Sparse-Based Millimeter Wave Channel Estimation With Mutual Coupling Effect

Zhenxin Cao 1, Haiyang Geng 2, Zhimin Chen 3* and Peng Chen 1,*

1 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China; caozx@seu.edu.cn
2 State Grid Information & Telecommunication Branch, Beijing 100761, China; genghaiyang0726@sina.com
3 School of Electronic and Information Engineering, Shanghai Dianji University, Shanghai 201306, China; chenzm@sdju.edu.cn
* Correspondence: chenpengseu@seu.edu.cn; Tel.: +86-158-9595-2189

Received: 14 February 2019; Accepted: 19 March 2019; Published: 25 March 2019

Abstract: The imperfection of antenna array degrades the communication performance in the millimeter wave (mmWave) communication system. In this paper, the problem of channel estimation for the mmWave communication system is investigated, and the unknown mutual coupling (MC) effect between antennas is considered. By exploiting the channel sparsity in the spatial domain with mmWave frequency bands, the problem of channel estimation is converted into that of sparse reconstruction. The MC effect is described by a symmetric Toeplitz matrix, and the sparse-based mmWave system model with MC coefficients is formulated. Then, a two-stage method is proposed by estimating the sparse signals and MC coefficients iteratively. Simulation results show that the proposed method can significantly improve the channel estimation performance in the scenario with unknown MC effect and the estimation performance for both direction of arrival (DOA) and direction of departure (DoD) can be improved by about 8 dB by reducing the MC effect about 4 dB.

Keywords: channel estimation; compressed sensing; mmWave communication; mutual coupling

1. Introduction

Millimeter wave (mmWave) communication with the frequency bands of 30–300 GHz will be a promising technology in the 5G cellular networks [1–3]. The critical challenge is the significant path loss in the mmWave frequency bands, and that large antenna arrays are adopted to provide the beamforming gain and compensate for the path loss [4]. Additionally, to improve the performance of mmWave communication, the channel estimation methods are essential to obtain the associated channel parameters including the direction of arrival (DoA) and the direction of departure (DoD) [5–9]. In [10], a joint DoA/DoD estimation method for Impulse Radio-Ultra Wide Band (IR-UWB) peer-to-peer communications is proposed, where the multi-path scenario is considered.

To exploit the sparse scattering nature of mmWave channels, the sparse-based methods have been proposed to convert the channel estimation problems into the problems of sparse reconstruction. For example, in [11], a joint sparse and low-rank structure is exploited, and a two-stage compressed sensing (CS) method has been proposed for the mmWave channel estimation; the approximate message passing (AMP) method has been extended by the nearest neighbor pattern learning algorithm to improve the attainable channel estimation performance in [12]; a channel estimation algorithm based on the alternating direction method of multipliers has been given in [7]. However, in the practical mmWave communication systems, the imperfections of antenna arrays degrade the performance of channel estimation [13–15]. The DoA estimation methods with the unknown mutual coupling (MC) effect have been proposed in [16–18]. However, in the present papers, the sparsity of mmWave channel and the MC effect between antennas have not been considered simultaneously.
In this paper, the estimation problem for the mmWave channel is addressed. By exploiting the channel sparsity in the spatial domain, a CS-based method is proposed to convert the problem of channel estimation into that of sparse reconstruction. Additionally, the MC effect between antennas is described by a symmetric Toeplitz matrix, and the sparse-based system model with MC is formulated. Then, a novel two-stage channel estimation method is proposed by estimating the sparse signals and the MC coefficients iteratively. The remainder of this paper is organized as follows. The system model of mmWave communication is elaborated in Section 2. The proposed channel estimation method with unknown MC is presented in Section 3. Section 4 gives the simulation results. Finally, Section 5 concludes the paper.

Notations: Matrices are denoted by capital letters in boldface (e.g., A), and vectors are denoted by lowercase letters in boldface (e.g., a). I_N denotes an $N \times N$ identity matrix. I_N denotes an $N \times N$ identity matrix. $\mathbb{E}\{\cdot\}$ denotes the expectation operation. $\mathcal{CN}(a, B)$ denotes the complex Gaussian distribution with the mean being a and the variance matrix being B. $\|\cdot\|_2$, \otimes, $\text{Tr}\{\cdot\}$, $\text{vec}\{\cdot\}$, $(\cdot)^*$, $(\cdot)^{\text{T}}$ and $(\cdot)^{\text{H}}$ denote the ℓ_2 norm, the Kronecker product, the trace of a matrix, the vectorization of a matrix, the conjugate, the matrix transpose and the Hermitian transpose, respectively.

2. System Model of mmWave Communication

2.1. System Model with MC Effect

As shown in Figure 1, the mmWave MIMO communication system has M antennas in the base station (BS) and N antennas in the mobile station (MS). The transmitting and receiving antennas have the same polarization (horizontal polarization or vertical polarization). Additionally, we solve the problem of 1-D problem and not 2-D problem in both TX and RX sides. In this paper, we only use the analog beamforming in BS and MS, and can extend to the hybrid beamforming structure easily.

![Figure 1. The system model with analog transmit beamforming and receive combining struct.](image)

The beamforming vector used in the transmitter (BS) is $a(t) \in \mathbb{C}^{M \times 1}$, and the beamforming vector used in the received (MS) is $b(t) \in \mathbb{C}^{N \times 1}$, so in the time instant t, the received signal can be expressed as

$$
 r(t) = [C_R b(t)^H H C_T a(t)] s(t) + n(t),
$$

where $s(t)$ denotes the transmitted symbol, $H \in \mathbb{C}^{N \times M}$ denotes the mmWave channel matrix, and $n(t)$ denotes the additive white Gaussian noise (AWGN). The MC matrices in the transmitter and received are denoted as C_T and C_R, respectively.

Usually, the MC matrices in the transmitter and receiver are, respectively, described by [19]

$$
 C_T \triangleq (Z_{TA} + Z_{TL})(Z_T + Z_{TL}I)^{-1},
$$

$$
 C_R \triangleq (Z_{RA} + Z_{RL})(Z_R + Z_{RL}I)^{-1},
$$
where Z_{TL} and Z_{TA} denote the terminating load and the antenna impedance in transmitter, and Z_{RL} and Z_{RA} denote the terminating load and the antenna impedance in receiver. Z_R and Z_T denote the mutual impedance matrix in receiver and transmitter, respectively.

The m_1-th row and m_2-th column of mutual impedance matrix Z_T can be expressed as \cite{20-22}

$$Z_{T,m_1,m_2} = \begin{cases}
30(0.5772 + \ln(2\gamma L) - g_C(2\gamma L) + jg_S(2\gamma L)), & m_1 = m_2 \\
30(g_R(m_1, m_2) + jg_X(m_1, m_2)), & m_1 \neq m_2
\end{cases}$$

(4)

where $\gamma \triangleq 2\pi / \lambda$, and L denotes the length of dipole antennas. $g_R(m_1, m_2)$ and $g_X(m_1, m_2)$ are defined respectively as

$$g_R(m_1, m_2) \triangleq \sin(\gamma L) [g_S(v_0) - g_S(\mu_0) + 2g_S(\mu_1) - 2g_S(v_1)] + \cos(\gamma L) [g_C(\mu_0) + g_C(v_0) - 2g_C(\mu_1) - 2g_C(v_1)] - 4g_C(\gamma d(m_1, m_2)),$$

(5)

$$g_X(m_1, m_2) \triangleq \sin(\gamma L) [g_C(v_0) - g_C(\mu_0) + 2g_C(\mu_1) - 2g_C(v_1)] + \cos(\gamma L) [-g_S(\mu_0) - g_S(v_0) + 2g_S(\mu_1) + 2g_S(v_1)] + 2g_S(v_1) - 2g_S(\gamma d(m_1, m_2)) + 2g_S(\mu_1) + 2g_S(v_1) - 4g_S(\gamma d(m_1, m_2)),$$

(6)

where $d(m_1, m_2)$ denotes the distance between the m_1-th antenna and the m_2-th antenna. μ_0, v_0, μ_1 and v_1 are defined, respectively, as

$$\mu_0 = \gamma \left(\sqrt{d^2(m_1, m_2) + L^2} - L \right),$$

(7)

$$v_0 = \gamma \left(\sqrt{d^2(m_1, m_2) + L^2} + L \right),$$

(8)

$$\mu_1 = \gamma \left(\sqrt{d^2(m_1, m_2) + 0.25L^2} - 0.5L \right),$$

(9)

$$v_1 = \gamma \left(\sqrt{d^2(m_1, m_2) + 0.25L^2} + 0.5L \right).$$

(10)

$g_C(x)$ and $g_S(x)$ are defined respectively as

$$g_C(x) \triangleq \int_{-\infty}^{x} \frac{\cos(t)}{t} dt,$$

(11)

$$g_S(x) \triangleq \int_{0}^{x} \frac{\sin(t)}{t} dt.$$

(12)

Similarly, the mutual impedance matrix Z_R can be also obtained from the expression of Z_T. However, the expresses for Z_T and Z_R in (4) are too complex to analysis. Since Z_T and Z_R depend on the length of dipole antennas and the distances between antennas, the MC matrices C_T and C_R can be approximated, respectively, by two symmetric Toeplitz matrices \cite{23-25}.

$$C_T \approx T(c_T),$$

(13)

$$C_R \approx T(c_R).$$

(14)
where $T(c_T) \in \mathbb{C}^{M \times M}$ is defined as
\[
T(c_T) \triangleq \begin{bmatrix}
 c_{T,0} & c_{T,1} & c_{T,2} & \cdots & c_{T,M-1} \\
 c_{T,1} & c_{T,0} & c_{T,1} & \cdots & c_{T,M-2} \\
 c_{T,2} & c_{T,1} & c_{T,0} & \cdots & c_{T,M-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_{T,M-1} & c_{T,M-2} & c_{T,M-3} & \cdots & c_{T,0}
\end{bmatrix},
\]
and $T(c_R) \in \mathbb{C}^{N \times N}$ is defined similarly. Additionally, for the MC matrices, we also have
\[
1 = |c_{T,0}| \geq |c_{T,1}| \geq \cdots \geq |c_{T,M-1}|, \quad (16)
\]
\[
1 = |c_{R,0}| \geq |c_{R,1}| \geq \cdots \geq |c_{R,N-1}|. \quad (17)
\]
Therefore, in the scenario with MC between antennas, the received signal in (1) can be rewritten as
\[
r(t) = b^H T^H(c_R) H T(c_T) a_s(t) + n(t). \quad (18)
\]
Usually, the mmWave channel can be described by a geometric channel model
\[
H = \sum_{k=0}^{K-1} a_k c(\phi_k) d^H(\psi_k), \quad (19)
\]
where K denotes the number of paths, a_k denotes the complex gain of the k-th path, ϕ_k and ψ_k are the DoD and DoA, respectively. We define the following vectors to collect DoD/DoA
\[
\phi \triangleq \begin{bmatrix}
 \phi_0, \phi_1, \ldots, \phi_{K-1}
\end{bmatrix}^T, \quad (20)
\]
\[
\psi \triangleq \begin{bmatrix}
 \psi_0, \psi_1, \ldots, \psi_{K-1}
\end{bmatrix}^T. \quad (21)
\]
c(ϕ_k) and $d^H(\psi_k)$ are the steering vectors of receiver and transmitter, and can be expressed as
\[
c(\phi_k) = \frac{1}{\sqrt{N}} \begin{bmatrix}
 1, e^{j2\pi \frac{d}{\lambda} \sin(\phi_k)} , \ldots , e^{j2\pi \frac{(N-1)d}{\lambda} \sin(\phi_k)}
\end{bmatrix}^T, \quad (22)
\]
\[
d(\psi_k) = \frac{1}{\sqrt{M}} \begin{bmatrix}
 1, e^{j2\pi \frac{d}{\lambda} \sin(\psi_k)} , \ldots , e^{j2\pi \frac{(M-1)d}{\lambda} \sin(\psi_k)}
\end{bmatrix}^T. \quad (23)
\]
where d denotes the distance between adjacent antennas, and λ denotes the wavelength.
We define the following matrices
\[
C \triangleq \begin{bmatrix}
 c(\phi_0), c(\phi_1), \ldots, c(\phi_{K-1})
\end{bmatrix}, \quad (24)
\]
\[
D \triangleq \begin{bmatrix}
 d(\psi_0), d(\psi_1), \ldots, d(\psi_{K-1})
\end{bmatrix}, \quad (25)
\]
and the channel model can be rewritten as
\[
H = CD^H, \quad (26)
\]
where $G \in \mathbb{C}^{K \times K}$ is a diagonal matrix and $G \triangleq \text{diag}\{a_0, a_1, \ldots, a_{K-1}\}$. Substituting (26) into (18), we can obtain

$$r(t) = b^H(t)T^H(c_R)a(t)s(t) + n(t)$$

$$= \left[(D^H T(c_T) a(t))^T \otimes (b^H(t) T^H(c_R))\right] g s(t) + n(t)$$

$$= \left[a^T(t) \otimes b^H(t)\right] \left[T^T(c_T) D^* \otimes T^H(c_R)\right] g s(t) + n(t),$$

where the vector $g \triangleq \text{vec}(G)$. With the sampling interval T_s, we can collect the P sampled signals into a vector

$$r \triangleq [r(0) , r(T_s), \ldots, r((P-1)T_s)]^T.$$ \hfill (28)

Then, with $s(t) = 1$, we can obtain

$$r = \left[\begin{array}{c}
a^T(0) \otimes b^H(0) \\
a^T(T_s) \otimes b^H(T_s) \\
\vdots \\
a^T((P-1)T_s) \otimes b^H((P-1)T_s)
\end{array}\right] \left[T^T(c_T) D^* \otimes T^H(c_R)\right] g + n$$

$$= \Psi \left[T^T(c_T) D^* \otimes T^H(c_R)\right] (D^* \otimes C) g + n$$ \hfill (29)

where $n \triangleq [n(0), n(T_s), \ldots, n((P-1)T_s)]^T$.}

2.2. Sparse-Based mmWave Channel Model

To estimate the mmWave channel H, we can discretize the DoD and DoA into grids, and the channel model in (26) can be rewritten as

$$H = EU^H,$$ \hfill (30)

where we have

$$E \triangleq [c(\tilde{\zeta}_0), c(\tilde{\zeta}_1), \ldots, c(\tilde{\zeta}_{N_z-1})]$$ \hfill (31)

$$F \triangleq [d(\tilde{\xi}_0), d(\tilde{\xi}_1), \ldots, d(\tilde{\xi}_{N_{\xi}-1})].$$ \hfill (32)

N_z and N_{ξ} are the numbers of DoD and DoA grids, respectively. $\tilde{\zeta}_n$ and $\tilde{\xi}_n$ are the n-th discretized grids of DoD and DoA, respectively. U is a sparse matrix, and entry at the n_1-th row and n_2-th column of U is

$$U_{n_1, n_2} = \begin{cases} a_k, & \tilde{\zeta}_n = \phi_k \text{ and } \tilde{\xi}_n = \psi_k, \\ 0, & \text{otherwise} \end{cases}.$$ \hfill (33)

Therefore, the received signal in (29) can be rewritten in a sparse model as

$$r = \Psi \left[T^T(c_T) D^* \otimes T^H(c_R)\right] (F^* \otimes E) u + n,$$ \hfill (34)

where $u \triangleq \text{vec}(U)$ is a sparse vector. As shown in (34), the sparse model is different from the conventional compressed sensing model, where the additional matrix $[T^T(c_T) D^* \otimes T^H(c_R)]$ is introduced to describe the unknown MC effect between antennas.
3. Sparse-Based Channel Estimation With Unknown MC Effect

With the sparse model (34), we propose a two-stage method to estimate the mmWave Channel with the unknown MC between antennas. In the two-stage method, the sparse vector can be estimated firstly, and then the MC matrix \([T^T(c_T) \otimes T^T(c_R)]\) is estimated with the estimated \(\hat{u}\). In the sparse reconstruction processes, the orthogonal matching pursuit (OMP) method [26,27] can be adopted.

To estimate the MC vectors \(c_T\) and \(c_R\), we can rewrite the system model in (34) as

\[
\mathbf{r} = \Psi (Q^T_F \otimes Q^T_E) \left(I_{N_t} \otimes c_T \otimes I_{N_t} \otimes c_R^* \right) \mathbf{u} + \mathbf{n} \tag{35}
\]

where we define

\[
Q^T_F \equiv \left[Q^T_F(\xi_0), Q^T_F(\xi_1), \ldots, Q^T_F(\xi_{N_t-1}) \right],
\]

\[
Q^T_E \equiv \left[Q^T_E(\xi_0), Q^T_E(\xi_1), \ldots, Q^T_E(\xi_{N_t-1}) \right]. \tag{36}
\]

\(Q^T_F(\xi_n)\) is a matrix and the entries are from the vector \(d(\xi_n)\), and \(Q^T_E(\xi_n)\) is a matrix and the entries are from the vector \(c(\xi_n)\). Both \(Q^T_F(\xi_n)\) and \(Q^T_E(\xi_n)\) can be obtained from the following lemma.

Lemma 1. For complex symmetric Toeplitz matrix \(A = \text{Toeplitz} \{a\} \in \mathbb{C}^{M \times M}\) and complex vector \(c \in \mathbb{C}^{M \times 1}\), we have [28,29]

\[
Ac = Qa, \tag{38}
\]

where \(a\) is a vector formed by the first row of \(A\), and \(Q = Q_1 + Q_2\) with the \(p\)-th (\(p = 0, 1, \ldots, M - 1\)) row and \(q\)-th (\(q = 0, 1, \ldots, M - 1\)) column entries being

\[
[Q_1]_{p,q} = \begin{cases} c_{p+q} & p + q \leq M - 1, \\ 0, & \text{otherwise} \end{cases}, \tag{39}
\]

\[
[Q_2]_{p,q} = \begin{cases} c_{p-q} & p \geq q \geq 1, \\ 0, & \text{otherwise} \end{cases}. \tag{40}
\]

We can obtain the following equations

\[
\mathbf{\theta} = (I_{N_t} \otimes c_T \otimes I_{N_t} \otimes c_R^*) \mathbf{u} \\
= \text{vec} \left\{ I_{N_t} c_R^* u^T \left(I_{N_t} \otimes c_T^T \otimes I_{N_t} \right) \right\} \\
= \left[(I_{N_t} \otimes c_T \otimes I_{N_t}) \mathbf{u} \otimes I_{N_t} \right] c_R^* \\
= \text{vec} \left\{ c_R^* u^T \left(I_{N_t} \otimes c_T^T \otimes I_{N_t} \right) I_{MNtN_t} \right\} \\
= (I_{MNtN_t} \otimes c_R^*) (I_{N_t} \otimes c_T \otimes I_{N_t}) \mathbf{u} \\
= (I_{MNtN_t} \otimes c_R^*) \text{vec} \left\{ I_{MNt}(c_T \otimes I_{N_t}) \mathbf{u} \right\} \\
= (I_{MNtN_t} \otimes c_R^*) \text{vec} \left\{ c_T \otimes I_{N_t} \right\} \\
= (I_{MNtN_t} \otimes c_R^*) \text{vec} \left\{ c_T \otimes \mathbf{U} \right\} \\
= \text{vec} \left\{ c_R^* \text{vec}^T \left\{ c_T \otimes \mathbf{U} \right\} \right\} \\
= \text{vec} \left\{ c_T \otimes \mathbf{U} \otimes I_{Nt} \right\} c_R^*. \tag{41}
\]

Therefore, with (41), the system model in (35) can be rewritten as

\[
\mathbf{r} = \Psi (Q^T_F \otimes Q^T_E) (I_{MNtN_t} \otimes c_R^*) (\mathbf{U}^T \otimes I_{MNt}) \text{vec} \left\{ c_T \otimes I_{N_t} \right\} + \mathbf{n}, \tag{43}
\]
and with (42), the system model in (35) can be rewritten as

\[r = \Psi (Q_T^T \otimes Q_E) (\text{vec} \{ c_T \otimes U \} \otimes I_N) c_R^* + n. \tag{44} \]

We will use (43) and (44) to estimate the MC vectors \(c_T \) and \(c_R \), respectively.

The steepest descent-based method is proposed to estimate the MC vectors. For \(c_T \), we define the following objective function from (43)

\[f_T(c_T) \triangleq \| r - \Xi_T \text{vec} \{ c_T \otimes I_{N_t} \} \|_2^2. \tag{45} \]

Then, we can obtain

\[
\frac{\partial f_T(c_T)}{\partial c_T^*} = - \frac{\partial r^H \Xi_T \text{vec} \{ c_T \otimes I_{N_t} \}}{\partial c_T^*} - \frac{\partial \text{vec}^H \{ c_T \otimes I_{N_t} \} \Xi^H_T r}{\partial c_T^*} \\
+ \frac{\partial \text{vec}^H \{ c_T \otimes I_{N_t} \} \Xi^H_T \text{vec} \{ c_T \otimes I_{N_t} \}}{\partial c_T^*} \\
= -(\Xi^H_T r)^T \frac{\partial \text{vec} \{ c_T^* \otimes I_{N_t} \}}{\partial c_T^*} \\
+ \text{vec}^H \{ c_T \otimes I_{N_t} \} \Xi^H_T \frac{\partial \text{vec} \{ c_T^* \otimes I_{N_t} \}}{\partial c_T^*},
\]

where \(\Omega_T \triangleq [\omega_{T,0}, \omega_{T,1}, \ldots, \omega_{T,M-1}] \), and the \(m \)-th column of \(\Omega_T \) is defined as

\[\omega_{T,m} \triangleq \text{vec} \{ e^M_m \otimes I_{N_t} \}, \tag{47} \]

and \(e^M_m \) is a \(M \times 1 \) vector with the \(m \)-th entry being 1 and other entries being 0.

Similarly, we defined the following objective function to estimate \(c_R \) from (44)

\[f_R(c_R) \triangleq \| r - \Xi_R c_R^* \|_2^2. \tag{48} \]

Then, we can obtain

\[
\frac{\partial f_R(c_R)}{\partial c_R^*} = - \frac{\partial r^H \Xi_R c_R^*}{\partial c_R^*} - \frac{\partial c_R^T \Xi^H_R r}{\partial c_R^*} + \frac{\partial c_R^T \Xi^H_R \Xi_R c_R^*}{\partial c_R^*} \\
= (c_R^T \Xi^H_R - r^H) \Xi_R. \tag{49} \]

In Algorithm 1, the details about the proposed method to estimate the mmWave channel is given with the unknown MC effect. In Algorithm 1, the computational complexity of the sparse reconstruction can be obtained as \(O(KN_tN_p) + O(K^4) + O(K^3P) \). The computational complexity of steepest descent is \(O(PMN_t) + O(PNN_t) + O(P^3N_t) \). Therefore, with \(K \ll N_t \), the computational complexity can be finally obtained as \(O(KN_tN_p) \).
Algorithm 1 Channel estimation with MC effect

1: Input: received signal \(r \), the matrices \(\Psi, Q_F \) and \(E \), the maximum of iteration \(N_{\text{iter}} \), the step \(\delta \).
2: Initialization: \(t = 0, \hat{c}_T = [1, 0_1 \times (M-1)^\top], \hat{c}_R = [1, 0_1 \times (N-1)^\top], \hat{u} = 0_{N_T N_R \times 1} \).
3: While \(t \leq N_{\text{iter}} \) do
4: \(t \leftarrow t + 1 \).
5: Obtain MC matrices \(T(\hat{c}_T) \) and \(T(\hat{c}_R) \).
6: Obtain \(\Lambda' \triangleq \Psi [T^\top(\hat{c}_T) \otimes T^\top(\hat{c}_R)] (F^* \otimes E) \), and \(\Lambda \triangleq [\Lambda_0, \Lambda_1, \ldots, \Lambda_{N_T N_R-1}] \) is the column-normalized matrix of \(\Lambda' \).
7: \(k = 1, z = r, \rho = \emptyset \).
8: While \(k \leq K \) do
9: \(n_{\text{max}} = \arg \max_{r} |z' \Lambda_{n}| \).
10: \(\rho \leftarrow \rho \cup n_{\text{max}} \).
11: \(z = r - \Lambda_{\rho} \Lambda_{\rho}^\top r \), where \(\Lambda_{\rho} \) is a matrix with the \(|\rho| \) columns from \(\Lambda \) and \(\dagger \) is the Moore-Penrose inverse.
12: End while
13: \(\hat{u}_\rho = \Lambda_{\rho}^\top r \) with other entries of \(\hat{u} \) being 0.
14: Obtain \(v_\rho^T = \frac{\partial \lambda(\gamma)}{\partial \gamma} |_{\gamma = \lambda_{\rho}^T} \) from (46).
15: Obtain \(v_R^T = \frac{\partial \lambda(\epsilon)}{\partial \epsilon} |_{\epsilon = \epsilon_{\rho}^T} \) from (49).
16: \(v = [v_T^T v_R^T] \)
17: \(\hat{c}_T, \hat{c}_R \leftarrow [\hat{c}_T - 1, \hat{c}_R - 1]^T - \delta v_{\rho}^T. \)
18: End while
19: Output: the sparse vector \(\hat{u} \).

4. Simulation Results

In this section, the simulation results are given, and the simulation parameters are given in Table 1, where the grids in Table 1 are for the 1-D arrangement. MATLAB codes have been made available online at https://drive.google.com/drive/folders/1dFw-XktTZaPQceCznmr6Gr_igRBdH0Rk?usp =sharing. All experiments are carried out in Matlab R2017b on a PC with a 2.9 GHz Intel Core i5 and 8 GB of RAM. The beamforming vectors \(a(t) \) and \(b(t) \) are uniformly chosen from a unit circle, and this scheme is referred to as a random coding scheme. The DoD/DoA estimation performance is measured by root-mean-square error (RMSE)

\[
e = \sqrt{\frac{1}{2KN_p} \sum_{n=0}^{N_p-1} (\| \hat{\phi} - \phi \|^2 + \| \hat{\psi} - \psi \|^2)} \text{ (deg)},
\]

where \(\hat{\phi} \) and \(\hat{\psi} \) denote the estimated DoA and DoD, respectively. \(N_p \) denotes the number of pairs to simulate DoD/DoA. The DoD and DoA are randomly chosen from \([-45^\circ, 45^\circ]\) and the minimum space of DoD/DoA for different path is greater than 10°. The signal-to-noise (SNR) ratio is defined as

\[
\text{SNR} \triangleq \frac{y^\top y}{\mathbb{E} \{ n^\top n \}}
\]

where \(y \) denotes the signal \(y \triangleq \Psi [T^\top(\hat{c}_T) \otimes T^\top(\hat{c}_R)] (D^* \otimes C)g \), and \(n \) denotes the additive white Gaussian noise (AWGN), and the entries of \(n \) follow the zero-mean complex Gaussian distribution \(n \sim CN(0, \sigma_n^2 I) \).

First, the DoD/DoA estimation performance with different SNRs is given in Figure 2, where the MC effect between adjacent antennas is \(-15 \text{ dB}\). The curve “Without MC effect” is the DoD/DoA estimation performance of OMP method in the scenario without the MC effect. The curve “Perfect
MC information” denotes the DoD/DoA estimation performance of the proposed method with perfect MC information, so the MC vectors are not updated in the proposed method. The curve “Ignoring MC information” denotes the DoD/DoA estimation performance of traditional OMP method without considering the MC effect. The curve “Proposed method” denotes the DoD/DoA estimation performance using the proposed method. As shown in this figure, the DoD/DoA estimation performance can be significantly improved by the proposed method with the additional estimation for MC effect. When SNR is 20 dB, the RMSE of the traditional OMP method is 0.889°, but the RMSE can be decreased to 0.800° (10% improvement). The same estimation performance can be achieved by the proposed method when SNR is 12 dB, so the estimation performance is improved by 8 dB.

Then, with the MC effect being −10 dB, we show the DoD/DoA estimation performance in Figure 3. When SNR is 20 dB, the RMSE of the traditional OMP method is 1.276°, and that of the proposed method is 0.948° (25.7% improvement). Therefore, with worse MC effect, the DoD/DoA estimation performance is improved more efficiently using the proposed method.

Figure 4 shows the DoD/DoA estimation performance with different MC effect. When the MC effect is greater than −10 dB, the estimation performance will be worse significantly. When the MC effect is less than −10 dB, the MC effect can be reduced by about 4 dB using the proposed method. Therefore, the proposed method is efficient for the mmWave channel estimation in the scenario with the MC effect.

Table 1. Simulation Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of sampled signals P</td>
<td>50</td>
</tr>
<tr>
<td>The number of transmitting antennas M</td>
<td>20</td>
</tr>
<tr>
<td>The number of receiving antennas N</td>
<td>10</td>
</tr>
<tr>
<td>The number of paths K</td>
<td>3</td>
</tr>
<tr>
<td>The space between antennas d</td>
<td>0.5 wavelength</td>
</tr>
<tr>
<td>The grid space δ</td>
<td>0.2°</td>
</tr>
<tr>
<td>The detection DoA range</td>
<td>$[-45°, 45°]$</td>
</tr>
</tbody>
</table>

Figure 2. The DoD/DoA estimation performance with different SNRs (the MC effect is −15 dB between adjacent antennas).
Figure 3. The DoD/DoA estimation performance with different SNRs (the MC effect is -10 dB between adjacent antennas).

Figure 4. The DoD/DoA estimation performance with different MC effect.

5. Conclusions

In this paper, the channel estimation problem in the mmWave communication system has been investigated. The unknown MC effect is described by a symmetric Toeplitz matrix, and the sparse-based mmWave system model with MC coefficients has been formulated. Then, by exploiting the channel sparsity in the spatial domain, the two-stage method based CS has been proposed by estimating the DoD/DoA and MC coefficients iteratively. Simulation results show that the proposed method can improve the estimation performance of mmWave channel significantly. Future work will focus on mmWave channel estimation with moving users.

Author Contributions: Conceptualization, Z.C. (Zhenxin Cao) and H.G.; Methodology, Z.C. (Zhenxin Cao) and H.G.; software, Z.C. (Zhimin Chen); validation, Z.C. (Zhenxin Cao); formal analysis, Z.C. (Zhimin Chen); investigation, P.C.; resources, H.G.; data curation, Z.C. (Zhenxin Cao); writing—original draft preparation, H.G.; writing—Review and editing, Z.C. (Zhimin Chen); visualization, P.C.; supervision, P.C.; project administration, Z.C. (Zhimin Chen); funding acquisition, P.C.
Funding: This work was supported in part by the National Natural Science Foundation of China (Grant No. 61471117, 61801112, 61601281), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180357), the Open Program of State Key Laboratory of Millimeter Waves at Southeast University (Grant No. Z201804), and Nanjing Overseas Science and Technology Project (Grant No. 1104000384).

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).