Abstract: The aim of this feature article is to provide a deep insight into the origin of the kink effects affecting the output reflection coefficient (S_{22}) and the short-circuit current-gain (h_{21}) of solid-state electronic devices. To gain a clear and comprehensive understanding of how these anomalous phenomena impact device performance, the kink effects in S_{22} and h_{21} are thoroughly analyzed over a broad range of bias and temperature conditions. The analysis is accomplished using high-frequency scattering (S-) parameters measured on a gallium-nitride (GaN) high electron-mobility transistor (HEMT). The experiments show that the kink effects might become more or less severe depending on the bias and temperature conditions. By using a GaN HEMT equivalent-circuit model, the experimental results are analyzed and interpreted in terms of the circuit elements to investigate the origin of the kink effects and their dependence on the operating condition. This empirical analysis provides valuable information, simply achievable by conventional instrumentation, that can be used not only by GaN foundries to optimize the technology processes and, as a consequence, device performance, but also by designers that need to face out with the pronounced kink effects of this amazing technology.

Keywords: equivalent circuit; GaN; HEMT; scattering parameter measurements; solid-state electronic device

1. Introduction

With the aim of enabling microwave engineers to exploit advanced transistor technologies at their best, increasing attention is being given to the investigation of the kink effects in the output reflection coefficient (S_{22}) and the short-circuit current-gain (h_{21}) of solid-state electronic devices made with different semiconductor materials, like silicon (Si), gallium arsenide (GaAs), and gallium nitride (GaN) [1–13]. The kink in S_{22} consists in the change of the concavity of the function $\text{Im}(S_{22})$ versus $\text{Re}(S_{22})$ (i.e., from convex to concave and vice versa), while the kinks in h_{21} consist of peaks that are detectable by plotting the magnitude of h_{21} in dB versus the frequency on a log scale. As the kink effects can be interpreted in terms of the transistor equivalent-circuit elements, many studies have been developed to identify those ones playing a dominant role, depending on the specific case study. The origin of the kink effect in S_{22} has been mostly ascribed to high values of the transconductance (g_m) [1,4–6], whereas h_{21} can be affected by a first kink, originating from the resonance between the extrinsic inductances and the intrinsic capacitances [7–9,12,13], and a second kink, arising from the
resonance of the extrinsic reactive elements [12,13]. It is worth underlining that an accurate study of the kink effects in S_{22} and h_{21} parameters of microwave transistors represents a powerful tool for microwave engineers for fabrication, modeling and design purposes. Device technologists might enhance or alleviate the kinks in S_{22} and h_{21}, depending on the application constraints, simply through optimization of the device layout and structure. Device modelers can exploit the kinks in S_{22} and h_{21} for extracting equivalent circuit parameters (e.g., the resonance frequency associated with the first kink in h_{21} has been used to accomplish the challenging task of determining the intrinsic output capacitance [7,8]). Circuit designers should properly take into account the kink effect in S_{22}, especially for the design of broadband output matching networks [14,15]. In addition, circuit designers can benefit from the kinks in h_{21} as they enable achieving an increase in the current gain at the resonant frequencies. However, so far, the interest in obtaining active transistor operation at frequencies beyond the cut-off frequency (f_{T}) has been focused on bipolar transistors (e.g., by proper design of the so-called resonance phase transistor [16–21]), recent studies have shown that the achievement of a current gain even at frequencies higher than f_{T} is achievable also in FET transistors, owing to the kinks in h_{21} [12,13].

This feature article is focused on investigating the kinks in S_{22} and h_{21} for the gallium-nitride (GaN) high electron-mobility transistor (HEMT) technology, which is receiving increasing attention for high-temperature and high-power applications at high frequencies [22–29]. In particular, the kinks are studied at different ambient (i.e., case) temperatures (T_{a}) and bias voltages (V_{GS} and V_{DS}). The study consists of a comprehensive examination of the experimental results based on scattering (S-) parameter measurements and an exhaustive interpretation of the achieved findings using the transistor equivalent-circuit model. Although GaN HEMT is used as a case study, the reported study is technology-independent as it is based on a standard equivalent circuit topology for FETs, thus making the achieved finding representative and generalizable for any FET. This is confirmed by previous studies which have already demonstrated that the appearance or absence of the kinks in S_{22} and h_{21} is simply rooted in the values of the equivalent circuit elements of the tested FET, besides the analyzed frequency range [1,6,9,12,13].

The remainder of this article is organized as follows. Section 2 is devoted to the analysis of the kink effect in S_{22}; Section 3 is focused on the investigation of the kink effects in h_{21}; and Section 4 summaries the main conclusions.

2. Kink Effect in S_{22}

The studied solid-state electronic device is a GaN HEMT with a gate length of 0.25 µm and a gate width of 1.5 mm (i.e., 10 × 150 µm) (see Figure 1a). It was manufactured in the GH25-10 technology by United Monolithic Semiconductors (UMS) [30–32], using an AlGaNP/GaN heterostructure grown on silicon carbide (SiC) substrate with a field plate for power applications. This foundry process, entailing a power density of 4.5 W/mm with typical f_{T} of 25 GHz, is optimized for X-band (i.e., 8–12 GHz) high-power applications. The S-parameters were measured from 0.2 to 65 GHz under different bias conditions and at four ambient temperatures: 35 °C, 90 °C, 145 °C, and 200 °C. Subsequently, the h_{21} parameter was straightforwardly calculated from the measured S-parameters by using conventional transformation formulas [33]. Figure 1b shows the small-signal equivalent circuit used for modelling the tested transistor. Firstly, the extrinsic elements were determined from S-parameters at “cold” pinch-off condition (i.e., $V_{DS} = 0$ V and $V_{GS} = −4$ V) and, subsequently, the intrinsic elements were calculated from the intrinsic admittance (Y-) parameters at each bias point [12].

Figures 2 and 3 show the S-parameters measured at the four investigated ambient temperatures with $V_{DS} = 30$ V and for two values of V_{GS}: −3.5 V and −3.1 V, respectively. It can be observed that S_{22} of the tested device is affected by the kink effect under both bias conditions. As illustrated in Figures 2 and 3, the kink effect can be detected also as a dip in the magnitude of S_{22}, due to two zeros occurring between two poles. This is in line with findings from previous studies showing that the kink effect in S_{22} can be analyzed also in terms of poles and zeros [2–4,6]. The shape of the kink effect strongly depends on the combined effects of equivalent circuit elements whose values
might remarkably vary with the operating conditions. By heating the device, the kink effect gets less pronounced and this can be attributed to the reduction of g_m which is associated to a decrease of the average velocity of the electrons drifting in the 2-D electron gas (2DEG) channel. As a matter of fact, g_m plays a dominant role in determining the appearance and the shape of the kink effect in S_{22}. A higher temperature leads also to a decrease in the drain-source resistance (R_{ds}), moving the starting point of S_{22} closer to the short-circuit condition. By increasing T_a from 35 °C to 200 °C when V_{GS} is −3.5 V, g_m and R_{ds} decrease from 225.7 to 186.8 mS and from 189.7 to 146.7 Ω, respectively. Given the same increase in T_a but with $V_{GS} = −3.1$ V, g_m and R_{ds} decrease from 347.9 to 215.4 mS and from 138.9 to 135.2 Ω, respectively.

The reduction of S_m and R_{ds} at higher temperatures can be, respectively, noticed from the decrease in the low-frequency magnitudes of the forward transmission (S_{21}) and reflection coefficient S_{22} (see Figures 2e,f and 3e,f), since at relatively low frequencies S_{21} and S_{22} can be linked to g_m and R_{ds} as follows [34]:

$$S_{21} = -2g_{mExtr} (R_0 / R_{dsExtr})$$ \hspace{1cm} (1)

$$S_{22} = R_{dsExtr} - R_0 / R_{dsExtr} + R_0$$ \hspace{1cm} (2)

$$g_{mExtr} = \frac{g_m}{1 + g_m R_s + R_{ds}^{-1} (R_s + R_d)}$$ \hspace{1cm} (3)

$$R_{dsExtr}^{-1} = \frac{R_{ds}^{-1}}{1 + g_m R_s + R_{ds}^{-1} (R_s + R_d)}$$ \hspace{1cm} (4)

where R_0 is the characteristic resistance (i.e., 50 Ω), while g_{mExtr} and R_{dsExtr} represent the extrinsic transconductance and drain-source resistance.

To focus attention on the V_{GS} dependence, Figure 4 illustrates the S-parameters measured at $T_a = 35 ^\circ$C, $V_{DS} = 30$ V and with V_{GS} equal to −3.5 V and −3.1 V. By varying V_{GS} from −3.5 to −3.1 V, the improvement of g_m leads to an increase of the low-frequency magnitude of S_{21} and to an enhancement of the kink effect in S_{22}, whereas the decrease of R_{ds} leads to a shift of the starting point of S_{22} towards the short-circuit condition.

As can be observed in Figure 5, the kink effect in S_{22} vanishes when V_{DS} reaches 0 V and, in line with this finding, the dip in the magnitude of S_{22} disappears. This is because, by reducing V_{DS}, g_m decreases and, in addition, its role is further diminished by the decrease of R_{ds}. As a matter of fact, R_{ds} is connected in parallel with the voltage-controlled current source (i.e., $g_m e^{-juTMV}$) and thus its reduction tends to short circuit the contribution of g_m, thereby contributing to the suppression of the kink effect in S_{22} and to the decrease in the low-frequency magnitude of S_{21} (see Equation (1)). The reduction of g_m and R_{ds} at lower V_{DS} can be, respectively, noticed from the decrease in the low-frequency magnitude of S_{21} (see Figure 5e) and the shift of the starting point of S_{22} closer to the short-circuit condition (see Figure 5d).

Figure 1. (a) Photograph of the studied GaN HEMT and (b) its small-signal equivalent circuit.
Figure 2. Measured (a) S_{11}, (b) S_{12}, (c) S_{21}, (d) S_{22}, (e) magnitude of S_{21}, and (f) magnitude of S_{22} from 0.2 to 65 GHz for a GaN HEMT at $V_{DS} = 30$ V and $V_{GS} = -3.5$ V under four ambient temperatures: 35 °C, 90 °C, 145 °C, and 200 °C.

Figure 3. Measured (a) S_{11}, (b) S_{12}, (c) S_{21}, (d) S_{22}, (e) magnitude of S_{21}, and (f) magnitude of S_{22} from 0.2 to 65 GHz for a GaN HEMT at $V_{DS} = 30$ V and $V_{GS} = -3.1$ V under four ambient temperatures: 35 °C, 90 °C, 145 °C, and 200 °C.
The kink effect in the simulated device with a large gate periphery over a broad frequency range reaching very high frequencies is quite a challenging task, the standard equivalent-circuit model is able to mimic the general trend of intrinsic element values, showing that meaningful representation of the FET behavior. As an example, this type of powerful analysis has been conducted and not physically representative of a real device, repeating this type of analysis enables understanding of how each element impacts on the appearance and shift of the measurements and, in particular, to predict the kink in S_{22} at $V_{GS} = 35$ °C, 90 °C, 145 °C, and 200 °C. Figure 4a reports the comparison between measured and simulated S_{22} at $T_a = 35$ °C, $V_{DS} = 30$ V, and $V_{GS} = −3.1$ V. Although the extraction of a model that can faithfully reproduce the behavior of a device with a large gate periphery over a broad frequency range reaching very high frequencies is quite a challenging task, the standard equivalent-circuit model is able to mimic the general trend of the measurements and, in particular, to predict the kink in S_{22} and the dip in its magnitude too (see Figure 6b). Furthermore, as will be seen in the next section, the extracted model also allows the prediction of the two kinks in h_{21}. It is worth noticing that, in accordance with what is stated above, the kink effect in the simulated S_{22} can be suppressed by reducing g_m and/or R_{ds} (see Figure 6c–f). This is because S_{22} becomes kink-free by nullifying the value of g_m and/or its contribution. On the other hand, by increasing R_{ds} at a very high value, the shape of S_{22} is modified somewhat and the
starting point of S_{22} shifts towards the open-circuit condition but with the kink effect still affecting S_{22} (see Figure 6g,h). It is worth noticing that although changing only one element of the model might be not physically representative of a real device, repeating this type of analysis enables understanding of how each element impacts on the appearance and shape of the kinks and the physical soundness of the achieved outcomes is guaranteed by the fact that the equivalent-circuit model is a physically meaningful representation of the FET behavior. As an example, this type of powerful analysis has been conducted in a pioneering study to explore the origin of the kink effect in S_{22} by varying the intrinsic element values, showing that g_m plays a dominant role [1].

Figure 6. Comparison between measured and simulated (a) S_{22} and (b) its magnitude from 0.2 to 65 GHz for a GaN HEMT at $T_a = 35 ^\circ C$, $V_{DS} = 30 V$, and $V_{GS} = −3.1 V$. The values of g_m and R_{ds}, for the extracted equivalent-circuit model are 347.9 mS and 138.9 Ω, respectively. The simulated S_{22} is compared with the simulations achieved by using the models with: (c,d) $g_m = 0$ mS, (e,f) $R_{ds} = 0$ Ω, and (g,h) $R_{ds} = 10$ kΩ.
As is well known, the most popular technique for determining the extrinsic circuit elements for FETs is based on using S-parameters measured under “cold” conditions ($V_{DS} = 0$ V, i.e., passive device) [35–39]. As there are no electrons drifting from source to drain when $V_{DS} = 0$ V, g_m is equal to zero, thus implying that S_{21} becomes equal to S_{12} and S_{22} turns out to be kink-free. This is illustrated in Figure 7, showing S-parameters measured at two typical bias points used for modeling purpose: “cold” unbiased (i.e., $V_{GS} = 0$ V) and pinched-off (i.e., $V_{GS} = −4$ V) conditions. By moving from an open-channel to pinch-off condition, the starting point of S_{22} shifts from the short-circuit to the open-circuit condition (see Figure 7d), owing to the increase of R_{ds}, but without the occurrence of the kink effect as g_m is kept at zero by biasing the device under “cold” condition.

![Figure 7. Measured (a) S_{11}, (b) S_{12}, (c) S_{21}, and (d) S_{22} from 0.2 to 65 GHz for a GaN HEMT at $T_a = 35^\circ$C and $V_{DS} = 0$ V for two values of V_{GS}: −4 V and 0 V.](image)

3. Kink Effects in h_{21}

Figures 8 and 9 report the measured h_{21} at the four investigated ambient temperatures with $V_{DS} = 30$ V and for two values of V_{GS}: −3.5 V and −3.1 V, respectively. It is found that two peaks appear in h_{21} at each bias condition. It has already been demonstrated in previous works that the first peak is due to the resonance between the extrinsic inductances and the intrinsic capacitances [7–9,12,13], whereas the second peak is due to the resonance of the extrinsic inductive and capacitive contributions [12,13]. The experiments show that the second peak is substantially insensitive to T_a, as expected considering that the extrinsic reactive elements are mostly temperature-independent, and the first peak is roughly independent of T_a, consistently with the slight temperature dependence of the intrinsic capacitances.

![Figure 8. Measured h_{21} from 0.2 to 65 GHz for a GaN HEMT at $V_{DS} = 30$ V and $V_{GS} = −3.5$ V under four ambient temperatures: 35 °C, 90 °C, 145 °C, and 200 °C.](image)

To focus attention on the V_{GS} dependence, Figure 10 illustrates h_{21} measured at $T_a = 35^\circ$C, $V_{DS} = 30$ V and with V_{GS} equal to −3.5 V and −3.1 V. By varying V_{GS} from −3.5 to −3.1 V, the improvement of g_m leads to an increase of the low-frequency magnitude of h_{21} but the two peaks are mostly insensitive to this variation of V_{GS}.
Figure 9. Measured h_{21} from 0.2 to 65 GHz for a GaN HEMT at $V_{DS} = 30$ V and $V_{GS} = -3.1$ V under four ambient temperatures: 35 °C, 90 °C, 145 °C, and 200 °C.

Figure 10. Measured h_{21} from 0.2 to 65 GHz for a GaN HEMT at $T_a = 35$ °C and $V_{DS} = 30$ V for two values of V_{GS}: -3.5 V and -3.1 V.

As can be observed in Figure 11, the first peak disappears at zero V_{DS}, owing to the reduction of R_{ds} that tends to short circuit the intrinsic capacitive contributions [7,9,12]. On the other hand, the second peak is mostly insensitive to V_{DS}, owing to the bias independence of the extrinsic reactive elements [12].

Figure 11. Measured h_{21} from 0.2 to 65 GHz for a GaN HEMT at $T_a = 35$ °C and $V_{GS} = -3.1$ V for four different values of V_{DS}: 0 V, 10 V, 20 V, and 30 V.

Figure 12a reports the comparison between measured and simulated h_{21} at $T_a = 35$ °C, $V_{DS} = 30$ V, and $V_{GS} = -3.1$ V. As can be observed, the standard equivalent-circuit model is able to predict the two peaks in h_{21}. Figure 12b illustrates that a reduction of g_m results in a dramatic degradation of the low-frequency magnitude of h_{21} but with the two peaks still affecting h_{21}. It is worth noticing that the first kink effect in the simulated h_{21} vanishes by reducing R_{ds} to zero (see Figure 12c), whereas h_{21} is substantially insensitive to an increase of R_{ds} (see Figure 12d).
Figure 12. Comparison between measured and simulated (a) h_{21} from 0.2 to 65 GHz for a GaN HEMT at $T_s = 35 \, ^\circ\text{C}$, $V_{DS} = 30 \, \text{V}$, and $V_{GS} = -3.1 \, \text{V}$. The values of g_m and R_d for the extracted equivalent-circuit model are 347.9 mS and 138.9 Ω, respectively. The simulated h_{21} is compared with the simulations achieved by using the models with: (b) $g_m = 0$ mS, (c) $R_d = 0$ Ω, and (d) $R_d = 10$ kΩ.

4. Conclusions

We have reported a thorough and critical investigation of the kinks in S_{22} and h_{21} parameters for solid-state electronic devices. To gain a comprehensive and in-depth understanding of their origin, we have developed a measurement-based analysis focusing on a GaN HEMT as a case study. However, the achieved outcomes can be straightforwardly generalized to other FET types, since a standard topology of FET equivalent circuit has been successfully used for analyzing and comprehending the experiments. We have shown that the kink in S_{22} depends on both temperature and bias conditions, the first peak in h_{21} depends slightly on temperature and strongly on bias conditions, and the second peak in h_{21} is substantially bias- and temperature-insensitive. We have reported an exhaustive interpretation of the experimental findings by using a standard transistor equivalent-circuit model as it allows capturing all the three observed kinks. The origin of the kink effect in S_{22} is mostly due to a high value of g_m, the first peak in h_{21} originates from the resonance between the extrinsic inductances and the intrinsic capacitances, and the second kink in h_{21} originates from the resonance of the extrinsic inductive and capacitive contributions. A reduction of g_m allows only suppression of the kink effect in S_{22}, while a reduction of R_d leads to the suppression of the kink effect in S_{22} and the first peak in h_{21} by short circuiting the contributions of g_m and intrinsic capacitances. On the other hand, it has been shown that the second peak in h_{21} still occurs, independently of the reduction of g_m and R_d.

Author Contributions: Investigation, G.C. and V.V.; Methodology, G.C. and A.R.; Supervision, G.V. and A.C.; Writing–original draft, G.C.; Writing–review & editing, A.R., V.V., G.V. and A.C.

Funding: This research was funded in part by the Eurostars project E!10149 MicromodGaN.

Conflicts of Interest: The authors declare no conflict of interest.

References

5. Crupi, G.; Avolio, G.; Raffo, A.; Barmuta, P.; Schreurs, D.M.M.-P.; Caddemi, A.; Vannini, G. Investigation on the thermal behavior for microwave GaN HEMTs. Solid-State Electron. 2011, 64, 28–33. [CrossRef]

22. Trew, R.J. Wide bandgap semiconductor transistors for microwave power amplifiers. IEEE Microw. Mag. 2000, 1, 46–54. [CrossRef]

26. Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C. Temperature effect on DC and equivalent circuit parameters of 0.15-µm gate length GaN/SiC HEMT for microwave applications. *IEEE Trans. Microw. Theory Tech.* 2016, 64, 3483–3491. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).