.4695 0.3148 0.7081 0.8213 1.0000 0.1509 0.2941
4 0.6874 0.6874 1.0000 1.0000 0.7349 0.7349 0.8197 0.8197 0.7649 0.7649 0.9506 0.9506 1.0000 1.0000
5 0.4904 1.0000 0.6990 0.9703 0.5505 0.8285 0.2417 0.6721 1.0000 1.0000 0.7799 1.0000 0.5252 1.0000
6 0.6449 1.0000 0.6954 1.0000 0.7488 1.0000 0.2136 0.7718 0.4778 1.0000 1.0000 1.0000 0.2460 1.0000
7 0.6336 1.0000 0.5564 1.0000 0.4175 0.7719 0.2063 0.8197 0.7558 1.0000 0.6107 1.0000 1.0000 1.0000

Ave. 0.7050 0.9462 0.6884 0.9734 0.6720 0.8834 0.3412 0.7223 0.6153 0.9134 0.8039 0.9929 0.5254 0.8992

L: lower bound, U: upper bound.
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Table 4. Cross efficiencies, HAI, entropies, and ranks of the seven departments.

Department Aggressive Benevolent HAI Entropy

1 0.7050 (2) 0.9462 (3) 35.06 (3) 1.5805 (2)
2 0.6884 (3) 0.9734 (2) 60.95 (2) 1.5632 (3)
3 0.6720 (4) 0.8834 (6) 25.33 (6) 1.4771 (4)
4 0.3412 (7) 0.7223 (7) 6.21 (7) 0.8701 (7)
5 0.6153 (5) 0.9134 (4) 27.01 (5) 1.4171 (5)
6 0.8039 (1) 0.9929 (1) 86.06 (1) 1.7232 (1)
7 0.5254 (6) 0.8992 (5) 29.36 (4) 1.2197 (6)

3.2. Chinese City

In this example, two inputs and three outputs are chosen to characterize the technology of
18 Chinese cities, and the original data of this example can be found in [47]. The investment in fixed
assets by stated-owned enterprises (X1) (10,000 RMB), where RMB is the Chinese monetary unit, and
foreign funds actually used (X2) (10,000 USD) are treated as inputs; total industry output value (Y1)
(10,000 RMB), total value of retail sales (Y2) (10,000 RMB), and handling capacity of coastal ports (Y3)
(10,000 tons) are chosen as outputs. Table 5 records the input and output data.

Table 5. Input and output data of 18 Chinese cities.

DMU x1 x2 y1 y2 y3

1 2874.8 16,738 160.89 80,800 5092
2 946.3 691 21.14 18,172 6563
3 6854.0 43,024 375.25 144,530 2437
4 2305.1 10,815 176.68 70,318 3145
5 1010.3 2099 102.12 55,419 1225
6 282.3 757 59.17 27,422 246
7 17,478.3 116,900 1029.09 351,390 14,604
8 661.8 2024 30.07 23,550 1126
9 1544.2 3218 160.58 59,406 2230

10 428.4 574 53.69 47,504 430
11 6228.1 29,842 258.09 151,356 4649
12 697.7 3394 38.02 45,336 1555
13 106.4 367 7.07 8236 121
14 4539.3 45,809 116.46 56,135 956
15 957.8 16,947 29.20 17,554 231
16 1209.2 15,741 65.36 62,341 618
17 972.4 23,822 54.52 25,203 513
18 2192.0 10,943 25.24 40,627 895

We first employ Models (4) and (5) to calculate the lower bound and upper bound of the
cross-efficiency intervals, EL

dj and EU
dj, respectively, for each Chinese city, and the obtained results are

presented in Table 6. Similar to Example 1, we put the cross-efficiency scores contained in Table 6 into
(11) to derive the corresponding entropy for each Chinese city. Table 7 reports the CCR efficiencies,
aggressive and benevolent cross-efficiencies measured by [14], and the entropies of the 18 Chinese city
calculated in this paper. The numbers in the parentheses are their associated ranks of these methods.

Three cities—DMUs 2, 6, and 10—are rated as CCR-efficient. This paper determines the order of
the 18 Chinese cities by their calculated entropies, and the top five places of the Chinese cities—namely,
DMU 1, DMU 6, DMU 10, DMU 12, and DMU 13—are exactly the same top five places evaluated by
CCR model. This shows that the methodology proposed in this paper works well in a complex problem
for discriminating among efficient DMUs. There is no wonder that the aggressive and benevolent
formulations measured by [14] result in different cross-efficiency rankings for the 18 Chinese cities.
A numerical index like entropy is helpful for ranking DMUs with cross-efficiency intervals.
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Table 6. Lower bound and upper bound cross-efficiency of 18 Chinese cities.

DMU
1 2 3 4 5 6 7 8 9

L U L U L U L U L U L U L U L U L U

1 0.469 0.469 1.000 1.000 0.249 0.251 0.461 0.463 0.629 0.631 1.000 1.000 0.306 0.309 0.491 0.496 0.556 0.561
2 0.032 0.469 1.000 1.000 0.006 0.278 0.031 0.502 0.061 0.631 0.034 1.000 0.013 0.358 0.059 0.496 0.073 0.658
3 0.468 0.468 0.999 1.000 0.278 0.278 0.502 0.502 0.586 0.586 1.000 1.000 0.358 0.358 0.414 0.414 0.628 0.628
4 0.468 0.468 1.000 1.000 0.278 0.278 0.502 0.502 0.586 0.586 1.000 1.000 0.358 0.358 0.414 0.414 0.628 0.628
5 0.446 0.469 0.999 1.000 0.239 0.249 0.447 0.461 0.631 0.631 1.000 1.000 0.292 0.306 0.484 0.496 0.556 0.560
6 0.138 0.469 0.107 1.000 0.126 0.278 0.228 0.502 0.482 0.631 1.000 1.000 0.128 0.358 0.195 0.496 0.422 0.658
7 0.468 0.468 1.000 1.000 0.278 0.278 0.502 0.502 0.586 0.586 1.000 1.000 0.358 0.358 0.414 0.414 0.628 0.628
8 0.469 0.469 1.000 1.000 0.249 0.249 0.460 0.461 0.631 0.631 0.999 1.000 0.306 0.306 0.496 0.496 0.556 0.557
9 0.183 0.183 0.999 1.000 0.133 0.133 0.267 0.267 0.629 0.629 1.000 1.000 0.146 0.146 0.265 0.265 0.658 0.658
10 0.058 0.469 0.173 1.000 0.041 0.249 0.079 0.461 0.319 0.631 0.437 1.000 0.036 0.306 0.141 0.496 0.223 0.658
11 0.469 0.469 0.999 1.000 0.249 0.249 0.461 0.461 0.631 0.631 0.999 1.000 0.306 0.307 0.496 0.496 0.556 0.557
12 0.439 0.439 1.000 1.000 0.210 0.210 0.408 0.408 0.582 0.582 0.875 0.875 0.261 0.261 0.490 0.490 0.481 0.481
13 0.439 0.439 0.999 1.000 0.210 0.210 0.408 0.408 0.582 0.582 0.875 0.875 0.261 0.261 0.489 0.490 0.481 0.481
14 0.469 0.469 1.000 1.000 0.249 0.249 0.461 0.461 0.631 0.631 1.000 1.000 0.306 0.307 0.496 0.496 0.556 0.557
15 0.469 0.469 0.999 1.000 0.249 0.249 0.461 0.461 0.631 0.631 1.000 1.000 0.306 0.306 0.496 0.496 0.556 0.557
16 0.437 0.439 0.990 1.000 0.210 0.211 0.407 0.409 0.581 0.583 0.875 0.877 0.260 0.262 0.487 0.490 0.479 0.482
17 0.468 0.468 0.999 1.000 0.277 0.278 0.502 0.502 0.586 0.586 1.000 1.000 0.357 0.358 0.414 0.416 0.627 0.628
18 0.430 0.442 0.962 1.000 0.208 0.215 0.402 0.414 0.578 0.588 0.868 0.889 0.258 0.266 0.482 0.490 0.475 0.490

Ave. 0.379 0.446 0.901 1.000 0.208 0.244 0.388 0.453 0.552 0.610 0.887 0.973 0.257 0.305 0.401 0.464 0.508 0.579

DMU
10 11 12 13 14 15 16 17 18

L U L U L U L U L U L U L U L U L U

1 0.981 1.000 0.299 0.301 0.749 0.763 0.708 0.725 0.662 0.666 0.670 0.674 0.678 0.682 0.686 0.690 0.693 0.697
2 0.079 1.000 0.016 0.301 0.048 0.787 0.035 0.751 0.354 0.353 0.351 0.350 0.348 0.347 0.345 0.344 0.343 0.341
3 0.661 0.661 0.273 0.273 0.521 0.522 0.429 0.430 0.449 0.442 0.434 0.427 0.420 0.413 0.405 0.398 0.391 0.383
4 0.661 0.661 0.273 0.273 0.521 0.522 0.429 0.430 0.449 0.442 0.435 0.427 0.420 0.413 0.405 0.398 0.391 0.383
5 0.999 1.000 0.290 0.301 0.724 0.763 0.702 0.725 0.661 0.665 0.669 0.673 0.677 0.681 0.685 0.689 0.693 0.697
6 0.598 1.000 0.121 0.301 0.157 0.763 0.258 0.725 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580
7 0.661 0.661 0.273 0.273 0.521 0.522 0.429 0.430 0.449 0.442 0.435 0.427 0.420 0.413 0.405 0.398 0.391 0.384
8 1.000 1.000 0.301 0.301 0.763 0.763 0.725 0.725 0.668 0.672 0.677 0.681 0.685 0.689 0.693 0.697 0.702 0.706
9 0.999 1.000 0.142 0.142 0.223 0.224 0.296 0.296 0.396 0.392 0.387 0.383 0.378 0.374 0.369 0.365 0.360 0.356
10 1.000 1.000 0.061 0.301 0.120 0.787 0.206 0.751 0.015 0.138 0.013 0.187 0.044 0.470 0.013 0.303 0.025 0.197
11 0.999 1.000 0.301 0.301 0.762 0.763 0.724 0.725 0.138 0.138 0.186 0.187 0.465 0.465 0.303 0.303 0.185 0.185
12 1.000 1.000 0.284 0.284 0.787 0.787 0.751 0.751 0.124 0.124 0.174 0.174 0.470 0.470 0.270 0.270 0.197 0.197
13 1.000 1.000 0.283 0.284 0.786 0.787 0.751 0.751 0.124 0.124 0.174 0.175 0.470 0.470 0.269 0.270 0.197 0.197
14 0.999 1.000 0.301 0.301 0.762 0.763 0.724 0.725 0.138 0.138 0.187 0.187 0.465 0.465 0.303 0.303 0.184 0.185
15 1.000 1.000 0.301 0.301 0.762 0.763 0.725 0.725 0.138 0.138 0.187 0.187 0.465 0.465 0.303 0.303 0.185 0.185
16 1.000 1.000 0.283 0.284 0.784 0.787 0.751 0.751 0.123 0.124 0.174 0.175 0.470 0.470 0.269 0.270 0.196 0.197
17 0.661 0.666 0.273 0.273 0.521 0.525 0.429 0.434 0.136 0.136 0.160 0.161 0.295 0.298 0.306 0.306 0.102 0.103
18 0.992 1.000 0.281 0.286 0.777 0.784 0.746 0.749 0.122 0.125 0.169 0.176 0.460 0.470 0.258 0.273 0.195 0.195

Ave. 0.849 0.925 0.242 0.282 0.572 0.687 0.546 0.645 0.316 0.322 0.335 0.344 0.455 0.479 0.381 0.397 0.333 0.343

L: lower bound, U: upper bound.

Table 7. CCR-efficiency, cross-efficiencies, entropies, and ranks (in parentheses) of the 18 Chinese cities.

DMU CCR Aggressive Benevolent Entropy

1 0.469 (11) 0.379 (12) 0.446 (11) 1.147 (11)
2 1.000 (1) 0.901 (1) 1.000 (1) 2.684 (1)
3 0.278 (15) 0.208 (18) 0.244 (18) 0.630 (18)
4 0.502 (8) 0.388 (10) 0.453 (10) 1.178 (10)
5 0.631 (7) 0.552 (5) 0.610 (6) 1.653 (6)
6 1.000 (1) 0.887 (2) 0.973 (2) 2.632 (2)
7 0.358 (12) 0.257 (16) 0.305 (16) 0.780 (16)
8 0.496 (9) 0.401 (9) 0.464 (9) 1.218 (9)
9 0.658 (6) 0.508 (7) 0.579 (7) 1.542 (7)

10 1.000 (1) 0.849 (3) 0.925 (3) 2.514 (3)
11 0.301 (14) 0.242 (17) 0.282 (17) 0.733 (17)
12 0.787 (4) 0.572 (4) 0.687 (4) 1.738 (4)
13 0.751 (5) 0.546 (6) 0.645 (5) 1.655 (5)
14 0.138 (18) 0.316 (15) 0.322 (15) 0.880 (15)
15 0.187 (17) 0.335 (13) 0.344 (13) 0.924 (13)
16 0.470 (10) 0.455 (8) 0.479 (8) 1.266 (8)
17 0.306 (13) 0.381 (11) 0.397 (12) 1.053 (12)
18 0.195 (16) 0.333 (14) 0.343 (14) 0.923 (14)
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A few studies have investigated methods for discriminating CCR-efficient units. One of the
well-known methods is the super-efficiency DEA model [48]. Nevertheless, under certain conditions
this approach suffers the infeasibility in deriving the efficiency score. In this case the application
of this approach is limited. There are other methods for investigating the discrimination power
of DEA, such as common weights [49] and the context-dependent DEA method [50]. However,
the most popular one in discriminating efficient units perhaps is the cross-efficiency method [28].
The advantages of the approach proposed in this paper are that it is always feasible for calculating
cross-efficiency, the multiple optimum solutions for DEA weights can be ignored, and the uncertainty
of cross-efficiency intervals are considered in discrimination of DMUs.

4. Conclusions

It is possible that the cross-efficiency evaluation has multiple optimum solutions for the DEA
weights that result in different cross-efficiency scores, and consequently to different ranking results of
DMUs. The traditional approaches in the literature may make a choice of weights according to their
alternative secondary goals in performing the cross-efficiency evaluation. However, decision-makers
need to make a choice between the aggressive and benevolent formulations, and the issue of multiple
solutions of weights still exists.

Different from previous approaches in the literature, this paper considers not only the
cross-efficiency intervals but also their entropy values for ranking DMUs. The merits of the proposed
approach are that the determination of the weights can be ignored and the uncertainty of the
cross-efficiency intervals is considered as a ranking factor in comparison of DMUs. Since the
aggressive and benevolent formulations are considered simultaneously, a number of cross-efficiency
intervals are obtained for a specific DMU in the evaluation process. To find the optimal value of the
entropy among cross-efficiency intervals, a nonlinear fractional programs with bound constraints is
formulated. By variable substitutions, this nonlinear fractional program is transformed into a convex
optimization problem to solve. With the derived entropy values, we are able to rank DMUs accordingly.
Two examples are used to illustrate the approach proposed in this paper, and the derived results show
that this research is indeed able to ranking the CCR-efficient units effectively.

There are different approaches proposed for enhancing and extending the cross-efficiency
evaluation. In this study, the input and output data are measured by exact values. However, in some
cases, the input and output items of DMUs could be imprecise data or fuzzy data. How to deal with
the imprecise and fuzzy data is a possible direction of future research and an extension of the approach
proposed in this study.
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