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Abstract: The quality of short-term electricity demand forecasting is essential for the energy
market players for operation and trading activities. Electricity demand is significantly affected
by non-linear factors, such as climatic conditions, calendar components and seasonal behavior,
which have been widely reported in the literature. This paper considers parsimonious forecasting
models to explain the importance of atmospheric variables for hourly electricity demand forecasting.
Many researchers include temperature as a major weather component. If temperature is included in
a model, other weather components, such as relative humidity and wind speed, are considered as less
effective. However, several papers mention that there is a significant impact of atmospheric variables
on electricity demand. Therefore, the main purpose of this study is to investigate the impact of the
following atmospheric variables: rainfall, relative humidity, wind speed, solar radiation, and cloud
cover to improve the forecasting accuracy. We construct three different multiple linear models
(Model A, Model B, and Model C) including the auto-regressive moving average with exogenous
variables (ARMAX) with the mentioned exogenous weather variables to compare the performances
for Hokkaido Prefecture, Japan. The Bayesian approach is applied to estimate the weight of each
variable with Gibbs sampling to approximate the estimation of the coefficients. The overall mean
absolute percentage error (MAPE) performances of Model A, Model B, and Model C are estimated
as 2.43%, 1.98% and 1.72%, respectively. This means that the accuracy is improved by 13.4% by
including rainfall, snowfall, solar radiation, wind speed, relative humidity, and cloud cover data.
The results of the statistical test indicate that these atmospheric variables and the improvement in
accuracy are statistically significant in most of the hours. More specifically, they are significant during
highly fluctuating and peak hours.

Keywords: accuracy improvement; atmospheric variables; base temperature; Bayesian estimation;
short-term demand forecasting

1. Introduction

Short-term electricity demand or load forecasting is a way of estimating future demand for
a short time horizon, commonly an hour to one week ahead. According to the time horizon for
prediction, Apadula et al. [1] classified the load forecast into four categories: very short-term forecasts
(from a few minutes to 1 h ahead), short term forecasts (from 1 h–1 week ahead), medium-term forecasts
(from one week to a year head) and long-term forecasts (longer than a year ahead). Such differences
in the lead time influence the choice of models and methods to apply, as well as the selection of
important external factors affecting the electricity demand (socio-economic, atmospheric, seasonal
and time-dependent factors) [1]. For short-term demand forecasting, we exclude socio-economical
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factors and consider atmospheric, seasonal and other short-term dependent variables. To avoid an
ambiguous presentation, we note that the rest of this paper uses two terms: ‘demand forecasting’
and ‘other weather variables’ to refer to ‘electricity demand forecasting’ and ‘rainfall, snowfall, solar
radiation, wind speed, relative humidity, and cloud cover’, respectively.

Knowledge of electricity demand behavior in advance is crucial for the planning, analysis
and operation of power systems to assure an uninterrupted, reliable, secure and economic supply of
electricity. These days, electric utility industries are undergoing a highly competitive market-driven
industry. Every electricity provider is focusing on decreasing power generation cost by increasing the
efficiency of load demand management. For the market operator, forecasting is crucial for scheduling
and dispatch of generators’ capacity. For electricity generators, the strategic choice involved in bidding
and re-bidding of capacity depends on demand forecasts [2]. Such bidding and re-bidding processes
determine the market volatility for the electricity price. Similarly, for the electricity retailer, demand
forecasting affects the decisions about the balance between the hedging spot acquisition of electricity
for consistent energy supplies without black outs and possibly minimum cost. Improving the accuracy
of electricity forecast could reduce the power marketing risk and keep the market stable for electricity
demand and price, as well [3,4] Therefore, accurate electricity load demand forecasting for different
time horizons is a very hot research issue.

Most electric utilities serve residential, commercial and industrial area customers. In residential
areas, electricity depends on human activities. Therefore, electricity demand may rise to a peak during
the morning and evening. Residential customers are very sensitive to weather fluctuations, but calendar
(weekday, weekend, and holiday) effects have very low predictive power [5]. Retail stores, restaurants,
hotels and educational institutes are commercial customers, and their demand is affected by business
schedules and some weather behavior. This results in electricity demand dropping significantly during
weekends or holidays. Industrial customers play a vital role to increase or decrease electricity demand.
However their characteristics are also similar to commercial customers and quite difficult to predict.
In our study, aggregate demand data are used to analyze the impact of atmospheric variables; therefore,
it seems more challenging.

Many authors emphasize univariate models with historical data and perform forecasting with
acceptable accuracy [6]. Despite that, [7] suggest that the level of accuracy can be improved by
including weather variables. Furthermore, the Intergovernmental Panel on Climate Change (IPCC)
suggests that global temperature is gradually increasing, and there is evidence of an increase in the
frequency of extremes [8]. These extremes directly affect electricity demand. According to IPCC, global
warming has already made the world 0.74 ◦C warmer over the last 100 years, and temperatures are
probably going to increase by 1.8–4 ◦C by the end of the century. Therefore, many authors have studied
the impact of weather on electricity demand [1,7,9–14]. Historical data of electricity demand show
negative linear effects on load demand during the winter season. The experience of many utilities is
that atmospheric variables that cause an influence on electricity demand are temperature, humidity,
wind speed and precipitation, in decreasing order of importance [15]. This conclusion is drawn from
the study of a considerable number of atmospheric variables on electricity demand for Greece for better
forecasting performance. All these scenarios envision that electricity demand essentially depends
on meteorological variability [1]. However, only temperature is considered as the most essential
variable [7,16,17]. There are three main reasons behind excluding other weather variables: (i) they
show lower impact on electricity demand [18]; (ii) it is expensive to install weather stations to collect all
these data; and (iii) there are potential collinearity problems when simultaneously employing several
weather variables as explanatory variables [16]. However, our main concern in this paper is to analyze
the impact of these other weather variables to enhance forecasting performance because [6,7,17]
strongly recommended that including meteorological variables can improve forecasting accuracy.

An appropriate modeling technique in demand forecasting is crucial for high accuracy and
stable performances. In short-term load demand forecasting, the well-cited papers [2,5,7,12,14,19–22]
implemented statistical techniques especially multiple linear regression (MLR), semi-parametric and
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ARMAX models. Similarly, artificial intelligence techniques especially artificial neural network (ANN),
fuzzy and support vector machine (SVM) models were implemented in [9,10,23–25]. Several modeling
concepts for robust parameter estimation used prior to 1990 were discussed in [26], and it was
concluded that MLR was superior. Interest in ANN modeling for electricity demand forecasting began
in 1990 because of its fairly good results. Nevertheless, these good results were due to the ability to
peek into the future and undergo over-fitting due to either over-training or over-parameterization [27].
For example, the non-linear autoregressive ANN model was implemented in [25] and achieved 30%
improvement on the average error compared to traditional ANNs, ARMAX and state space models. In
fact, ANNs are black-box techniques, and they do not offer insights into the relation between electricity
demand and driving factors. Hippert et al. [23] analyzed 40 papers and concluded that without solid
support, ANNs are good enough for short-term demand forecasting. Chow et al. [10] agreed that
MLR models are capable of characterizing the relationship between load demand and other exogenous
factors, but this is a complicated modeling technique and requires enormous computational effort to
produce acceptable results. Various time series models such as seasonal autoregressive integrated
moving average (SARIMA) and the SARIMA model with exogenous variables are not able to react
fast enough to rapid demand changes that deviate from the historical demand forecast [5]. The MLR
model with a dynamic error structure and adaptive adjustment of forecasted error proposed in [19]
was the winner of a load forecasting competition organized by a utility in the U.S. Hong et al. [28]
reviewed the modeling techniques of winning teams in the Global Energy Forecasting Competition
2012 (GEFCom2012), where all four wining teams applied regression analysis, while only two teams
implemented ANN. Apart from neural nets, other traditional and adaptive techniques such as
SARIMA and regression ARIMA (RegARIMA) have been compared to linear regression for cognate
energy prediction with weather variable selection. The result showed that linear regression was
highly effective and better than other sophisticated techniques for the majority of simulations in [29].
Therefore, more robust modeling techniques comprise our concern to handle the chaotic behavior of
atmospheric variables.

Three different scenarios are discussed in this paper before drawing some conclusions. In the
first scenario, an MLR as the ARMAX model with deterministic variables, historical demand and the
interaction of days with historical demand data was constructed and named Model A. In the second
scenario, temperature-derived variables and their interaction with months were added to Model A,
and this new model was named Model B. Similarly, in the third scenario (named Model C), other
atmospheric variables were added to Model B. These models were trained with a rolling window of
two years of data and forecasted for one year out from the sample data. Finally, we interpreted the
impact and significance of weather variables for short-term demand forecasting and also compared
the forecasting accuracy among these three models.

This paper contributes to short-term demand forecasting by showing that atmospheric variables,
such as relative humidity, wind speed, rain fall, solar radiation, and cloud cover, improve the accuracy,
compared to the baseline models Model A, Model B, and Model C with temperature (alone) for
Hokkaido Prefecture. Analysis of the individual impacts of the atmospheric variables is also a crucial
contribution. We believe that the selection of the best weather stations and estimation of the exhaustion
temperatures, the base temperatures for cooling degree days (CDD) and heating degree days (HDD)
comprise a pioneer work for short-term electricity demand forecasting in Hokkaido Prefecture, Japan.
No published study to our knowledge has taken an MLR approach with an ARMAX modeling for
short-term demand forecasting in Hokkaido Prefecture.

The organization of this paper is as follows. Section 2 describes the characteristics of electricity
demand data, and atmospheric variables are discussed. Different modeling techniques, methodologies
and results related to this paper are presented in Section 3. Section 4 demonstrates an extensive
empirical analysis of variables for the quality of the model fit for our dataset. An estimation and
a forecasting technique followed in this paper is discussed in Section 5. Section 6 deals with the
comprehensive discussion of the predicted results and analysis, and Section 7 concludes this paper.
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2. Description of Data

The data comprise hourly electricity load demands from the area covered by the utility named
the Hokkaido Electric Power Company (HEPCO), ranging from 1 January 2013 to the last day of 2015.
The same period of the atmospheric dataset from Japan Meteorological Agency (JMA) is used for this
study, which is freely available. There are no missing data on electricity demand, but some missing
snowfall, and cloud data are filled up using the interpolation technique. The dataset then is separated
into 24 subsets, each containing the load for a specific hour of the day, and used as single series. Such
an hour-by-hour approach has been implemented by [19] and won a load forecast competition.

2.1. Electricity Demand Data

Hourly data of 26,280 samples are made available by HEPCO, Japan. Unlike many other countries,
HEPCO electricity data exhibit a significant and persistent downward trend (Figure 1a), which is
mainly associated with the economic, demographic and population growth of the country. Firstly
Japan is already at the saturation level of development and has negative population growth. Secondly,
people are shifting their interest towards renewable energy and implementing a smart switching
system for residential and commercial buildings. Strong weekly and monthly seasonal patterns are
superimposed on this yearly trend (Figure 2b) and are highly correlated with atmospheric factors,
especially temperature. Hokkaido is a very cold region; therefore, the peak level of demand occurs
during December–February (winter). During this season, the average temperature drops down to
−5 ◦C, causing intensive use of electric heating appliances.
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Figure 1. (a) Trend of the electricity demand profile: indicating the constant decreasing trend of
demand. This is the averaged data sample of 2013–2015; (b) variation of electricity demand for day
types in Hokkaido Prefecture from 2013–2015.

Figure 1b shows the day type variation of electricity demand for all hours with various peaks.
After midnight, electricity demand starts to rise until morning Hour 5. On holidays, people enjoy
holiday activities during night hours. Therefore, demand rose to the maximum level on holidays.
As was our expectation, electricity demand on weekdays dramatically rose after Hour 8 due to office
hours and dropped again during lunch hours (noon to Hour 13). However, during the weekend,
electricity demand significantly dropped to the minimum level at Hour 8 and slightly rose during the
day time. The pattern of rising or falling electricity demand for all days is the same during day hours,
and the peak is at Hour 19.
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Figure 2. (a) Contour plot for electricity demand variation from 2013–2015; (b) daily mean plot of the
seasonal variation of electricity demand and temperature in 2013.

The contour plot in Figure 2a illustrates the details of average electricity demand for all hours of
the day and all months of the year from 2013–2015. During the winter season, especially the last week
of December to the first week of February, there are two peaks of demand in the morning and evening
time. Morning peaks exist from Hour 4–Hour 6 and an evening peak approximately from Hour
18–Hour 19 of 4800 megawatts (MW) in magnitude. However, in the summer season, the demand
level dramatically falls to an extreme low during the morning time. Since Hokkaido Prefecture suffers
from a very cold climate during the winter season (30-year mean temperature in January: −8 ◦C),
people use electricity for warming purposes such as room heating, building heating, and water heating.
Furthermore, the variation of the pricing and the needs of people cause excessive demand during the
morning and evening time. The lowest demand for a similar time period is found in June, but soon
after, a significant rise in temperature causes electricity demand to rise again until August, which is
the hottest month (30-year mean temperature in August: 22 ◦C). This is exactly the opposite reason
that causes and exhibits seasonal variation to that of winter (Figure 2b).

2.2. Atmospheric Variables

The climate of Japan is showing long-term changes, and the frequency of extremes of maximum
temperature is increasing, as well as annual temperature is expected to increase. A good review
paper about the impact of climate change for energy consumption [30] discussed the demand for
energy, coal, gas, oil and electricity for Japan. The paper concluded that energy consumption was
responding according to the variations in temperature. The higher the temperature, the higher will
be the consumption during the summer in warmer countries; and the lower the consumption during
winter in colder countries. This is unlike [30], because the cold region Hokkaido, Japan, shows a
higher demand during winter. Therefore, the analysis of the impact caused by following atmospheric
variables is of interest for short-term demand forecasting: Temperature contributes the most to the
majority of load forecasting variations in electricity demand. Increased temperature during the winter
will reduce electrical heating load. Conversely, in the summer, electrical heating is normally absent,
but high temperatures increase the refrigeration and air-conditioning load. Wind speed may have
some effects on air conditioning and cooling fans because of air chill. However, its effect is relatively
localized. Rainfall also shows a localized impact on electrical heating demand similar to wind speed.
If it is raining, there must be cloud cover, no radiation and the possibility of wind, as well. Therefore,
these atmospheric variables are intra-correlated among themselves. Wet conditions can affect the
efficiency of air-vented dryers and can be considered as the effect of relative humidity. This means
that during the periods of high humidity, electricity demand tends to increase. However, in Hokkaido
region, electricity demand decreases with the increment of humidity in the summer (Table 1) and
vice versa in the winter. Cottet and Smith [20] resolved the nonlinearity issue by the interaction of
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temperature and humidity. Besides the relative humidity, an increase in cloud cover can also increase
demand for lighting purposes. Recorded hours of sunshine in a period are a more direct indicator of
cloud cover. In this study, forecast models are trained and tested using measured atmospheric data
instead of forecasted data.

Table 1. Correlation coefficients of weather variables with electricity demand.

Variables Winter (January) Summer (August)

Temperature −0.3495 0.5302
Rain 0.0727 −0.0078

Humid 0.1385 −0.4348
Radiation −0.2321 0.4141

Snow 0.1013 No snowfall data

From three years of sampled data, we have plotted the correlation matrix of all weather-related
explanatory variables of electricity demand in Figure 3. There is a positive correlation of electricity
demand with rainfall, snowfall, wind speed, and cloud cover, i.e., the increase of rainfall, snowfall,
wind speed, and cloud cover causes an increase in electricity demand. However, there is a very high
negative correlation with temperature (−0.68), indicating that the overall temperature in Hokkaido is
cold, and this cold causes an increase in electricity demand.

Figure 3. Correlation plot for all the weather variables and electricity demand.

We can notice that other weather variables, except temperature, have a small correlation with
electricity demand, indicating a lower impact on electricity demand. This is one reason why many
researchers have used only temperature as the weather variable. The collinearity problem [16] is
another reason for ignoring these weather variables, if temperature is already used in the model.
This is because the temperature is expected to be correlated with radiation, cloud cover, and wind
speed, as well. Furthermore, weather variables are correlated among themselves. For example, if there
is rainfall, there is the possibility of cloud cover, humidity, wind speed, and snowfall.

The correlation of atmospheric variables with the electricity demand is measured in Table 1.
For both seasons, temperature is the factor most correlated with electrical demand. Solar radiation has
a negative correlation during the winter season, while it has a positive one during the summer. In the
winter time, a significant lighting and heating load coincides with the lower temperatures; therefore,
the solar radiation tends to provide warmth, resulting in less use of heating appliances. Conversely,
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in the summer, demand tends to increase because of solar radiation. Similarly, relative humidity and
precipitation show a positive correlation during the winter and the opposite in the summer. However,
Solar radiation and relative humidity during the summer show approximately equal and opposite
correlation results with minimization of their individual effects, and a strong correlation of temperature
remains a dominant factor for electricity demand during the summer.

Since there is a strong correlation between electricity demand and temperature, special analysis
of this relationship is required. In the Hokkaido data, it can be seen that there is a strong non-linear
relationship between demand and temperature (Figure 4). Electricity demand is increasing for an
increase or decrease of temperature from a certain point known as the base temperature. It is reported
in the literature that the base temperature varies from 12.9–22 ◦C (Table 2). Some industrial sectors use
a very low base temperature (e.g., refrigerators or department stores). Local outdoor cooling sources
and adaption to human comfort levels may cause these large variations of the base temperature [31].
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Figure 4. (a) Non-linear relationship of electricity demand with temperature; (b) piecewise linear
approximation for the base temperature of CDD and HDD.

Table 2. Base temperature summary from some published studies.

Region Electrical Data Base Temperature (◦C) Relationship Reference

USA Weekly 18.3 Linear with CDD [32]

Spain Daily (1983–1999) 18.5 Non-linear [33]

Italy Hourly (2002–September 2003) 18.7 (HDD), 22 (CDD) Linear with CDD, HDD [34]

London Hourly (1997–2001) 16 CDD HDD [21]

South Korea Monthly (2001–2010) 16.2–19.4 CDD HDD [35]

Tokyo Hourly 15 (HDD), 21.3 (CDD) Piecewise [36]

Tokyo 2 p.m. data 17.25 Piecewise [37]

Brisbane Half-hourly 18.6 Linear with CDD, HDD [38]

Sydney Weekly (1999–2000) 17.5 Linear with CDD, HDD [38]

Melbourne Weekly (1999–2000) 16.9 Linear with CDD, HDD [38]

Adelaide Weekly (1999–2000) 16.8 Linear with CDD, HDD [38]

Hokkaido Hourly (2013–2015)

15.65 (HDD), 21.53 (CDD),
17.1 (min. demand) (2 p.m. data) Piecewise This study

−10.2 (min. exhaustion), 33.18 (max.
exhaustion), 16.28 (min. demand) Polynomial This study

The relationship (Figure 4) between temperature and electricity demand is usually asymmetric.
Therefore, third or higher order polynomial models are preferred to determine the base temperatures
for minimum electricity demand and exhaustion point(s) (one or more points), rather than the second
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order polynomial. In this paper, we implement two techniques: (i) polynomial models (2nd, 3rd, 4th
and 5th); and (ii) piece-wise linear models, as mentioned in Table 2. There is an approximately constant
slope of electricity demand, no matter how much the temperature drops from −10.2 ◦C and no matter
how increased from 33.18 ◦C. These two points are defined as exhaustion points. Similarly, the base
temperature for minimum demand is observed at 16.28 ◦C. This point is important because there is
no effect of temperature on electricity demand. However, our piece-wise linear model evaluates this
point at 17.1 ◦C, from 2 p.m. data.

In piece-wise linear approximation, 2 p.m. demand from weekdays is used. The least squares
estimation technique is used to approximate HDD and CDD points by varying the number of knots
(3–30) from minimum to maximum temperature. From the eight knots’ (at temperatures of −7.9 ◦C,
−2.01 ◦C, 3.87 ◦C, 9.75 ◦C, 15.64 ◦C, 21.53 ◦C, 27.41 ◦C and 33.3 ◦C, i.e., seven linear pieces) look-up
table, where the fifth spline in Figure 4b explains the temperature between 15.65 ◦C and 21.53 ◦C,
exhibit base temperatures. In this temperature range, electricity demand has a negligible response to
the variation of temperature. Therefore, we implement these two points as base temperature points to
calculate HDD and CDD for our further calculation.

2.3. Weather Station Selection

JMA has installed 226 automated weather stations at different location of Hokkaido Prefecture.
Our interest is to observe the most effective weather station concerning electricity demand variation.
In this paper, a combination of three weather stations with the simple mean is used because of the
lower MAPE and lower variance values. The three selected stations are the regional headquarter
weather stations of Sapporo, the special automated weather station of Hakodate and Kitami. The
details of the methodology are explained in Appendix A.

3. Related Works

In the literature, many authors have developed a model without any exogenous variables.
Even so, they show competitive forecasting performance with many multivariate models. For example,
Taylor [6] employed double seasonal exponential smoothing for half hour data and predicted very
good results with MAPE of 1.2–2% for half hour to day ahead lead time forecasting. Nevertheless,
only historical demand dataset may not sufficiently address the effect on electricity demand because
temperature variation is also an important factor that directly influences electricity demand. Harvey
and Koopman [39] used a time-varying splines model with temperature to get MAPE performance up
to 3%. After 2003, climate change has been affecting the variation of demand such as modification of
the annual daily load curve and shifting of the peak demand occurrence from evening to morning in
Jordan [14]. In Europe, extremely high temperatures during the summer of 2003 created significantly
greater electricity demand. Ihara et al. [36] reported that a 1 ◦C rise in temperature was equivalent to
a 180-MW increment in electricity demand for Tokyo, Japan. They also studied the impact of other
weather variables for peak demand forecasting. The recent paper by Staffell and Pfenninger [40]
concluded that electricity demand and supply are becoming increasingly weather dependent in
the U.K. In [31], weather sensitivity for short-term prediction of electricity demand was analyzed
for warm working days for Adelaide, Australia. For a long lead time forecasting model, weather
prediction shows higher uncertainty, but for a short lead time level of uncertainty is very low. Therefore,
Trotter et al. included weather uncertainty for demand forecasting in Brazil [22]. Apadula et al. [1]
mentioned the role of various weather-related components quantitatively for electricity demand in
Italy. Lusis et al. mentioned that the atmospheric effect on demand is significant [5].

Weather variables, such as temperature and humidity, were employed for modeling electricity
load consumption in [20], and it was concluded that including these variables yields better results
with consistent performance. Factors affecting electricity demand in Athens, Greece, and London were
studied in [21]. They compared both weather and non-weather factors and found that temperature is
the most sensitive for electricity load demand, especially in Athens. Satish et al. [41] studied the effect
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of temperature with 20 training patterns and compared the results, but there is no comprehensive
analysis with atmospheric variables. Friedrich and Afshari [42] investigated the results for Abu Dhabi
city electricity load using multiple weather variable for a 24 h–48 h prediction horizon and obtained
a very promising result of 1.5% MAPE. Apadula et al. [1] analyzed weather and calendar variables
affecting monthly electricity demand using an MLR model for Italy and concluded that the calendar
component considerably contributed from January–May with 4–7.7%. The contribution of the cooling
degree months ranges from 3.4–7.6% during the summer months, while the heating degree months of
winter months was lower. The influence of the cloud cover variable is always below 1% throughout the
year. They improved monthly demand forecast by 1.3% by including atmospheric variables. However,
individual atmospheric variables were not analyzed comprehensively.

Exploring the link between electricity use and temperature is important to assess the impact
of climate change on energy demand. Ongoing climate changes have promoted an increased
scientific interest in the study of the relationships between energy consumption and weather variables.
Similar to our result, [1] for Italy [43] and [12] for the European region concluded that including all
weather-related variables can give the lowest MAPE, but the improvement in accuracy was usually
smaller. In [12], the European region is classified based on their average monthly temperature into three
groups: cold, intermediate and warm. Cold countries demonstrated almost a linear relationship with
only heating components. For intermediate countries, the cooling component is clearly visible though
dominated by the heating component. Warm countries presented a highly non-linear relationship with
a cooling component of a similar scale as heating for Adelaide [31] and explained that for Japan [36].
When wind speed is above some value, electricity usage is increased for heating in the winter as it
increases the feeling of coldness when temperatures are low. For summer, the correlation between
wind speed and electricity demand is not clearly visible. The value of humidity is reported to matter
only if it coincides with the specified value of other variable. The feeling of hotness accompanying
temperatures above certain value is intensified by high humidity, which can increase energy use for air
conditioning. Xie et al. [17] included relative humidity in their model to improve relative accuracy
by 21% in North Carolina. In [10], the weather variables that cause a significant impact on electricity
demand for Hong Kong were discussed. The effect of wind cooling exterior walls of buildings was
intensified if they were wet. For regions with a certain climate, usage of humidity was reasonable [10].
This weather compensation neural network model was capable of providing more accurate forecasts
with a 0.9% reduction in forecasting error for Hong Kong.

Therefore, it is worth examining the influence of each atmospheric variable for short-term
electricity demand forecasting. This is because there is always a research gap for the statistical
analysis of accuracy improvement and the significance of other individual atmospheric variables in
the literature of demand forecasting. However, in real-time forecasting systems, we must implement
forecasted weather data instead of measured data, as they always contain some error. Fay and
Ringwood [44] studied the effect of weather forecast error while implementing a short-term load
forecasting model. Their tested results showed that weather forecast error causes an approximately 1%
deterioration in accuracy.

4. Prototype Modeling

4.1. Modeling Trend

The existence of a trend largely depends on the length of the time period examined,
industrialization and rapid economic growth. Electricity load data have occasionally been found
to be non-stationary. The use of the logarithm or the performance difference of the historical data
is applied to account for the non-stationarity. However, fitting a deterministic trend in the model is
more appropriate rather than the difference. The seminal paper of Ramanathan et al. [19] fitted both a
linear trend and the reciprocal of that to their model. In this paper, the logarithm is used for historical
demand data to avoid possible heteroscedasticity and trend adjustment. The positive integer is also
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included in the model, but the estimated weight is almost zero, indicating that taking the logarithm of
historical data had already captured the trend.

4.2. Modeling Cyclicality and Seasonality

A cyclic pattern exists when data exhibit rises and falls, but not in a fixed period. However,
a seasonal pattern exists when a series is influenced by seasonal factors, such as the quarter of the
year, the month or the day of the week. Therefore, seasonality is always of a fixed and almost known
period. Unlike seasonal behavior, cycles no longer occur, but there is more variation of the magnitude.
The class of ARMA models can handle both seasonality and cyclic behavior. An ARMA(p, q) model
can be cyclic if p > 1. Therefore, ARMA models have been extensively applied in the load forecasting
literature [45,46]. The most popular time series techniques that have been adopted are ARMA or
ARMA with exogenous variables (ARMAX) models. However, a long period of cyclicity is not handled
very well. According to Hahn et al. [47], time series load data contain three seasonal patterns: intraday
(daily), weekly and annual, which is quite similar to electricity price data. Silvano et al. [48] mentioned
that electricity demand and price exhibit a strong daily seasonality due to day and night hours and
weekly seasonality due to working and non-working days.

A lag structure-based model for MLR is constructed to capture seasonality because lag structures
alone cannot capture the complete seasonal features during weekends [49]. The reason is explained by
Clements et al. [2]: the electricity demand for Saturday and Sunday was significantly over-predicted
(negative bias in the errors). This stems from the fact that a higher load on a weekday is being used as
a one-day lagged load in generating the forecast for weekends. Similarly, when the Sunday load is
used in generating the forecast for Monday, significant under-prediction occurs (positive bias in the
errors) [2]. Essentially, this bias is due to the fact that the coefficients on one-day lagged load do not
differentiate between days of the week. A simple way to deal with this issue is to combine the one-day
lagged load with day-of-the-week dummy variables. However, our models avoid this step because of
the excessive number of variables.

4.3. Mathematical Model

Since sampling of the data is performed every hour, there are N = 24 samples in a day. We separate
these samples’ hour-wise pattern to forecast the electricity demand for the first hour of the day by one
equation and the second for the second hour of the day from the next equation, and so on. Hence,
we need 24 individual equations for a one-day forecast, and now, the generic prototype model is,

Dh,d = Deth,d + AtmVh,d + DHisth,d + ITermsh,d + vh,d (1)

In Equation (1), predictor variables are grouped as deterministic, atmospheric, historical electrical
demand and interaction terms, denoted by Det, AtmV, DHist and ITerms, respectively, for hour of day
h and forecasting days d. The residual vh,d modeling is very sensitive and important in MLR because
of the incorporation of an auto-regressive structure in the error term. According to the econometric
regression theory, if the residuals are serially correlated, the estimation of coefficients may lead to
instability and cause misleading results. Therefore, Equation (2) assumes that the current value of the
error term at hour h of day d is denoted by vh,d, i.e., error terms are assumed to follow an autoregression
in previous days and are modeled as the sum of the finite order of previous errors. This paper has
treated each hour as a separate time series; therefore, the correlation error between hour can reasonably
be taken as small [19]. Mathematically,

vh,d =
q

∑
i=1

ρh,ivh,d−i + εh,d (2)
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for h = 1, ..., 24. The term vh,d−i is the serially-correlated error term up to q lags. The simple Ljung–Box
Q-test can be implemented for selecting the appropriate order of q and εh,d = N(0, σ2).

The term Deth,d refers to predictable variables that can capture the seasonality of electricity
demand, where demand variation is based on a day of weeks, a month of years and years. The historical
demand profile shows higher demand during the business week (Monday–Friday) than that of
weekends (Saturday and Sunday) and public holidays. Such an effect can be addressed by dummy
variables. The number of dummy variable selection criteria for weekdays dv = 7 and for months
m = 12 is dv − 1 and m − 1, respectively. If all dummies (dv = 7 and m = 12) are used in the
regression together with the intercept, then this set of dummies is linearly dependent on the intercept
called the perfect multicollinearity or dummy variable trap and affects the stability of the regression
coefficients [50]. Therefore, six dummy variables WDi

h,d where i = 1, ..., 6 represent the corresponding
days of the week (i = 1 for Sunday, i = 2 for Monday,..., i = 6 for Friday), except Saturday. Because,
Saturday is considered as a reference day. Each dummy variable has only two allowable values, either
zero or one. For example, if the day d is Monday, then the variable WD2

h,d takes the value one, while
all other variables WDi

h,d are zero. Similarly, if the day d is Sunday, then all the variables WDi
h,d take

the value zero, except WD1
h,d. Now, the days’ dummy variables are explained as,

WDi
h,d =

{
1 if day d is Day(i)

0 otherwise
(3)

where Day(1), ..., Day(6) represent Sunday, ..., Friday, respectively. Additionally, the linear function of
the dummy variables can be written as WDh,d = ∑dv−1

i=1 βiWDi
hd. Some other categorical variables such

as working day after a holiday, working day before a holiday and long holidays are also included in
the Deth,d modeling as dummy variables. Therefore, the model Deth,d is formulated with 26 variables,
including constant β0. For simplicity, we use variable vector β for all the coefficients.

For the months’ dummy variables, eleven dummy variables (Mj
hd) where j = 1, ..., 11 in the model

account for the monthly seasonality of electricity demand, not only related to the weather conditions.
Monthly seasonality of electricity demand may be influenced by a number of economic and social
factors such as summer vacations and the seasonal character of some industrial activities. The index j
values represent correspondingly all months in a year (j = 1 for January, j = 2 for February and j = 11
for November), except the base month of December. The variable Mj

hd takes the value of one if the j

observation belongs to the month j, otherwise Mj
hd takes zero. Therefore, months’ dummy variables

can be formulated as,

Mj
h,d =

{
1 if day d is Month(i)

0 otherwise
(4)

where Month(1), ..., Month(11) represent January, ..., November, respectively. Therefore, the linear
function of the dummy variables can be written as Mh,d = ∑m−1

j=1 βi M
j
h,d.

Hence, the term Deth,d can be formulated as,

Deth,d = β0 + β1Trend +
7

∑
i=2

βiWDh,d +
18

∑
i=8

βi Mh,d + β19WKh,d

+ β20WKB f Hh,d + β21LH + β22WKA f Hh,d

(5)

Here, all the coefficients are carried by vector β, where β0 represents the intercept, β1 is the trend
and βi, i = 2, .., 7 is for the day of the week dummy variable. Similarly, i = 8, ..., 18 for the month of the
year dummy variable, and i = 19, ..., 22 for working days, a working day before a holiday, a working
day after a holiday and long holidays, respectively.

The term AtmVh,d is another group of variables that affects the demand of electricity.
Some pre-processing of temperature helps to observe the non-linear influence on electricity demand



Energies 2018, 11, 818 12 of 34

(Figures 2 and 4a,b, which implies 17.1 ◦C as the reference point where there is no effect of temperature
(dead zone) for demand. The base temperatures for HDD and CDD were estimated as 15.65 ◦C and
21.53 ◦C, respectively. This means that the temperature between 15.65 ◦C and 21.53 ◦C has no effect on
electricity demand. However, this may not be true in the realistic observation of months and seasons.
Human behavior is different according to the season. For example, humans at 16 ◦C during the winter
season still feel cold and want to use a heater; however, during the summer season, 16 ◦C is a very
comfortable temperature for the human body, and people never use a heater at this temperature.
The same situation holds true for 22 ◦C in the summer season. Therefore, the interaction of CDD with
months and the interaction of HDD with months seems necessary to address this realistic problem.
A simple rule setup for CDD and HDD is as follows,

HDD = max(Tre f − Td,h, 0) i f Td,h ≤ 15.65

CDD = max(Td,h − Tre f , 0) i f Td,h ≥ 21.53
(6)

The heating and cooling effect of the previous day is considered in the model as HDDDayd−1,
CDDDayd−1. The representations of CDD and HDD for daily, maximum and minimum temperature
are written as CDDDay, HDDDay, CDDmax, HDDmax, CDDmin, HDDmin, respectively. Similarly,
the daily and hourly deviation of temperature are also added to model as TDevDay and TDevHr.

Therefore, only temperature-derived terms AtmVTh,d consist of the following 16 variables,

AtmVTh,d = β1CDDh,d + β2CDD2
h,d + β3CDD3

h,d + β4HDDh,d + β5HDD2
h,d + β6HDD3

h,d

+ β7CDDDayh,d + β8HDDDayh,d + β9CDDDayh,d−1 + β10HDDDayh,d−1

+ β11CDDmaxh,d + β12HDDmaxh,d + β13CDDminh,d + β14HDDminh,d

+ β15TDevHrh,d + β16TDevDayh,d

(7)

Other atmospheric variables are also accounted for by the mathematical formulations. The weight
of βi, i = 1, ..., 11 represents the coefficient values for these weather variables. Therefore, Equation (7) is
added to the new model, and there will be 27 (temperature related: 16: and other atmospheric related:
11) variables combined in the atmospheric model,

AtmVh,d = AtmVTh,d + β1Rainh,d + β2Radh,d + β3Windh,d + β4Humh,d

+ β5HumDevh,d + β6RainDayh,d + β7SnowDayh,d + β8WindDayh,d

+ β9RadDayh,d + β10HumDayh,d + β11CloudDayh,d

(8)

It is obvious that the next day demand level is correlated with its previous day demand from the
observation of the historical demand pattern. However, the Ljung–Box Q-test is the simplest method
for the correlation test, and in our test, the null hypothesis is rejected. Therefore, we have to accept
that there is a significant correlation with the previous day’s demand. Since the auto-regressive (AR)
component captures the pattern of load in hour h = i for any given day, it gives a good indication that
the load will be higher in hour h = i on the following day(s). Hourly plots of auto-correlation and
partial auto-correlation indicate that demand is strongly correlated with day ahead, same time load and
previous hour load. Hence, the amount of electricity demand that depends on its previous demand is
denoted by DHisth,d, and the logarithm is taken (Section 4.1) for historical demand DHisth,d=ln(Dh,d);
then, AR structure is modeled as,

DHisth,d = β1Dh,d−1 + β2Dh,d−2 + β3Dh,d−7 + β4MaxDh,d−1

+ β5MinDh,d−1 + β6D12pmMAh,d−1
(9)

In Equation (9), the same hour of yesterday’s demand, the day before yesterday’s demand,
last week’s demand, yesterday’s maximum demand, yesterday’s minimum demand and the seven-day
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moving average of midnight demand are denoted as, Dh,d−1, Dh,d−2, Dh,d−7, MaxDh,d−1, MinDh,d−1,
D12pmMAh,d−1, respectively. The forecasting demand during Saturday and Sunday (weekends) is
significantly higher with a negative bias in the errors. This is because the higher load during Thursday
and Friday (β1Demh,d−1, β2Demh,d−2) is used to forecast weekends’ demand. Similarly, when Saturday
and Sunday demands are used to predict Monday demand, significant under-prediction with positive
bias in the errors occurs. To overcome this issue, the interaction between day types and electricity
demand (Equation (10)) of that day is necessary.

DHIh,d =
24

∑
i=1

Π6
j=1βijWDj × Di,d−1 +

24

∑
i=1

Π6
j=1βijWDj × Di,d−2 (10)

Similarly, temperature also shows seasonal characteristics with months; therefore, it is meaningful
to combine temperature-derived variables (CDD and HDD) with month dummy variables. It consists
of 22 variables.

TInth,d =
11

∑
i=1

βi Mh,d × CDDh,d +
11

∑
i=1

βi Mh,d × HDDh,d (11)

Therefore, the interaction term ITermsh,d is the sum of Equations (10) and (11). Based on this
mathematical modeling, three models are constructed.

• Model A: This model consists of the variables from deterministic terms, historical demand
and historical demand-related interaction (e.g., DHIh,d) term. Therefore, Model A is the sum of
Equations (5), (9) and (10) and consists of a total of 47 variables including six correlated error
terms (vh,d). The electricity demand from Model A is denoted by DAh,d and can be generalized as,

DAh,d = Deth,d + DHish,d + DHIh,d + vh,d (12)

• Model B: Model B consists of Model A (Equation (12)), temperature variables (Equation (7))
and interaction terms with temperature (Equation (11)). Therefore, Model B consists of 83 variables.
The electricity demand from Model B is denoted by DBh,d and can be generalized as,

DBh,d = DAh,d + AtmVTh,d + TInth,d (13)

• Model C: Model C consists of all the variables from Model B and atmospheric variables
(Equation (8)). Therefore, Model C consists of 94 variables. The electricity demand from Model C
is represented by DemCh,d and can be generalized as,

DCh,d = DBh,d + AtmVh,d (14)

As our interest is to analyze the effect of other atmospheric factors on the demand forecasting,
e.g., rainfall, snowfall, wind speed, solar radiation, relative humidity and cloud cover, the co-variates
for Model A, Model B, and Model C can be arranged in column vector form and estimated using the
ordinary least square (OLS) technique first. These estimated point values from OLS are used as prior
values for Bayesian estimation in the next step. Markov chain Monte Carlo (MCMC) is constructed
to implement Gibbs sampling and generate the posterior distribution of weights for a better forecast.
More detailed discussion of this process is given in Section 5.

5. Estimation and Forecasting

The MLR model for Model A, Model B, and Model C (Equations (12)–(14)) can be setup as
Yh = Xhβh + vh, for h = 1, ..., m is the regression model for hour h. Here, Yh = (Dh,1, Dh,2, ..., Dh,T)

′,
vh = (vh,1, vh,2, ..., vh,T)

′, and βh = (βh,1, βh,2, ..., βh,Ph
)′. These Ph variables in the regression are



Energies 2018, 11, 818 14 of 34

for hour h, and Xh is the corresponding T × Ph size matrix. This design matrix contains the
variables as Equations (12)–(14). For instance, if h = 1, ..., 24, there are 24 regressions, so that
y = Xβ + v where y′ = (y′1, ..., y′24), β′ = β′1, ..., β′24), and X = bdiag(X1, ..., X24) is a (24d×∑m

h=1 Pi).
The serially-correlated error vh (Equation (2)) term can be transformed to a serially-uncorrelated error
εh where εh = v∗h = vh − ρivh−i, and i represents the order of lag for which we account. Similarly,
Y∗h = Yh − ρiYh−i, and X∗h = Xh − ρiXh−i removes the serial correlation.

Because of the use of transformed equations with serially-correlated error, simple OLS estimation
cannot be used. Therefore, the Bayesian estimation procedure is implemented in two steps. Firstly,
the MLR parameters are estimated using the OLS technique assuming serially-correlated error
coefficients to be zero. The purpose of OLS estimation here is to obtain the initial value (prior)
of parameters near the true value. Therefore, rolling windows of only a 200-day training dataset are
used. This size of the training dataset for OLS estimation has been chosen such that the over-fitting
problem is avoided. Secondly, the posterior distribution is updated based on prior information and
the likelihood function. For this purpose, moving windows of a 730-day training dataset are used.
Such a length of the training dataset can capture daily, weekly, monthly, and yearly characteristics with
the trend. Lusis et al. [5] suggested that one year of historical data is sufficient to develop a demand
forecast model. However, Clements et al. [2] used a three-year moving window of aggregate data
of the Queensland region, Australia, for a model estimation and obtained impressive results (MAPE
1.36%). Since the length of the training dataset shows localized characteristics, therefore, three different
sizes of training datasets, 1 year, 2 years, and 3 years, were tested on the basis of forecasting accuracy
performed before the selection of the training size. As the number of variables increases in our models,
the estimation of the posterior distribution becomes more difficult. Therefore, the MCMC method
becomes quite useful. This paper uses the Gibbs sampling algorithm to draw inferences about the
model variables.

The priors are informative and close to the true weights because the weights from OLS estimation
are used for the priors. These priors’ weights are further refined with the likelihood function the using
Gibbs sampling techniques. The sampling scheme is run for 1000 iterations, after which we assume
that it has converged to the joint posterior distribution. Nevertheless, some of the weights started to
converge in very early draws. Then, we generated a further 1000 iterations to use for MCMC inference.
Moreover, we have tested with 5000 and 10,000 iterations to see the possibility of divergence, but
no symptoms of divergence were found. Since the median value minimizes the sum of the absolute
deviation, it can have better prediction than the mean mean value. Therefore, median values are used
for the prediction, and MAPE is used for error analysis.

Algorithm Setup

1. Set informative priors,

• Starting values, p(β) ∼ N(βols, ∑ols). The suffix ‘ols’ in the symbol means OLS estimation.
• Set a normal prior for serial correlated coefficient ρ as p(ρ) ∼ N(ρ0, ∑ρ), with starting value

ρ = 0.
• Set an inverse Gamma prior for σ2 ∼ Γ−1( T0

2 , θ0
2 ) where T0 and θ0 represent the degree of

freedom and scale factor, respectively.

2. Draw the conditional posterior distribution,

• For β, P(β|σ2, ρ, Yh) ∼ N(µ∗, ζ∗), then β = µ∗ + [µ̂× (ζ∗)−
1
2 ]′ (Appendix C, Theorem A1)

• For correlated error ρ, P(ρ|σ2, β, Yh) ∼ N(ρ∗, ξ∗), then ρ = ρ∗ + [ρ̂× (ξ∗)−
1
2 ]′ (Appendix C,

Theorem A1)

3. Given a draw from β and ρ, draw σ2 from its conditional posterior distribution,
P(σ2|β, ρ, Yh) ∼ Γ−1( T1

2 , θ1
2 ). (Appendix C, Theorem A2)

4. Repeat Steps 2 and 3 M times to obtain β1, ..., βM and (σ2)1, ..., (σ2)M.
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6. Results and Discussion

We have used three years of data up to 2015 from 2013 with no missing data. For training data, two
years (730 days) of moving windows are used and predicted for the year 2015. The multiple equations
modeled here are estimated for each hour with separate equations having their own co-variants.
Therefore, for every hour of the day, they have a different weight of the parameter value.

6.1. Atmospheric Variables

Since our motive is to find the atmospheric impact on electricity demand, their impacts vary
according to the hour of the day. The estimated coefficients (only atmospheric variables are of interest
to us) discussed for all the hours from Model C are plotted in Figure 5. Out of 26,280 samples, seven
snowfall data and some cloud cover and humidity data were missing. Simple interpolation is used to
fill up these missing data. At Hour 14, these variables show higher weights compared to other hours.
The statistical and hypothesis testing of these weights is discussed in Section 6.4.
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Figure 5. Impact of other weather parameters on the hourly electricity demand at different hours.

Figure 5 shows the overall impact of rainfall, solar radiation, wind speed, relative humidity,
and cloud cover for all the hours. Rainfall during day hours (Hour 10–Hour 16) causes an increase of
the cold environment, therefore showing the highest impact for the increment in electricity demand
up to 0.5% (i.e., 18 MW for weekends, 18.4 MW for holidays and 20 MW for weekdays), followed by
wind speed. However, sunlight (solar radiation) causes the environment to warm, and people use less
heating appliances, which causes a decrease in demand during day hours. This is the reason why Hour
11 and Hour 15’s electricity demand is reduced by more than 0.6% (approximately 23 MW in aggregate)
by solar radiation. From Hours 8 to 18, the electricity demand is significantly affected by wind speed,
as the demand is increased to 0.38%. The correlation figure (Figure 3) indicates that cloud cover has the
highest positive correlation with electricity demand, among these weather parameters. This is because
cloud cover causes people to turn on lights, but the estimated parameter value for cloud cover shows
up to a 0.16% increment only. Snowfall causes a slight increment during evening to morning hour,
but humidity does not show any significant changes on electricity demand. In general, atmospheric
sensitivities appear from Hour 5–Hour 22, mainly Hour 9–Hour 17. This result is comparable to a
previous study’s result covering a business district of Tokyo Prefecture [36].

6.2. Temperature Variables

CDD and HDD terms are used to convert the non-linear relation of temperature to the linear
relation by estimating the base temperature. However, still, square terms of CDD and HDD exist
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in the model. Therefore, the interpretation procedure of these terms and their impact on electricity
demand are slightly different. Table 3 illustrates the increase in electricity demand due to CDD for
Hour 1, Hour 14 and Hour 19 based on the reference temperature. The second column explains the
CDD values for the corresponding temperature in the first column. These CDD values are re-estimated
from the partial derivative of Demd with respect to CDD, then solving the new CDD value (CDD_val),
setting the equation equal to zero.

Table 3. Temperature coefficients’ analysis.

Temperature ◦C
Hour 1 Hour 14 Hour 19

CDD_val Deviation δDemand CDD_val Deviation δDemand CDD_val Deviation δDemand

19.000 −5.3611 −0.0178 −1.7623 −3.0000 −0.0194 −1.9206 −1.1465 0.0068 0.6854
20.000 −4.3611 −0.0119 −1.1783 −2.0000 −0.0134 −1.3303 −0.1465 0.0165 1.6629
21.000 −3.3611 −0.0059 −0.5909 −1.0000 −0.0074 −0.7365 0.8535 0.0262 2.6498
22.000 −2.3611 0.0000 0.0000 0.0000 −0.0014 −0.1392 1.8535 0.0358 3.6463
23.000 −1.3611 0.0059 0.5944 1.0000 0.0046 0.4618 2.8535 0.0455 4.6525
24.000 −0.3611 0.0119 1.1924 2.0000 0.0106 1.0664 3.8535 0.0551 5.6684
25.000 0.6389 0.0178 1.7939 3.0000 0.0166 1.6746 4.8535 0.0648 6.6942
26.000 1.6389 0.0237 2.3990 4.0000 0.0226 2.2865 5.8535 0.0745 7.7299
27.000 2.6389 0.0296 3.0077 5.0000 0.0286 2.9021 6.8535 0.0841 8.7758
28.000 3.6389 0.0356 3.6200 6.0000 0.0346 3.5213 7.8535 0.0938 9.8317
29.000 4.6389 0.0415 4.2359 7.0000 0.0406 4.1443 8.8535 0.1034 10.8979
30.000 5.6389 0.0474 4.8555 8.0000 0.0466 4.7711 9.8535 0.1131 11.9745
31.000 6.6389 0.0533 5.4788 9.0000 0.0526 5.4016 10.8535 0.1228 13.0615
32.000 7.6389 0.0593 6.1058 10.0000 0.0586 6.0359 11.8535 0.1324 14.1591

Since the CDD value cannot be negative, therefore the first five rows are neglected. During night
time, for instance Hour 1, when the temperature increased from 25–26 ◦C, the demand is predicted
to rise from 1.19–1.79%. Moreover, for the same temperature during Hour 19, electricity demand is
predicted to increase from 6.69–7.72%. When the temperature reaches 32 ◦C, electricity demand is
expected to be increased by 14.15% during peak hours of the evening because of more human activities
in the evening time. However, for other hours, there is less than half the impact of temperature
compared to Hour 19.

6.3. Performance Analysis

In Figure 6, electricity demand prediction by Model C is plotted for the first week of January 2015
and compared with the actual demand. The mean, median, and 60 percentile forecast values from
the posterior distribution are implemented for prediction, which is the beauty of Bayesian estimation.
Due to the New Year’s effects, forecasting performance is worse than other weeks. This week consists
of a scheduled public holiday, unscheduled holidays, weekdays, and weekends. Therefore, it is worth
discussing their effects on forecasting accuracy. The best MAPE performance for this week is 2.73% by
Model C followed by Model B, while the worst performance is 4.25% (Model A). When the electricity
demand for 1 January is predicted, the AR influence is clearly observed because the effect of previous
days (high demand days) causes over-forecasting. Similarly, the electricity demand for 2 January is
under-forecasted because of the lower demand of its previous day (1 January). As a normal Saturday
demand, electricity demand is forecasted for 3 January, but actual demand is still lower than forecasted
due to the New Year’s impact. Therefore, this week has a significant rise and fall of electricity demand.

Similarly, Figure 7a,b explains the hourly demand prediction by Model B, and Model A,
respectively, for the same time period as Model C. The existence of higher forecast error caused
by Model A, especially on 2 January, 4 January and 7 January, is minimized by model B. However,
the predictive nature of all the models (Model A, Model B, and Model C) follows similar patterns,
but comparatively, Model C is better.
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Figure 6. Mean, median, and 60 percentile of the forecasts using Model C versus the actual load, for
the first week of January 2015.
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Figure 7. (a) Mean, median, and 60 percentile of the forecasts using Model B versus the actual load,
for the first week of January 2015; (b) mean, median, and 60 percentile of the forecasts using Model A
versus the actual load, for the first week of January 2015.

In Figure 8, electricity demand prediction by Model C is plotted for the first week of July (summer
season) 2015 and compared with actual demand. Electricity demand on 4 July (Saturday) is significantly
over-forecasted. However, fluctuations in peaks are forecasted well. This week consists of one
scheduled public holiday on 7 July (Tuesday), where both Model A, and Model B failed to predict the
peak demand (Figure 9a,b). However, Model C predicted it very close to the actual demand. The best
MAPE performance for this week is 1.69% by Model C, followed by Model A, while Model B is the
worst with 1.96%.

Figures A1 and A2 illustrate the prediction error distribution of each model for individual hours.
As was our expectation, error variation during day hours is higher than other hours. Model A predicts
the highest variation in error distribution of 188 at Hour 14. This variation in the same hour is reduced
to 122 by Model C. The skewness and kurtosis plot in Figure 10 compares the error distribution statistics
among the models for individual hours. A positive skewness value reflects a large number of positive
errors, which means an under-forecasting of the electricity demand forecasting. Unlike Model A
and Model B, Model C shows negative skewness during day hours, indicating the occurrence of
over-forecast. Nevertheless, skewness values from Model C lie within the ±0.5 band, being equivalent
to a normal distribution.
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Figure 8. Mean, median, and 60 percentile of the forecasts using Model C versus the actual load, for
the first week of July 2015.
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Figure 9. (a) Mean, median, and 60 percentile of the forecasts using Model B versus the actual load, for
the first week of July 2015; (b) mean, median, and 60 percentile of the forecasts using Model A versus
the actual load, for the first week of July 2015.
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Similarly, kurtosis criteria are a measure of how prone a distribution with a value of three is
to outliers, being equivalent to a normal distribution. A high kurtosis value can be interpreted as
a failure to predict high electricity demand occurrence. Model C being closer to three compared to
the other two models indicates that Model C is better. This can be seen more clearly in Figure 11a,b.
Over-forecasting and under-forecasting characteristics of all three models are compared for all hours of
a day. At Hour 14, Model A over-forecasts up to more than 155 MW followed by Model B, and Model C,
respectively. Similarly, under-forecasting also occurs at the same Hour 14. However, the highest value
for under-forecasting is less than 150 MW. Moreover, after Hour 20 until Hour 8, Model C can predict
withing a ±50 MW forecast error, which is 1.2–1.4% MAPE in aggregate demand for these hours.
Higher forecasting error has occurred during other hours (Hour 9–Hour 19), which is also explained in
Figure 11b. The forecast distribution of absolute errors for each hour (Hour 9–Hour 19) is wider when
most peaks occur.
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Figure 11. (a) Variation of forecasting error at different hours for 2015 (Model C); (b) percentile
distribution of absolute forecasting error for 2015 (Model C).

This box plot in Figure 12a shows the hourly deviation of predicted demand from real electricity
demand. Throughout the hours, the median value is zero, but during day hours, especially
Hour 9–Hour 17, higher variations in the error occurred. As was our expectation, the over- and
under-forecasting probabilities are approximately equally distributed. However, at Hour 10, there
is a negligible probability for under-forecasting. Another important intuition from this box plot in
Figure 12a is that forecasting error is randomly distributed with zero mean with some variance.
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Figure 12. (a) Variation of forecasting error at different hours for 2015 (Model C); (b) MAPE variation
at different hours for 2015 (Model C).
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We have used the median value for the prediction of electricity demand because the median value
minimizes the sum of absolute deviations. During simulations, the accuracy of electricity forecasting
was measured by MAPE and the root mean square error (RMSE). For better accuracy, MAPE and
the corresponding RMSE value should be low. However, only MAPE is presented in this paper for
simplicity. Figure 12b indicates the box plot for accuracy measured in MAPE for each hour. The box
plot can clearly explain the distribution of MAPE as a different percentile form. The MAPE value in our
range (25th–75th percentile) is considered as an outlier in the box-plot and denoted by (+) in the plot.
There are significant MAPE outliers throughout the hours that directly cause a higher mean MAPE
value. The maximum MAPE is observed at morning Hour 9, afternoon Hour 14 and night Hour 23.
This is because of the fluctuating electricity demand based on human activities during these periods.

Comparing the seasonal forecasting performance for all three models in Figure 13, Model A
shows the worst MAPE value greater than 2% for all four seasons. However, for the same four seasons,
Model C can forecast with less than 2% MAPE. Interestingly, the summer months from all the models
show better forecasting performance. This is because the lower the demand, the lower the error
probability and vice versa. This could be one reason why winter has a higher MAPE value than
summer for all three models.
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Figure 13. (a) Seasonal comparison of MAPE among three models; (b) performance improvement of
Model C with respect to Model A and Model B.

The hourly performances of Model A, Model B, and Model C are tabulated in the Table A2.
The first row of the table contains the description of each column such as Column 1–7: hours, model
types, and days of the week. Column 8–15 contain the MAPE values of working days including
holidays (WDH), workings day not including holidays (WDNH), weekends including holidays (WEH),
weekends not including holidays (WENH), holidays on working days (HWD), holidays on weekends
(HWE), only holidays, and non-holidays, respectively. For each column, we are selecting the largest
20 (randomly chosen number) MAPE values (bold and italic) and smallest 20 MAPE values (bold) to
compare the hourly performance of individual models.

In general, the performances of the three models for all days from the evening at Hour 19 until
the morning at Hour 7 in the Table A2 show that 99% of the smallest MAPE values are within these
periods. Similarly, more than 99% of the largest MAPE values occur during morning Hour 8 to evening
Hour 18. This is because of human activities during day hours. Model A is 48.3%; Model B is 38.7%,
responsible for the higher MAPE; whereas Model C is much less (13%) responsible for the higher
MAPE. However, the important question is: Which model plays a significant role in the minimization
of MAPE? Model C has the highest percentage (53.7%) having minimum MAPE followed by Model B
(40.7%), and the lowest is Model A with 5.6%.
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From morning Hour 9 to afternoon Hour 17, Model C can forecast with the best MAPE value
(100%) compared to the other models. However, for 1 a.m. to 4 a.m., Model B can forecast with 60%
of the best MAPE values. Getting smaller MAPE values during working hours of the day is very
challenging for researchers. This is because of unpredictable human activities and weather variations.
Therefore, during the peaks and fluctuating hours, Model C can be used for better forecasting accuracy.
In Hokkaido, peak demand is during Hour 17, and for this time period as well, Model C performs
very well. There is very less possibility of getting higher MAPE values from Model C compared to
Model B and Model A.

Figure 13b compares the performance of Model C with Model B and Model A, based on the
accuracy of their forecasting ability. Throughout the months of 2015, the accuracy of Model C is
better than the other two models. However, unlike our expectation, the accuracies of Model A and
Model B are superior in June and September, respectively. Nevertheless, the difference between the
accuracies is relatively low (0.005% MAPE). The one reason behind this result is the dramatic change
in the weather variables (Figure 15a,b). In June, Model B and Model C have very poor performance
especially on 4, 5, 10 and 16 June; see Figure 14a. On 5 June, the performance of Model C is 3.6-times
worse than Model A. Therefore, a strong reason behind the poor performance of Model B and Model C
is the fluctuation of the weather variables, especially temperature (because both Models B and C
perform poorly). Figure 15a justifies the reason. On June 2015, except the first week, there was normal
variation of temperature with a mean of 16.70%. However, the temperature on 5 June 2015 dramatically
decreases to the minimum level. This sudden variation in temperature forces the poor forecasting
performance of both Models B and C.
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Figure 14. (a) The performance of Models A, B, and C for June 2015; (b) the performance of Models A,
B, and C for September 2015.
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Figure 15. (a) Fluctuation of temperature in June 2015; (b) fluctuation of weather variables in
September 2015.
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Similarly, in September 2015, unlike our expectations, only Model B has very competitive
performance with Model C. Nevertheless, the difference in accuracy is negligible. Since Model C
includes rainfall, snowfall, solar radiation, wind, humidity, and cloud cover, we can assume that there
must be some unpredictable variation in these variables. Figure 14b shows that especially for 10 and
30 September 2015, the forecasting performance of Model C is poor. This is because on 10 September
2015, wind speed unexpectedly rose to a peak. The increased value of cloud cover on the same day
also supports this volatility (Figure 15b). Therefore, such unexpected variation in weather variables
causes the forecasting performance to be always challenging.

The overall measure of forecasting accuracy in different MAPE ranges is reported in Table 4,
in which Models A, B, and C are compared. Tabulated values in the third column express the overall
MAPE for 2015. Comparing all the models, the most significant MAPEs are obtained from Model
C for all cases. More specifically, the introduction of all weather variables in Model C reduces the
high MAPE values (MAPE ≥ 5%) by one-fourth on working days and at least by half on other
days. The overall MAPE performances of Models A, B, and C are 2.43%, 1.98%, 1.72% respectively.
Therefore, the performance is improved by 18.5%, if we include temperature with historical electricity
demand data. Similarly, Model C can improve forecasting accuracy by 13.4%, by including other
atmospheric variables.

Table 4. Measures of the forecasting accuracy for Models A, B, and C.

Model
Types

Overall
MAPE (%)

Maximum
MAPE (%)

MAPE
≤ 2%

MAPE
> 2%

MAPE
≥ 5%

MAPE
≥ 10%

MAPE
≥ 15% Observations

Overall
Model A 2.43 19.32 53.5 46.5 11.56 1.09 0.19

8760Model B 1.98 15.41 62.49 37.51 6.97 0.53 0.01
Model C 1.72 14.06 67.93 32.07 4.05 0.23 0

Working days
Model A 1.15 19.04 54.78 45.22 9.71 0.69 0.12

5784Model B 1.03 13.8 64.93 35.07 5.53 0.32 0
Model C 0.90 13.35 70.35 29.65 2.71 0.172 0

Weekends
Model A 2.49 11.93 52.87 47.13 12.66 0.92 0

2376Model B 2.03 11.75 60.56 39.44 7.82 0.21 0
Model C 1.81 9.2746 66.28 33.71 5.57 0 0

Holidays
Model A 3.52 19.33 43.5 56.5 25 5.66 1.66

600Model B 2.93 15.42 46.5 53.5 17.5 3.83 0.16
Model C 2.51 14.06 51.17 48.83 11.33 1.66 0

6.4. Hypothesis Testing

We test the statistical significance for two aspects: statistical significance of other atmospheric
variables and statistical significance for accuracy improvement by Model C. Since these atmospheric
variables are added in Model C, the statistical significance of the estimated weights is tested (Figure 16).
After Hour 20, there is no solar radiation data available until morning Hour 5; therefore, a void contour
graph exist during those hours. The estimated weight of relative humidity (hourly) is significant for
all hours, whereas daily rainfall and daily cloud cover are strongly not significant. Other variables
such as wind speed (hourly and daily), solar radiation (hourly and daily) and hourly rainfall are fairly
significant for some hours.

To analyze the improvement in accuracy by Model C, a one-sided z-test for 99% confidence
is used for all individual hours. We determine whether the accuracy of any hour is significantly
improved by adding atmospheric variables (Model C) compared to the accuracy of other models
(without atmospheric variables) or not. The null hypothesis states that there is no significant difference
in the models’ performance tested at the 0.01 level against the alternative hypothesis. Testing the
accuracy with respect to Model A, the test result shows that Model C has a significant improvement
of the accuracy for all the hours of a day. However, testing the accuracy of Model C with respect to
Model B, we cannot obtain sufficient evidence to reject the null hypothesis for Hours 1–6. i.e., the
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improvement of the accuracy by Model C during Hours 1–6 is statistically not significant. However,
the improvement of the accuracy for the rest of the hours is statistically significant.

Significance measure of weather variables (p-value)
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Figure 16. P-values for each weather variables for all the hours.

6.5. Computation Time

The computational time of the forecast model is important for utilities. If online training is
used, where electricity demand observations from each day are added to the training dataset for
model retraining, computational time plays a crucial role. When conducting an electricity demand
forecast for 24 h ahead, the computational time depends on the length of the moving window, the
number of predictors used and, most importantly, the selected forecasting technique. In this study, the
computational time to forecast for 24 h was approximately 0.20 min for the OLS technique (for all three
models). However, for the Bayesian technique, it was significantly higher than the OLS technique.
The computational times to forecast for the next 24 h of Model A, Model B, and Model C were recorded
as 3.77 min, 5.682 min and 7.919 min, respectively. The simulation was conducted on an Intel Core i5
2.5-GHz processor with 8 GB of RAM.

7. Conclusions

In this paper, three MLR models named as Model A, Model B, and Model C are constructed
based on the types of variables used. During modeling, we pay attention to the weather variables
that can affect electricity demand and try to analyze their impact quantitatively. Model A consists
of historical demand data, the interaction of days with historical demand data and deterministic
variables, such as day types or month types. Temperature-related variables are added to Model A
to construct Model B. Model C consists of other weather variables including all variables of Model
B. Therefore, the variables used in Model A, and Model B are a subset of Model C. These models are
compared based on their capability in forecasting performance for one year out sample prediction,
also focused on the marginal impact of temperature and other atmospheric variables on electricity
demand. Preliminary work on the selection of weather stations suggests that the combination of
three weather station’s data (Sapporo, Hakodate and Kitami) can give the best demand forecasting
result (MAPE 2.89%) for Hokkaido Prefecture. Similarly, the base temperatures 21.53 ◦C for CDD
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and 15.65 ◦C for HDD are also calculated from polynomials and piece-wise models, which are the
pioneering works for this prefecture.

To minimize the MAPE error, Model C has the highest chance, with 53.7%, Model B with 40.7%
and the lowest for Model A 5.6%. Because of the low and consistent electricity demand during June
and September, forecasting errors are minimum, whereas they are maximum in January and December.
The overall MAPE performances of Model A, Model B, and Model C are estimated as 2.43%, 1.98%
and 1.72%, respectively. This means that the accuracy of Model C is improved by 13.4% when rainfall,
snowfall, solar radiation, wind speed, relative humidity, and cloud cover data are included in the
model. The introduction of these variables to Model C reduces the higher MAPE values by one-fourth
on working days and at least by half on other days. At Hour 14, these weather variables show the
highest effects on electricity demand. However, temperature shows the highest effects during peak
demand, i.e., Hour 19. The weather sensitivities appear mainly from Hour 9 to Hour 17. This result
is comparable to a previous studied paper [36] covering Tokyo; although Tokyo and Hokkaido have
very different climates and populations. Rainfall causes increased electricity demand by 18 MW on
weekends, 18.4 MW on holidays and 20 MW on weekdays. Wind speed follows after rainfall up
to a demand of 16 MW at Hour 11, and solar radiation causes a decrease of demand up to 23 MW.
Snowfall and humidity do not show significant changes in demand. The results of the statistical test
indicate that these atmospheric variables and accuracy improvement by these variables are statistically
significant in most of the hours. Therefore, such improvement on forecasting accuracy clearly indicates
that including other atmospheric variables in model (rainfall, snowfall, solar radiation, wind speed,
relative humidity, and cloud cover) is very necessary.
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Appendix A. Weather Station Selection

Normally, industries and population near the weather stations cause significant variations of
electricity demand; therefore, our focus is on the weather stations that are located close to a populated
city. Except the capital city Sapporo, Hokkaido island has two other well-populated cities: Hakodate
in the south and Ashahikawa in the north central direction. For every city, there are sufficient weather
stations to monitor weather behavior. We choose eight different weather stations’ data based on their
population, and some effort is applied to diminish the serious question of identifying the best weather
station(s) for demand forecasting in the entirety Hokkaido Prefecture.

Appendix A.1. Methodology

For the selection of the best weather station for Hokkaido Prefecture, this paper follows the
weather station selection forecasting technique of [51] as the benchmark methodology. Therefore,
Tao’s vanilla benchmark model with some improvement of the calendar variable is implemented here.
This is because their model is used as a base model in the commercial software package of SAS Energy
Forecasting [51] and was also used in the top 25% of the over 1000 teams at GEFCom2012. Therefore,
the modified model is,

Dh,d =β0 + β1Trendh,d + β2WKh,d + β3WKA f Hh,d + β4WKB f Hh,d + β5BHh,d

+
11

∑
i=6

βiWDh,d +
22

∑
i=12

βi Mh,d + f (Th,d)
(A1)

where Dh,d is the demand forecasts for hour h of day d; βi are the coefficients estimated using the
ordinary least square (OLS) method; WKh,d, WKA f Hh,d, WKB f Hh,d, BHh,d, WDh,d and Mh,d are
dummy representations of working days, working days after holiday, working days before holidays,
bridge holidays, days of the week and months of the year classification variables corresponding to
hour h and day d, respectively; f (Th,d) is the temperature-dependent function for the hour h and day d
model as,

f (Th,d) =β23Th,d + β24T2
h,d + β25T3

h,d + β26Tmxh,d + β27Tmnh,d +
38

∑
i=28

βiTh,d Mh,d

+
49

∑
i=39

βiT2
h,d Mh,d +

60

∑
i=50

βiT3
h,d Mh,d

(A2)

Appendix A.2. Algorithm Setup

On the basis of higher population density, only eight weather stations from different locations
were primarily selected. Moving windows of 730 days were used for estimation and the forecast for
365 days to observe forecasting accuracy. In this proposed framework, we setup the algorithm as:

1. Denote the temperature variables (daily average, maximum and minimum temperature) of each
stations as Ti, i = 1, ..., N.

2. Develop the forecasting model (Equation (A1)) where electricity demand is a function of the
temperature and calendar variables.

3. For speed and simplicity, use OLS estimation and forecasting for a year out of the sample data.
4. Calculate the forecasting error and MAPE for all the weather stations separately.
5. Sort the resulting error measures in ascending order to find the best individual’s (weather stations)

impact on demand.
6. Combine (average and weighted average with population) the temperature data of the top k

weather stations to create a new temperature series and fit all these combinations to the same
forecasting model.
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7. Calculate the forecasting error and find the combinations of weather stations that give the best
(smallest) MAPE.

In summary, we can choose a best weather station in two steps. Firstly, we observed the MAPE of
each weather station (Table A1) and arranged the weather stations in ascending order to combine their
data. Weather station data from Sapporo city with approximately 53% of the population exhibits the
best forecast with the lowest MAPE (2.959%) as we expected; nevertheless, the Hakodate (Index 2)
and Moruran (Index 7) regions’ weather stations show competitive MAPE values, ranking second and
third, respectively (Table A1).

In the second step, the top ranked weather stations’ data based on the lowest MAPE weather
stations are combined using two different techniques. The first technique is the simple average as
Equation (A3). The second technique is the weighted average by population as Equation (A4); where
the symbols have their usual meaning. Then, follow Step 7 from Appendix A.2.

Tnew = 1
N ∑N

i=1 Ti (A3)

Tnew = ∑n
i=1

Pi×Ti
P (A4)

where Ti, i = 1, 2, ..., N sample observations of temperature T and Pi, i = 1, 2, ..., N observations of
population P, assuming that the temperature per person is constant throughout Hokkaido territory.

The overall MAPE performance, variation with R2 and Adjusted− R2 values of the combined
weather stations are tabulated in the 8th–13th column of Table A1. Figures in parenthesis (eighth
and 11th column) correspond to the variation in MAPE values, which indicates the consistency in
accuracy. The overall performance of the weighted mean temperature by population (11th, 12th and
13th columns) gives better results with lower variation and higher R2 values. To choose the best
combination of weather stations, weather stations indexed as 1, 2 and 7 have the lowest MAPE and
its variation with highest R2 values. In the case of being weighted by population, the combination
of Weather Stations 1, 2, 7, 8, 6, 5 and 4 also provides a competitive performance for the combination
in the simple mean technique given by the 1, 2 and 7 combination. However, based on variance,
R2 and Adjusted− R2 values, Weather Stations 1, 2 and 7 (i.e., Sapporo (population 53%), Hakodate
(population 12%) and Kitami (population 10%) are selected as the best weather stations. In this paper,
the combination of these weather stations with the simple mean is used because of its lower MAPE
and lower variance values.
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Table A1. Top eight weather stations based on populations and their forecasting performance on electricity demand for Hokkaido territory. Note: figures in parenthesis
(8th and 11th column) correspond to the variation in MAPE values.

Weather Station Forecasting Results of Weather Stations When Their Data Combined as:
Simple Mean Weighted by Population

Sub-Prefecture Area (m2) Population Name Index MAPE (%) Combination MAPE (%)
Variance R2 Adjusted-R2 MAPE (%)

Variance R2 Adjusted-R2

Ishikari 3539.86 2,324,878 Sapporo 1 2.959 1, and 2 3.012(1.702) 0.943 0.938 2.945(1.70) 0.965 0.962

Kamikawa 10,619.20 527,575 Hakodate 2 3.042 1, 2 and 7 2.894(1.667) 0.946 0.941 2.909(1.689) 0.968 0.965

Oshima 3936.46 433,475 Kitami 3 3.318 1, 2, 7 and 8 2.967(1.841) 0.943 0.938 2.942(1.744) 0.966 0.963

Iburi 3698 419,115 Abashiri 4 3.323 1, 2, 7, 8 and 6 3.324(1.909) 0.930 0.924 3.324(1.90) 0.962 0.959
Ashahikawa 5 3.174 1, 2, 7, 8, 6 and 5 2.970(1.792) 0.943 0.937 2.946(1.725) 0.965 0.962

Tokachi 10,831.24 353,291 Obihiro 6 3.169 1, 2, 7, 8, 6, 5 and 3 2.899(1.730) 0.945 0.940 2.905(1.710) 0.967 0.964

Okhotsk 10,690.62 309487 Moruran 7 3.010 1, 2, 7, 8, 6, 5, 3 and 4 2.925(1.670) 0.945 0.940 2.927(1.675) 0.968 0.965
Tomakomai 8 3.156
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Appendix B. Forecasting Example

The general equation for Hour 19 from Model C is estimated and discussed here. The natural log
of hourly demand was implemented during modeling to avoid heteroscedasticity. All the estimated
coefficients with their proper sign have a specific meaning for interpretation. Since this model is
semi-logarithmic, very careful interpretation of lagged load and lagged load interaction with hour
of the days is important. Except the lagged load and its interaction, other dummy variables and
the CDD or HDD coefficient involve (eβ̂i − 1) × 100%. This means that this formula derives the
percentage effect on hourly demand of the presence of the factor represented by the dummy variable.
From Equation (A5), a 1% increase at Hour 19 causes hourly demand in the previous day (Dd−1) to
be expected to have a positive impact on Hour 19 hourly demand today (Dd) by 6.716%. Similarly,
it shows the positive impact of 1.64% from the day before yesterday’s demand (Dd−1). However, a 1%
increase on the previous week same day (Dd−7) causes a higher impact of 6.5% on the current demand.

Dd = 2.6136 + 0.0654Dd−1 + 0.0162Dd−2 + 0.063Dd−7 − 0.0089CDD + 0.0048CDD2 − 0.0005CDD3

− 0.0024HDD + 0.0002HDD2 + 0.0022HDD3 + 0.0113CDDDay + 0.0044HDDDay + 0.0058CDDmx

+ 0.007HDDmx− 0.0097CDDmn + 0.0011HDDmn + 0.0005Rain− 0.0923Rad + 0.0007Wind

+ 0.0003Hum− 0.0023TDevHr + 0.0001HumDevHr + 0.0008SnowDay + 0.0008WindDay

− 0.0013RadDay− 0.0001HumDay + 0.0002CloudDay + 0.0870MaxDd−1 + 0.014MinDd−1

+ 0.0886D12pmMA + 0.0410WK + 0.0033WKA f H − 0.0112WKB f H − 0.0332LH − 0.7595Sun

− 0.0640Mon− 0.0596Tue− 0.2356Wed− 0.4052Thu− 0.4336Fri− 0.0041Jan− 0.0019Feb

+ 0.0808Mar + 0.0630Apr + 0.0308May + 2.3199Jun + 2.3375Jul + 2.3622Aug + 0.0660Sep

+ 0.0619Oct + 0.0563Nov + 0.0010Jan× CDD− 0.0012Feb× CDD + 0.0010Mar× CDD

+ 0.0001Apr× CDD + 0.0018May× CDD− 0.0018Jun× CDD− 0.0074Jul × CDD

− 0.0133Aug× CDD + 0.0068× SepCDD + 0.0013Oct× CDD− 0.0026Nov× CDD

+ 0.0003Jan× HDD + 0.0017Feb× HDD− 0.0009Mar× HDD− 0.0002Apr× HDD

− 0.0001May× HDD− 0.0032Jun× HDD + 0.0008Jul × HDD + 0.0009Aug× HDD

+ 0.0033Sep× HDD + 0.0037Oct× HDD + 0.0015Nov× HDD− 0.0022TDevDay

+ 0.0518Sun× Dd−1 − 0.0029Mon× Dd−1 + 0.0776Tue× Dd−1 + 0.1783Wed× Dd−1

+ 0.0778Thu× Dd−1 − 0.0390Fri× Dd−1 + 0.0536Sun× Dd−2 − 0.0067Mon× Dd−2

− 0.0870Tue× Dd−2 + 0.0173Wed× Dd−2 + 0.0814Thu× Dd−2 + 0.1307Fri× Dd−2

+ 0.0002CDDd−1 − 0.0021HDDd−1 + 0.4625Errd−1 + 0.1278Errd−2 + 0.0394Errd−3

+ 0.0410Errd−4 − 0.0415Errd−5 − 0.0216Errd−6

(A5)

Appendix C. Theorems

Appendix C.1. Theorem A1

Theorem A1. To sample a k× 1 vector denoted by x from the N(m, v) distribution, first generate k× 1 numbers
from the standard normal distribution (say x0). These standard normal numbers can then be transformed such
that the mean is equal to m, and the variance equals v using the x = m + x0 × v

1
2 transformation.

Appendix C.2. Theorem A2

Theorem A2. To sample a scalar x from the inverse Gamma distribution with degrees of freedom T
2 and

scale parameter D
2 , i.e., Γ−1( T

2 , D
2 ), generate T numbers from the standard normal distribution x0 ∼ N(0, 1).

Then, x = D
x0′ x0 is a draw from the Γ−1( T

2 , D
2 ) distribution.
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Appendix D. Figures and Tables
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Figure A1. (a) Variation of forecasting error for 2015 (Model A); (b) variation of forecasting error for
2015 (Model B).
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Figure A2. Variation of forecasting error for 2015 (Model C).
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Table A2. Hourly MAPE variation for various day types: working days including holidays (WDH), workings day not including holidays (WDNH), weekends
including holidays (WEH), weekends not including holidays (WENH), holidays on working days (HWD), holidays on weekends (HWE).

Hour Model Sunday Monday Tuesday Wednesday Thursday Friday Saturday WDH WDNH WEH WENH HWD HWE Holiday NH

1
Model A 1.6726 1.7407 1.7456 1.8309 1.5394 1.4631 1.4922 1.6639 0.7753 1.5824 1.6213 1.9812 0.8121 1.7474 1.6325
Model B 1.1504 1.4382 1.2741 1.4257 1.2117 1.4709 1.2896 1.3642 0.7606 1.2200 1.2131 1.4685 1.3576 1.4463 1.3136
Model C 1.1919 1.4357 1.3395 1.4745 1.1992 1.5799 1.2373 1.4057 0.8193 1.1919 1.2274 1.6611 0.9614 1.5212 1.3382

2
Model A 1.8561 1.7041 1.6715 1.8159 1.5774 1.5581 1.5430 1.6654 0.8006 1.6996 1.7156 2.1112 1.3818 1.9653 1.6535
Model B 1.2177 1.4480 1.1882 1.4230 1.2913 1.5818 1.4109 1.3865 0.7887 1.3143 1.3056 1.3492 1.4865 1.3767 1.3648
Model C 1.2970 1.4602 1.1697 1.4413 1.2717 1.6941 1.3749 1.4074 0.8426 1.2970 1.3407 1.5256 1.2430 1.4691 1.3806

3
Model A 1.8299 1.6551 1.7280 1.8782 1.5712 1.3902 1.3610 1.6445 0.6908 1.5954 1.6039 2.2782 1.4283 2.1082 1.5952
Model B 1.2882 1.3785 1.1462 1.4060 1.1784 1.3799 1.3110 1.2978 0.7097 1.2996 1.3006 1.2319 1.2804 1.2416 1.3021
Model C 1.3373 1.3129 1.1836 1.3597 1.1587 1.4631 1.3420 1.2956 0.7436 1.3373 1.3548 1.3017 1.0399 1.2494 1.3121

4
Model A 1.7652 1.6379 1.8458 1.8160 1.6098 1.3923 1.3475 1.6604 0.6981 1.5563 1.5657 2.2030 1.3701 2.0364 1.6007
Model B 1.1658 1.2604 1.1607 1.3288 1.2750 1.4508 1.3543 1.2952 0.7567 1.2600 1.2595 1.1060 1.2704 1.1389 1.2958
Model C 1.1385 1.2825 1.1582 1.3299 1.1545 1.4228 1.3618 1.2696 0.7364 1.1385 1.2624 1.0859 1.0082 1.0704 1.2779

5
Model A 1.8329 1.6645 1.9004 1.9173 1.5649 1.5715 1.3441 1.7237 0.7901 1.5885 1.5814 2.3748 1.7288 2.2456 1.6435
Model B 1.3387 1.3066 1.3126 1.3861 1.2598 1.4386 1.3605 1.3407 0.7509 1.3496 1.3297 1.4274 1.7425 1.4904 1.3322
Model C 1.3420 1.3241 1.2364 1.4013 1.1265 1.4575 1.2308 1.3092 0.7773 1.3420 1.2897 1.3027 1.2207 1.2863 1.3033

6
Model A 1.9198 1.9072 2.0596 1.9769 1.5467 1.5389 1.6301 1.8059 0.7545 1.7750 1.8003 2.5605 1.2725 2.3029 1.7591
Model B 1.6503 1.5450 1.6708 1.5754 1.1965 1.4065 1.5892 1.4789 0.7142 1.6197 1.5820 1.6762 2.3669 1.8144 1.4965
Model C 1.6451 1.5607 1.5380 1.5917 1.1067 1.3907 1.4814 1.4376 0.7524 1.6451 1.5595 1.4951 1.6376 1.5236 1.4687

7
Model A 2.0690 2.1267 2.2502 2.2338 1.8833 1.6164 1.9340 2.0221 0.7776 2.0015 2.0574 2.9955 0.8951 2.5754 1.9747
Model B 1.7640 1.7209 1.7645 1.6313 1.4183 1.4893 2.0553 1.6049 0.7315 1.9097 1.9323 2.4035 1.4605 2.2149 1.6527
Model C 1.6466 1.7467 1.5595 1.5090 1.2270 1.4631 1.7972 1.5011 0.7673 1.6466 1.7573 2.0983 1.0206 1.8828 1.5397

8
Model A 2.2325 2.3071 2.2233 2.5286 2.4832 2.1212 2.4363 2.3327 1.0441 2.3344 2.3803 3.4155 1.4263 3.0177 2.2833
Model B 1.8220 1.8314 1.9199 1.9725 1.8258 1.7969 2.5240 1.8693 0.8740 2.1730 2.1622 2.8535 2.3874 2.7603 1.8966
Model C 1.5913 1.5995 1.5147 1.6427 1.4574 1.5827 2.1622 1.5594 0.8269 1.5913 1.8738 2.2654 1.9355 2.1994 1.6091

9
Model A 2.6461 2.4470 2.7248 2.7950 2.8503 2.4008 3.1912 2.6436 1.1834 2.9187 2.8304 4.3900 4.6659 4.4452 2.5959
Model B 2.1982 2.0883 2.2785 2.2846 2.4666 2.1374 3.1797 2.2511 1.0574 2.6890 2.5874 3.8711 4.6995 4.0367 2.2544
Model C 1.9150 1.7530 1.7447 1.9969 1.9034 1.8084 2.8321 1.8413 0.9390 1.9150 2.2789 3.4363 4.2477 3.5986 1.8751

10
Model A 2.9442 2.6022 3.2205 3.0529 3.1272 2.6851 3.6793 2.9376 1.3814 3.3117 3.1540 4.5038 6.4350 4.8900 2.9090
Model B 2.4234 2.3307 2.6872 2.3936 2.7461 2.7183 3.5322 2.5752 1.4121 2.9778 2.8153 4.0603 6.1947 4.4871 2.5583
Model C 2.1795 2.0551 2.1036 1.9529 2.1555 2.0213 3.0005 2.0577 1.1097 2.1795 2.4479 3.4744 5.4029 3.8601 2.0883

11
Model A 3.2398 2.6796 3.3393 3.2835 3.2169 2.9312 3.9262 3.0901 1.5203 3.5830 3.3519 4.4814 8.1586 5.2168 3.0849
Model B 2.5062 2.3502 2.7765 2.5841 2.6018 2.9451 3.6375 2.6516 1.5283 3.0718 2.8516 4.2028 7.4327 4.8488 2.6184
Model C 2.3283 1.9570 1.9768 2.2351 2.1442 2.2174 3.0316 2.1061 1.2075 2.3283 2.4878 3.2880 6.4853 3.9274 2.1478

12
Model A 3.1075 2.8537 3.4770 3.4629 3.4499 3.1050 3.9691 3.2697 1.6391 3.5383 3.3037 4.9317 8.1837 5.5821 3.1824
Model B 2.5170 2.5425 2.9768 2.7074 2.8006 3.0701 3.5237 2.8195 1.6153 3.0203 2.8234 4.9172 6.9190 5.3175 2.6972
Model C 2.3383 2.1527 2.0263 2.2816 2.2020 2.3525 2.9905 2.2030 1.2876 2.3383 2.4675 3.6795 6.5631 4.2562 2.1932
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Table A2. Cont.

Hour Model Sunday Monday Tuesday Wednesday Thursday Friday Saturday WDH WDNH WEH WENH HWD HWE Holiday NH

13
Model A 3.3161 2.8978 4.0335 3.7530 3.3656 3.5846 3.8910 3.5269 1.8386 3.6036 3.3948 4.6860 7.7364 5.2961 3.4198
Model B 2.4320 2.6308 3.2304 2.9576 2.7321 3.1860 3.3674 2.9474 1.6902 2.8997 2.7367 3.8506 6.1283 4.3061 2.8323
Model C 2.2623 2.1179 2.1186 2.3961 2.2355 2.5430 2.7583 2.2822 1.3922 2.2623 2.3490 3.0000 5.7045 3.5409 2.2593

14
Model A 3.6238 3.0059 4.0271 3.8494 3.3133 3.9163 4.3122 3.6224 1.9851 3.9680 3.7592 5.5966 8.1018 6.0977 3.5452
Model B 2.5357 2.6686 3.3307 3.2034 2.7270 3.4654 3.7935 3.0790 1.8339 3.1646 2.9757 4.8298 6.9040 5.2447 2.9449
Model C 2.2401 2.2966 2.0473 2.6013 2.1359 2.5819 3.0670 2.3326 1.3972 2.2401 2.4697 3.7217 6.2939 4.2362 2.2902

15
Model A 3.6812 3.0742 3.9871 3.7488 3.0118 3.9572 4.2087 3.5558 2.0035 3.9449 3.7478 5.2494 7.8475 5.7690 3.5105
Model B 2.7848 2.6771 3.1999 3.3373 2.5674 3.2893 3.4836 3.0142 1.7151 3.1342 2.9288 4.9817 7.2022 5.4258 2.8723
Model C 2.3425 2.2175 2.2240 2.4928 2.1483 2.6142 2.9446 2.3394 1.3864 2.3425 2.4668 4.1316 6.1436 4.5340 2.2705

16
Model A 3.5173 3.0099 3.5821 3.5607 2.7995 3.2589 3.8668 3.2422 1.6404 3.6920 3.6108 4.8270 5.2998 4.9216 3.2550
Model B 2.7110 2.6691 2.7547 3.0173 2.3450 2.8460 3.2405 2.7264 1.4517 2.9758 2.8676 4.1300 5.1174 4.3275 2.6838
Model C 2.2337 2.1280 2.0626 2.3022 1.9723 2.1713 2.6555 2.1273 1.1495 2.2337 2.3272 3.4206 4.7688 3.6903 2.1090

17
Model A 2.8113 2.2691 2.6527 2.8911 2.4075 2.5460 3.7121 2.5533 1.2941 3.2617 3.1543 3.3655 5.3881 3.7700 2.6801
Model B 2.3903 2.2728 2.0630 2.4652 1.9515 2.1243 3.0331 2.1754 1.1075 2.7117 2.6350 3.1321 4.2301 3.3517 2.2523
Model C 2.1376 1.9282 1.6517 1.8570 1.8850 1.7124 2.4634 1.8069 0.9375 2.1376 2.2313 2.5008 3.6711 2.7349 1.8899

18
Model A 2.2690 2.1932 2.2601 2.4965 2.2489 2.2088 3.0329 2.2815 1.1026 2.6509 2.6016 3.4705 3.6273 3.5019 2.3047
Model B 1.8041 2.0382 1.7465 2.0586 1.7992 1.8877 2.4489 1.9061 0.9407 2.1265 2.0982 2.6811 2.6862 2.6822 1.9161
Model C 1.8099 1.6286 1.3981 1.7202 1.7559 1.5168 1.8188 1.6039 0.7631 1.8099 1.7890 2.0452 2.3158 2.0993 1.6323

19
Model A 1.9400 2.1032 2.4597 1.7876 2.0171 2.0373 2.6626 2.0810 1.0018 2.3013 2.2479 3.1036 3.3588 3.1546 2.0693
Model B 1.5986 1.9853 1.5508 1.5214 1.5875 1.7703 2.1094 1.6831 0.8720 1.8540 1.8295 2.9165 2.3402 2.8012 1.6528
Model C 1.5358 1.7506 1.3152 1.1828 1.6486 1.3373 1.6731 1.4469 0.6953 1.5358 1.5810 2.3915 2.0686 2.3269 1.4310

20
Model A 1.7961 1.8596 1.7109 1.6868 1.8195 1.6626 2.3081 1.7479 0.8015 2.0521 1.9965 2.8977 3.1537 2.9489 1.7528
Model B 1.3819 1.3910 0.9991 1.2920 1.2984 1.1858 1.6894 1.2333 0.5791 1.5357 1.5211 2.4375 1.8249 2.3150 1.2464
Model C 1.3681 1.2429 0.9897 1.2038 1.2219 1.0033 1.4228 1.1323 0.5094 1.3681 1.3759 2.1167 1.7822 2.0498 1.1456

21
Model A 1.9851 1.8714 1.9007 1.7697 1.8257 1.7998 2.1877 1.8334 0.8843 2.0864 2.0404 2.9103 2.9981 2.9278 1.8303
Model B 1.4202 1.4070 1.0795 1.1981 1.2286 1.1109 1.6524 1.2048 0.5500 1.5363 1.5231 2.2684 1.7980 2.1743 1.2350
Model C 1.4664 1.2926 0.9844 1.0369 1.2318 1.0341 1.3425 1.1159 0.5441 1.4664 1.3868 2.1136 1.7543 2.0417 1.1364

22
Model A 2.1472 2.0246 1.9386 2.0494 1.8935 1.8998 2.1253 1.9612 0.9233 2.1363 2.0900 2.8940 3.0530 2.9258 1.9436
Model B 1.4406 1.4008 1.3538 1.4628 1.3684 1.3452 1.6044 1.3862 0.6642 1.5225 1.5329 2.3268 1.3174 2.1249 1.3735
Model C 1.4462 1.4146 1.2637 1.2127 1.3508 1.1255 1.3280 1.2734 0.6027 1.4462 1.3866 2.0830 1.3962 1.9457 1.2590

23
Model A 2.2922 1.9065 2.1283 2.2634 2.0251 2.0859 2.0248 2.0819 1.0168 2.1585 2.1233 2.6635 2.8549 2.7018 2.0595
Model B 1.5580 1.5780 1.4537 1.5983 1.6215 1.5366 1.3977 1.5576 0.7889 1.4779 1.4828 1.7395 1.3809 1.6678 1.5253
Model C 1.4426 1.4823 1.3921 1.4256 1.5368 1.4081 1.2703 1.4490 0.7731 1.4426 1.3404 1.5004 1.6744 1.5352 1.4146

24
Model A 2.2812 1.8947 2.3251 2.3162 1.9561 2.3125 1.9756 2.1609 1.1198 2.1284 2.0778 2.1986 3.1313 2.3852 2.1339
Model B 1.7227 1.5818 1.6329 1.5357 1.8184 1.5679 1.5059 1.6273 0.8113 1.6143 1.6001 1.6980 1.8959 1.7376 1.6158
Model C 1.6399 1.4829 1.4895 1.3902 1.5656 1.4349 1.3684 1.4726 0.7713 1.6399 1.4723 1.5999 2.1355 1.7070 1.4653
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