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Abstract: To address the problems of low efficiency and high fuel consumption during the cold start
and warm-up processes of internal combustion engines, a series hybrid electric vehicle was selected
as the research object and two optimal control strategies were designed. A bench test was performed
to determine the following: (a) the influence of engine coolant temperature on effective thermal
efficiency; and (b) the relationship between engine operating conditions and coolant temperature
increase rate. On the basis of the test results, two sets of warm-up process optimization control
strategies were designed using a dynamic programming method and a fuzzy control method based
on equivalent consumption minimization strategy (ECMS). The test results show that the fuzzy
control method for the coolant temperature can effectively shorten the time required to warm up the
engine, and the energy consumption of warm-up process can be reduced by nearly 10% through the
dynamic programming method.

Keywords: series hybrid electric vehicle; warm-up process optimization; fuzzy control; dynamic
programming; energy management strategy

1. Introduction

The ideal working temperature of the internal combustion engine is generally 373 K~398 K
(80~105 degrees Celsius) [1]. When engine temperature is lower than the ideal operating temperature,
the engine exhibits high mechanical resistance, considerable heat transfer loss and poor fuel
vaporization, thereby eventually increasing engine fuel consumption and pollutant emissions [2–5].
Modern vehicle internal combustion engines are equipped with control devices, such as thermostats,
which can help shorten the engine’s warming time. However, changing the engine coolant temperature
from ambient temperature to the ideal working temperature still takes several minutes. If in a
high-latitude cold environment, the warming time could be longer than 15–30 min, and then the
energy consumed during the process cannot be disregarded.

Existing research shows that the warm-up process of hybrid vehicles also experiences the problems
of high fuel consumption and high pollutant emissions [6–8]. The energy management control
strategy of hybrid electric vehicles (HEVs) is designed according to the efficiency characteristics of
the internal combustion engine at an ideal temperature. Thus, energy economy in a low-temperature
environment is not ideal [9,10]. Researchers have focused on this issue and achieved several significant
results. Reference [11] studied the influences of the driving mode of engines and regenerative
braking on heating time. References [12,13] found that application model predictive control shortens
the after-treatment device warm-up time of an HEV. References [14,15] considered the heating
requirements of cabins and improved the load control strategy of hybrid vehicles. Reference [16,17]
considered the low-temperature characteristics of power batteries in energy management strategies.
References [18,19] presented the design and research of a simulation model for the warm-up process

Energies 2018, 11, 1091; doi:10.3390/en11051091 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en11051091
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/11/5/1091?type=check_update&version=2


Energies 2018, 11, 1091 2 of 20

of a hybrid vehicle. Reference [20] designs a control strategy including dynamic programming and
model predictive control, which shows that the RCCI (Reactivity Controlled Compression Ignition)
engine offers more fuel economy improvement in more aggressive driving cycles, and sub-optimal
fuel economy is achieved by predicting the vehicle speed profile for a time horizon of 70 s.

At different output power and coolant temperatures, the engine’s temperature increase rate and
efficiency are also different. Considerable power can shorten warm-up time but increase power loss
per unit time. In conventional vehicles, the driver directly controls the engine load. The speed and
load of the engine depend on road conditions and driving intent, and thus, achieving optimal control
of the warm-up process is difficult. For a series HEV, the engine is only connected to the generator and
both form an auxiliary power unit (APU). No mechanical coupling occurs between the engine and
the wheels, which makes optimizing the control of the warm-up process possible [21–23]. The current
study selects a series HEV as the research object and obtains the efficiency characteristics of engines at
different temperatures and temperature increase characteristics under varying working conditions by
using the test method. Then, to reduce energy consumption during the warm-up process and shorten
warm-up time, a dynamic programming method and a fuzzy control method are used to establish an
optimal control strategy for the two types of HEV warm-up process. Finally, the optimization control
strategy is verified through experiments.

2. Design of the Powertrain Testing Bench

This article selects a small series HEV passenger vehicle (parameters as shown Table 1) as the
research object and establishes a powertrain test platform, as shown in Figure 1. The car is equipped
with a 1.0 L three-cylinder gasoline engine, a 30 kW generator and a 40 kW drive motor.

Table 1. Technical parameters of the Series hybrid electric vehicle (HEV).

Parameter Value Units

Curb weight 1400 Kg
Layout Front-engine front-drive /

Length × width × height 4600 × 1785 × 1435 mm
Wheelbase 2675 mm

Tire 205/55R16 /
Drag coefficient 0.32 /

Frontal area 1.98 m2

Battery capacity 15.8 kWh

The test bench consists of the engine, generator, drive motor, electric eddy current dynamometer,
gearbox, flywheel, power analyzer, battery simulation system, fuel consumption instrument, coolant
heat exchange system, rapid prototype controller, computer, etc.

The drive subsystem consists of a drive motor, a gearbox, a flywheel and an eddy current
dynamometer that simulates road resistance and drive power.

The generation subsystem consists of an engine, a generator, a fuel tank and a fuel consumption
instrument. This subsystem can provide electrical energy and measure fuel consumption.

The high-voltage power subsystem consists of a battery simulation system, a power analyser, a
motor controller and a generator controller. The subsystem can provide a suitable DC voltage, measure
power consumption, calculate the efficiency of the motor and controller as well as simulate the SOC of
a real battery.

The cooling subsystem consists of a coolant heat-exchanging system, an electric pump and a
radiator. The coolant heat-exchanging system controls the engine coolant at a set level, whilst the
electric pump and radiator cool the drive motor and generator.

The control subsystem consists of a computer and a rapid prototype controller that controls the
output of the engine, generator and drive motor as well as collects data from the sensors.
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The performance parameters of each component are listed in Table 2.
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Table 2. Serial HEV powertrain testing platform parameters.

Items Parameter

Dynamometer

Type CAMA CW-260
Rated power/kW 260

Maximum speed/r/min 7500
Brake torque/Nm 1395

Fuel Consumption Meter

Type FCM-1
Flow rate/kg/h 0~100

Measurement accuracy/%FS 0.12
Measurement repeatability/%FS 0.05

Coolant Heat-Exchange System

Type SHW-300
Capacity engine power/kW 300

Temperature rate/◦C 20~130
Control accuracy/◦C <±2

Measurement accuracy/◦C <±0.5

Battery Simulation System

Type AVL e-Storage
Power/kW −160~160

Output voltage/V 0~650
Maximum current/A 600

Measurement accuracy/%FS <±0.02

Rapid-Prototype Controller

Type Motohawk ECM565-128
Processor Freescale MPC565
Flash/kB 1024
RAM/kB 548

EEPROM/kB 512

Motor Power Analyzer

Type YOKOGAWA WT-1800
Basic power accuracy/% ±0.1

DC Accuracy/% ±0.05
Band-wide/MHz 5

Sample rate/MS/s 2

Engine

Model K10B
Cylinder type Inline 3-cylinder

Intake type Natural aspiration
Displacement/mL 998
Compression ratio 10.2

Power/kW 52
Torque/Nm 90

Generator

Type Permanent magnet synchronous
Rated power/kW 30
Rated torque/Nm 100

Maximum speed/r/min 6000
Voltage/V 200–400

Driving Motor

Type Permanent magnet synchronous
Power/kW 40
Torque/Nm 150

Maximum speed/r/min 10,000
Voltage/V 250–400
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3. Engine Temperature Characteristic Measurement

The optimized range of the working condition points of the auxiliary power unit (APU) in
serial HEV is the curve formed by connecting the most efficient condition points according to the
equivalent consumption minimization strategy (ECMS) [24–27]. Moreover, the selection of the most
efficient condition points is based on the engine efficiency characteristic map under an ideal working
temperature, as shown Figure 2. When an engine is operating below the ideal temperature range, the
efficiency of the internal combustion engine and the most efficient condition points that correspond to
a certain power output will vary with temperature. If the warm-up control is based only on the ideal
operating temperature without considering the realistic values, then it will negatively affect engine
efficiency during the warm-up process [17].
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Figure 2. Engine efficiency map at the ideal coolant temperature (363 ± 5 K).

Figure 3a–d show the correlation among engine power output, engine speed and brake specific
fuel consumption (BSFC). The effective fuel consumption rate is significantly reduced under all
working conditions with an increase in the engine temperature from the ambient value to the ideal
operating temperature. When temperature reaches 343 K, BSFC is basically stabilised around the value
within the ideal operating temperature. Moreover, the corresponding ideal engine speed of a certain
power output also increases with an increase in engine temperature.
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Figure 3. Engine effective fuel consumption rate under different coolant temperatures.

The temperature increase of the internal combustion engine varies under different working
conditions. The heat energy absorbed by the coolant is either from the heat transfer of combustion
chambers, pistons and cylinder walls or generated by the friction of piston rings, rotating assembly,
valve train and accessories, such as the coolant pump. Heat transfer is mainly influenced by engine
volumetric efficiency and combustion heat release, whereas friction is influenced by engine speed
and current engine temperature. Therefore, engine temperature increase is positively correlated with
engine speed and engine load through qualitative analysis.

The engine temperature increase model is difficult to establish in physical form to make the
simulation and verification processes highly efficient due to the complexity of the heat release and
heat transfer mechanisms of internal combustion engines. In the current research, the correlations
among engine power output, engine working conditions and temperature increase rate was measured
quantitatively through engine bench tests, and a lookup table model of the engine temperature increase
was established based on the bench test results. During the tests, ambient temperature was maintained
within the range of 290 K~293 K, the engine was structured for real-life applications with the installed
thermostat and radiator, and the coolant channels for internal cycles were also unblocked.

Figure 4a–d show the correlations among engine temperature, engine speed and coolant
temperature increase under different engine power outputs within the range of 10 kW to 40 kW.
The temperature increase of the coolant is mainly affected by the power output, and it increases along
with an increase in engine speed. Engine temperature also influences the rate of temperature increase.
Mechanical loss and internal friction decrease under the same power output and engine speed values
with an increase in engine temperature. Therefore, the rate of temperature increase is relatively reduced.
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4. Dynamic Programming Strategy

From the perspective of engine temperature, control of the engine warm-up process can be
regarded as an optimization topic with fixed starting and ending points, which are the ambient
temperature value and the ideal operating temperature value or the thermostat opening temperature
value, respectively. Meanwhile, the variation in the power output of the engine with time stands
for different routes between two points. A certain sequence of power outputs that minimize overall
fuel consumption during the engine warm-up process should be adopted because of the correlations
among the four variables: power output, engine efficiency, temperature and time.

Dynamic programming is an effective means to achieve this type of optimal control
sequence [28,29]. It discretizes continuous control on the timeline, converts it into a multi-stage
decision-making process and finally decomposes it into a series of simple single-step decision-making
problems. A global optimal solution is obtained by solving these simple problems and combining the
overall optimization goals.

When solving the optimal control problem of the warm-up process using dynamic programming,
the following assumptions and agreements should be made first:

(a) The starting and ending point of the warm-up process are the ambient temperature and the ideal
operating temperature respectively, which are set to 293 K and 343 K in this research;

(b) During the warm-up process, the HEV is driven in serial hybrid mode, in which no connection
occurs between engine speed and vehicle speed;

(c) Heat loss through the heater core is ignored, which means the coolant temperature will not
decrease with time;

(d) The value of the engine power output is restricted as PICE ∈ [10, 20], and the rounded-off value

of the rate of temperature increase is within
.
TECT ∈ [0.167, 0.333];

(e) The duration of the warm-up process will not exceed 300 s;
(f) The defined target for optimization is minimizing overall fuel consumption during the warm-up

process, which is Min
{∫ 300

0
.

m f dt
}

.

The dynamic programming model was established, and a total of 10 stages were divided in terms
of time, with the duration of a single stage set as 30 s:

k = 1, 2 . . . . . . , 10 (1)
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State variable sk is defined as the initial temperature of each stage:

s1 = 293
s2 = {295, 298.5, 303}
. . . . . .
s6 = {318, 320.5, . . . . . . , 340.5, 343}
. . . . . .
s10 = {338, 340.5, 343}
s11 = 343

(2)

Figure 5 shows the definitions of stage division and state variable of the dynamic programming
model of the warm-up process.
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warm-up process.

Decision variable xk is the expected coolant temperature-rise of each stage. If sk < 343, then
xk = {5, 7.5, 10}; and if sk = 343, then xk = 0. Therefore, the dynamic programming state transition
equation can be acquired as

sk+1 = sk + xk (3)

The stage index function vk(sk, xk) is defined as the required fuel consumption for the expected
coolant temperature increase xk of each stage. Therefore, if the engine temperature sk < 343 and the
expected temperature increase is xk during Stage x, then the required engine power output value
PICE(sk, xk/30) can be acquired according to the test results in Section 3. Moreover, in accordance with
the test results in Chapter 1, the effective fuel consumption rate under the stage’s initial temperature
sk and final temperature sk + xk that correspond to the power output PICE, which are be(PICE, sk) and
be(PICE, sk + xk), respectively, can be obtained. To simplify the calculations, the linear average value
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of be(PICE, sk) and be(PICE, sk + xk) is used. If the engine temperature sk = 343, then vk(sk, xk) = 0.
In summary, the stage index function can be expressed as

vk(sk, xk) =

{
30PICE

3600 ·
be(PICE ,sk)+be(PICE ,sk+xk)

2 , sk < 343
0, sk = 343

(4)

The process index function is the sum of the stage index functions:

f ∗k (sk) = Min
11

∑
i=k

vi(si, xi) (5)

Therefore, the basic dynamic programming function can be acquired as
f ∗11(s11) = 0
f ∗k (sk) = Min

xk∈Xk(sk)

{
vk(sk, xk) + f ∗k+1(sk+1)

}
k = 10, 9, . . . . . . , 2, 1

(6)

The control sequence for the minimal energy consumption of the warm-up process can be
acquired by solving the dynamic programming model, as shown in Figure 6, where the expected rates
of temperature increase are set as 0.167, 0.333 and 0.25 K/s at 0–60, 60–90 and 90–210 s, respectively.
Then, the engine temperature is expected to reach 343 K after 210 s and to be maintained at this value
until the ending point of the route, which is at 300 s.
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dynamic programming.

5. Fuzzy Control Strategy

Through the adoption of dynamic programming, the power control sequence during the warm-up
process with minimal energy consumption can be acquired without considering vehicle power output,
the state of charge (SOC) of the battery and heat exchange between the internal combustion engine and
the external environment. However, if these factors along with the difference in the rate of temperature
increase due to air conditioning and the heater core are considered, then the degrees of freedom and
the complexity of the system will be drastically increased, which is not advisable for off-line global
optimization. Therefore, a fuzzy control strategy in serial HEV was designed in this research according
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to engine temperature, the rate of change in engine temperature and the SOC of the battery, as shown
in Figures 7 and 8.
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This control strategy is based on the ECMS instantaneous optimization method, and the influence
of engine temperature is considered. During ECMS, engine temperature TECT is set as one of the
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input variables, and the most efficient working condition range that corresponds to the current TECT is
considered the optimal range. The corresponding specific fuel consumption be is acquired according to
the current TECT during the calculation of the equivalent fuel consumption rate.

In the original ECMS control strategy, the output variable of the optimization algorithm is generally
the expected engine power. Then, the control system compares the expected power with the start/stop
threshold to determine whether the engine needs to be started. If the expected power is higher than start
threshold, it will be used as the input to look up the table, which could determine the engine’s target
speed and target torque. In the ECMS + fuzzy control strategy that considers temperature, three fuzzy
controllers were added, including a power compensation fuzzy controller, a speed compensation fuzzy
controller, and a start-stop threshold fuzzy controller. The power compensation fuzzy controller acts on
the stage of calculating the expected power, and its output variable will be added to the output of the
original ECMS to become the final engine expected power. The start–stop threshold fuzzy controller acts
on the engine start decision stage, and its output variable will change the power threshold for engine
start. The engine speed fuzzy control will act on the stage of the target speed and torque calculation,
and the engine speed or load will be adjusted without changing the engine power. Functions such as
stabilizing cold-state engine speed, avoiding frequent cold start and stop, increasing engine warm-up
speed, reducing fuel consumption and preventing engine from overheating under high-temperature
conditions can be realized through the adoption of the three controllers.

(1) Power compensation fuzzy controller

The power compensation fuzzy controller is a dual-input single-output fuzzy control element,
with the expected engine power PICE and temperature TECT from ECMS as inputs and the temperature
compensating power PCorr as the output. The actual target engine power PICE_act is the sum of the
temperature compensating power and the expected engine power values:

PICE_act = PICE + PCorr (7)

The input domain PICE ∈ [0, 50] is divided into three membership functions: low, medium and
high. Meanwhile, the input domain TECT ∈ [−40, 120] is divided into five membership functions:
ultra-low, low, medium, high and ultra-high. The output domain PCorr ∈ [−10, 10] is divided into five
membership functions: negative big, negative, zero, positive and positive big.

The basic design theory of the fuzzy rule base is as follows. Under low-temperature conditions,
if the expected engine power output is low, then positive power compensation is selected to increase
engine warm-up speed. Under medium-temperature conditions, power compensation tends to
become zero to fully realize the efficiency advantage of the ECMS instantaneous optimization method.
Under high-temperature conditions, an adequate amount of negative power compensation is selected to
prevent the engine from overheating. The final fuzzy rule after repeated calibrations is shown in Table 3.
The Mamdani fuzzy inference system and the centre-of-gravity defuzzification method are adopted in
the fuzzy controller, and the correlations between the output and inputs are shown in Figure 9.

Table 3. Fuzzy rule table for temperature compensating engine power.

PCorr
PICE

L M H

TECT

UL PB Z NB
L PB Z N
M P Z Z
H Z Z Z

UH Z N NB

UL—Ultra Low; L—Low; M—Middle; H—High; UH—Ultra High; PB—Positive Big; P—Positive; Z—Zero;
N—Negative; NB—Negative Big.
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(2) Start/stop threshold fuzzy controller

The start/stop threshold fuzzy controller is a dual-input single-output fuzzy control element, with
the battery SOC and engine temperature TECT(◦C) as the inputs and the minimum power threshold
Pmin as the output. When PICE_act ≥ Pmin, the engine starts; when PICE_act < Pmin− 5, the engine stops.

The input domain SOC ∈ [0.3, 0.4] is divided into three membership functions: low, medium
and high. Meanwhile, the input domain TECT ∈ [−40, 120] is divided into five membership functions:
ultra-low, low, medium, high and ultra-high. The output domain Pmin ∈ [0, 15] is divided into four
membership functions: high, medium, low and ultra-low.

The basic design theory of the fuzzy rule base is as follows. Under low-temperature conditions, if
the expected engine power output is low, then low threshold values are selected to charge the battery,
increase engine warm-up speed and avoid frequent starts and stops. During the engine warm-up
process, the threshold value is increased to improve engine efficiency, whereas low threshold values
are selected when battery SOC is low and vice versa. The fuzzy rule is summarised in Table 4, and the
correlations between the output and inputs are illustrated in Figure 10.

Table 4. Fuzzy rule table for compensating start/stop threshold.

Pmin
SOC

L M H

TECT

UL UL UL UL
L UL UL L
M L L M
H M M H

UH H H H

UL—Ultra Low; L—Low; M—Middle; H—High; UH—Ultra High; PB—Positive Big; P—Positive; Z—Zero;
N—Negative; NB—Negative Big.

(3) Engine speed compensation fuzzy controller

Engine speed compensation is a dual-input single-output fuzzy control element, with the engine
temperature TECT(◦C) and the rate of change in engine temperature

.
TECT as the inputs and engine

speed compensation nCorr as the output. The actual target engine speed nICE_act is the sum of the
engine speed nICE, which corresponds to the target engine power output PICE_act and the engine speed
compensation nCorr values.

The input domain TECT ∈ [−40, 120] is divided into five membership functions: ultra-low, low,
medium, high and ultra-high. Meanwhile, the input domain

.
TECT ∈ [−0.2, 0.6] is divided into four
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membership functions: ultra-low, low, medium and high. The output domain nCorr ∈ [−200, 500] is
divided into four membership functions: negative, zero, positive and positive big.

The basic design theory of the fuzzy rule base is as follows. When the temperature is below the
ideal working temperature, high engine speed compensation values are selected to accelerate the
warm-up process if the rate of change in engine temperature is low. If the rate of change in engine
temperature increases, then the compensation level is decreased to keep the engine within efficient
working conditions. When the temperature reaches the ideal value, negative compensation values are
adopted to prevent the engine from overheating. The fuzzy rule is summarized in Table 5, and the
correlations between the output and inputs are illustrated in Figure 11.
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nCorr

.
TECT

UL L M H

TECT

UL PB PB P P
L PB P Z Z
M P P Z Z
H Z Z N N

UH Z N N N

UL—Ultra Low; L—Low; M—Middle; H—High; UH—Ultra High; PB—Positive Big; P—Positive; Z—Zero;
N—Negative; NB—Negative Big.
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6. Testing

During the test, the initial temperature of the engine coolant was set at an ambient temperature of
293 K and the initial SOC of the power battery was 30%. Two standardized cycle testing conditions,
namely, the urban dynamometer driving schedule (UDDS) and the highway fuel economy test
(HWFET), were selected for analysis.

The control strategies used include the ECMS control strategy that does not consider temperature,
the ECMS control strategy with a fuzzy controller and the warming-up process control strategy
based on dynamic programming. Among these, the warming-up process control strategy based
on dynamic programming is divided into two phases according to coolant temperature: (1) when
coolant temperature is lower than 343 K, the output power of the engine is controlled according to the
optimization result of the dynamic programming; and (2) when coolant temperature is higher than
343 K, the engine output power is determined according to the conventional EMSC control strategy.

Most of the HEV energy management systems use the battery SOC as one of the inputs and affect
the real-time power distribution. In order to perform comparative tests under similar initial conditions,
we used the AVL e-Storage battery simulation system instead of a real battery. We set the capacity
of the power battery, the open-circuit voltage curve at different SOCs and the internal resistance
characteristic curve based on this system. During the experiment, the battery simulation system will
change the output voltage according to the difference between the SOC and the load. At the same
time, the voltage and current are integrated, and the assumed SOC is calculated with reference to the
assumed battery capacity. In this way, we can create a relatively stable initial test condition.

The test results are summarized in Table 6. The engine output power, engine coolant temperature
and fuel consumption under different control strategies are presented in Figures 12–14, respectively.
Figures 15 and 16 show the outputs of the fuzzy controller when controlled by ‘ECMS+ fuzzy control’
under two test conditions.

First, we compare the original ECMS and ECMS with the fuzzy controller. In the UDDS cycle,
which represents urban roads, the fuel consumption and battery consumption of the two strategies are
almost the same, but with the fuzzy controller, the time for warm-up to 343 K is reduced by 28.1%, and
the time for 363 K is reduced by 25.7%. In the case of the HWFET cycle, which represents highways,
the energy consumption of the two strategies is also similar: ECMS with fuzzy controller can reduce
fuel consumption by 1.6% and reduce battery consumption from −1.35 Ah to −1.38 Ah, i.e., the
generated power is increased. At the same time, compared with the original ECMS control strategy,
fuzzy controllers reduced the time warm-up to 343 K from 239 s to 131 s, which was shortened by
nearly 45%.

Then, we compare the original ECMS and dynamic programming strategy. In the UDDS cycle,
the battery consumption of the two control strategies is the same; however, the dynamic programming
strategy reduces the fuel consumption from 583 g to 538 g, which is approximately 7.7%; at the same
time, the dynamic programming strategy will also reduce the warm-up time to 343 K by 11.4%. In the
HWFET cycle, the dynamic programming strategy reduced fuel consumption by approximately 10.0%,
increased generated power by 3.7% and also shortened the warm-up time to 343 K by 15.5%.

For the above three control strategies, the end-of-test battery consumption was negative and the
difference did not exceed 4%, indicating the existence of a battery usage surplus for the entire test.
The energy management control strategy can effectively maintain the stability of the battery SOC and
comply with the basic principles of energy management of hybrid electric vehicles.
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Table 6. Warm-up time and energy consumption with different control strategies. ECMS: equivalent
consumption minimization strategy; UDDS: urban dynamometer driving schedule; HWFET: highway
fuel economy test.

Duty Cycle Items ECMS ECMS + Fuzzy Dynamic Programming (DP)

UDDS

Warm-up to 343 K/s 228 164 202
Warm-up to 363 K/s 401 297 396
Fuel Consumption/g 583 582 538

Battery Consumption/Ah −1.23 −1.22 −1.23

HWFET

Warm-up to 343 K/s 239 131 202
Warm-up to 363 K/s 274 272 308
Fuel Consumption/g 679 668 618

Battery Consumption/Ah −1.35 −1.38 −1.40

Energies 2018, 11, x FOR PEER REVIEW  15 of 20 

 

Table 6. Warm-up time and energy consumption with different control strategies. ECMS: equivalent 

consumption minimization strategy; UDDS: urban dynamometer driving schedule; HWFET: 

highway fuel economy test. 

Duty 

Cycle 
Items ECMS ECMS+ Fuzzy 

Dynamic 

Programming (DP) 

UDDS 

Warm-up to 343 K/s 228 164 202 

Warm-up to 363 K/s 401 297 396 

Fuel Consumption/g 583 582 538 

Battery Consumption/Ah −1.23 −1.22 −1.23 

HWFET 

Warm-up to 343 K/s 239 131 202 

Warm-up to 363 K/s 274 272 308 

Fuel Consumption/g 679 668 618 

Battery Consumption/Ah −1.35 −1.38 −1.40 

 

 
(a) UDDS 

 
(b) HWFET 

Figure 12. Auxiliary power unit (APU) output power with different control strategies. 

With different control strategies, the plots of the engine output power are shown in Figure 12. In 

the first 300 s of the test—the engine warm-up process—the power output of different control strategies 

makes a significant difference; after warm-up, the power output tends to be consistent. During the 

warm-up process, the original ECMS control strategy tends to start and stop frequently. In the UDDS 

and HWFET cycle, the number of start-stops reached 8 and 6 before the coolant temperature reached 

363 K. The ECMS+ fuzzy control strategy reduces the engine power when the engine temperature is 

low (first 80 s) and maintains a certain power output during short-term parking, which causes the 

number of start-stops to reduce to 5. The dynamic programming strategy, in accordance with the 

optimization control sequence, avoids frequent start-stop during the whole warm-up process, and 

gradually increases the output power of the engine, which in turn, reduces the number of start-stops to 

3 in UDDS and 2 in HWFET. 

Figure 12. Auxiliary power unit (APU) output power with different control strategies.

With different control strategies, the plots of the engine output power are shown in Figure 12.
In the first 300 s of the test—the engine warm-up process—the power output of different control
strategies makes a significant difference; after warm-up, the power output tends to be consistent.
During the warm-up process, the original ECMS control strategy tends to start and stop frequently.
In the UDDS and HWFET cycle, the number of start-stops reached 8 and 6 before the coolant
temperature reached 363 K. The ECMS + fuzzy control strategy reduces the engine power when
the engine temperature is low (first 80 s) and maintains a certain power output during short-term
parking, which causes the number of start-stops to reduce to 5. The dynamic programming strategy,
in accordance with the optimization control sequence, avoids frequent start-stop during the whole
warm-up process, and gradually increases the output power of the engine, which in turn, reduces the
number of start-stops to 3 in UDDS and 2 in HWFET.
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Figure 14. Fuel consumption with different control strategies.

For the different control strategies, the plots of coolant temperature and fuel consumption are
shown in Figures 13 and 14, respectively. For the original ECMS, the coolant temperature and the
fuel consumption both show a segmented increase because the power control tends to start and stop
frequently and use a higher power output. The ECMS with fuzzy controller can increase the engine
speed and maintain a longer engine run time when the coolant temperature is low, which corresponds
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to the fastest temperature rise rate; but the fuzzy controllers do not affect to the output power of
the engine to a large extent, so the fuel consumption of the ECMS and ECMS with or without the
fuzzy controller is very similar. The dynamic programming strategy has a moderate and relatively
stable temperature increase rate. This means that as the strategy outputs power in accordance with a
predetermined control sequence, the warm-up time is basically the same, and the energy consumption
is significantly less than the other two control strategies.
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In order to further understand the role of the fuzzy controller in the ECMS + Fuzzy Control
strategy, the outputs of the three fuzzy controllers in the UDDS and HWFET cycles are shown in
Figures 15 and 16. Observing the plots, it can be seen that the output of the fuzzy controllers during
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the warm-up process is relatively stable regardless of the urban or highway conditions. When the
coolant temperature is low (for the first 100 s), the fuzzy controllers will reduce the engine power by
1–2 kW, increase the engine speed up to 300 r/min and reduce the engine start threshold to 5 kW,
thereby shortening the engine warm-up time. When the coolant temperature gradually approaches
the ideal operating temperature (for the 100–200 s), the fuzzy controllers will no longer adjust the
output power or start/stop threshold. In turn, it tends to properly reduce the engine speed, thereby
increasing the efficiency of the engine. When the coolant temperature reaches the ideal range, the
fuzzy controllers will no longer interfere with the ECMS control strategy. The above-mentioned output
characteristics of the fuzzy controllers are highly consistent with the plots of the engine power, coolant
temperature and fuel consumption as discussed earlier.

7. Conclusions

A significant increase in the fuel consumption of the engine was observed during the cold start
and warm-up processes. Tests show that there are large differences in engine efficiency characteristics
at different coolant temperatures, as well as the fact that coolant temperature rise rate increases with
engine speed and engine load.

The time required for the engine warmer can be effectively shortened through a fuzzy control
method aimed at the temperature of the coolant. Especially in an urban road environment represented
by UDDS, an increase in the fuzzy control link can reduce the time required for the engine to heat to
343 K and 363 K by over 25% and simultaneously decrease the total fuel consumption in the test cycle.

The energy consumption during the warm-up process is significantly reduced through dynamic
programming methods. Under UDDS working conditions, the duration of the warm-up process to
343 K can be shortened by approximately 10% through dynamic programming compared with the
ECMS control strategy, which does not consider temperature. By contrast, under HWFET working
conditions, the strategy based on dynamic programming increases the time required for the warm-up
process. However, this strategy exhibits a significant advantage in terms of fuel economy in the case of
the two driving cycles, where fuel consumption can be reduced by 10%.

Both warm-up process optimal control strategies, including fuzzy controller and dynamic
programming, can meet the basic requirements of energy management strategies, such as maintaining
battery SOC, and have different positive effects. In contrast, a dynamic programming strategy, which
has the characteristics of reduced warm-up time and fuel consumption, is more suitable for normal
climatic conditions; the ECMS with fuzzy controllers, despite the reduction in energy consumption not
being obvious, can significantly shorten the warm-up time of the engine and is more suitable for cold
environments or frequent short-distance driving conditions.
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