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Abstract: Pore structure determines the ability of fluid storage and migration in rocks, expressed as
porosity and permeability in the macroscopic aspects, and the pore throat radius in the microcosmic
aspects. However, complex pore structure and strong heterogeneity make the accurate description of
the tight sandstone reservoir of the Triassic Yanchang Formation, Ordos Basin, China still a problem.
In this paper, mercury injection capillary pressure (MICP) parameters were applied to characterize
the heterogeneity of pore structure, and three types of pore structure were divided, from high to low
quality and defined as Type I, Type II and Type III, separately. Then, the multifractal analysis based
on the MICP data was conducted to investigate the heterogeneity of the tight sandstone reservoir.
The relationships among physical properties, MICP parameters and a series of multifractal parameters
have been detailed analyzed. The results showed that four multifractal parameters, singularity
exponent parameter (αmin), generalized dimension parameter (Dmax), information dimension (D1),
and correlation dimension (D2) were in good correlations with the porosity and permeability,
which can well characterize the pore structure and reservoir heterogeneity of the study area, while the
others didn’t respond well. Meanwhile, there also were good relationships between these multifractal
and MICP parameters.
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1. Introduction

Since advanced technologies of hydraulic fracture and horizontal wells were developed,
tight sandstones have drawn much attention due to their considerable hydrocarbon productivity [1,2].
Different from conventional reservoirs, it is the pore structure that controls flow capacity, producible
pore volumes and production capability of tight sandstone reservoirs, rather than total porosity [3,4].
Tight sandstone reservoirs often have strongly laterally and vertically heterogeneous pore structures,
expressed as a big and fast change in porosity and permeability. Therefore, accurate description
of the pore structure of tight sandstone is conducive to evaluating the productivity of reservoirs
and searching for remaining oil [5–9]. The diagenetic transformation of tight sandstone reservoir is
strong, and the types of diagenesis are complex and varied, mainly including mechanical compaction,
cementation and dissolution. Varied sedimentation [7], diagenesis [8,9] and tectonism [10] will lead to
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complicated pore structures, among them compaction will further reduce the porosity, aggravating
reservoir heterogeneity. The complex pore structure makes it hard to evaluate and type tight sandstone
reservoirs [11,12]. Meanwhile, it is a problem to quantify the heterogeneity through conventional
methods, such as log facies analysis, monofractal method.

With the decline in the oil-production of conventional reservoirs after years of production, tight
sandstone is becoming more and more important, being regarded as the potential reservoir of the future.
Lots of advanced equipment has been applied to investigate the pore structure and heterogeneity
of tight sandstones, such as scanning electron microscopy (SEM), nano computed tomography
(CT)-scan, mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR) and
low-temperature nitrogen adsorption [13–19]. Among this, SEM and nano CT-scan equipment can be
used to qualitatively describe the pore types and sizes, directly. MICP, NMR and nitrogen adsorption
are indirectly indicated the pore structure in rocks by some media. NMR measurement is an important
and effective method for studying the pore size distributions, and also, NMR data can be measured
both underground and in the laboratory. Many researchers have described the pore size distribution of
tight sandstone through NMR data [20–22]. However, from previous studies, different types of pore
fluid will affect the morphology of NMR T2 spectrum, even when the reservoir is oil-wetted, the NMR
T2 spectrum will not truly reflect pore structure [23].

The MICP method assumes that the inner space of the porous material is cylindrical, each pore
can be extended to the outer surface of the sample to contact with the mercury directly, and the contact
angle is about 140 [24,25]. Under a certain pressure, the method assumes mercury can only penetrate
into the pores of the corresponding size, and the amount of mercury injected represents the volume
of the internal pores. Increasing the pressure and calculating the amount of mercury entry, the pore
volume distribution of porous materials can be measured. Some scholars have also tried to construct
MICP data using conventional logs curves or NMR logs [26,27].

The fractal theory was firstly proposed by Mandelbrot [28] in 1982. It is a popular method to
describe the self-similar characteristics of irregular geometric figures [29,30]. However, the shapes of
most natural objects show the nonuniform and multifractal features. A constant fractal dimension
cannot accurately describe an inhomogeneous object. Then, the multifractal theory, a method can
provide more information about the pore properties was proposed, it transforms the measurement
of self-similarity into multifractal function sets, which are characterized by the multifractal spectrum
α ∼ f (α) and the generalized dimension spectrum q ∼ Dq [31,32].

Recently, a lot of research investigating the fractal characteristics of rocks has been done,
Cai et al. [33] have shown that the multifractal features can be used to describe pore surfaces in
hard rocks. Many researchers and scholars have investigated the multifractal characteristics of
tight sandstone reservoirs using the NMR T2 spectra of samples at brine-saturated state [4,16,34].
Some researchers have studied the pore structures of tight sandstones using thin section images based
on multifractal theory [20,35]. These studies all suggested that the multifractal theory is an effective
and convenient method to study the pore structure in unconventional reservoirs.

In this study, firstly MICP data of some tight sandstone core samples from the Chang6 Formation
from the later Triassic (Ordos Basin, China) were applied to characterize the heterogeneity of pore
structure, and three types of pore structure were divided, from high to low quality, as Type I, Type II
and Type III, separately. The pores have been divided into large pores, medium pores and small
pores, and the relationships of the proportion of different pores in different types of pore structure
were analyzed. Later, the multifractal parameters of MICP data were calculated. The relationships
between petrophysical and multifractal parameters were investigated in detail. Through a series of
comparisons, the most effective multifractal parameters for characterizing the pore structure of tight
sandstone have been proposed.
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2. Methodology

2.1. Geological Setting

The Ordos Basin, located in the midwest of China spanning five provinces, covers more than
370,000 square kilometers (Figure 1a,b). It is the second largest sedimentary basin in China [36,37].
The Ordos Basin is a large multicycle cratonic basin with a simple structure. The whole basin is
flat, being higher in the east and lower in the west. Low porosity and low permeability are the
most notable features of the Yanchang Formation sandstone reservoir. According to the standard of
China’s tight oil partition [38,39], the surface air permeability of reservoirs is less than 1 mD for tight
oil. The main layers of oil exploration and development in the Ordos Basin, the Chang6 oil-bearing
formation, Chang7 oil-bearing formation and Chang8 oil-bearing formation all belong to the tight oil
category [10]. The lithostratigraphic section is shown in Figure 1c. In this study, 24 tight sandstone
samples were collected by sealing core drilling from the Chang6 Triassic Yanchang Formation to
evaluate the petrophysical properties and analyze multifractal features.
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2.2. Experiments

To better analyze the multifractal and petrophysical characteristics of the tight sandstone of
the samples, a series of experiments were conducted, including routine petrophysical experiments,
constant pressure MICP, thin section and SEM observations.

MICP measurements were performed to get the pore size distribution of the tight sandstone
samples. The experiments were conducted using AutoPoreIII Mercury Injection equipment
(Micromeritics, Norcross, GA, USA) under conditions of 18 ◦C temperature and relative air humidity
(RH) of 55%, following the Chinese Oil and Gas Industry Standard SY/T 5346-2005. The maximum
capillary pressure is 49.871 Mpa.

Before thin sections are made, the samples needed to be oil washed, then pumped under
vacuum, and a colored epoxy resin injected into the pores. Finally, they were ground to 0.03 mm
thickness. A polarizing microscope was used to observe the rock structure, mineral composition and
pore characteristics.

The observation of the thin sections was conducted at a temperature of 24 ◦C and humidity of
35% RH at the China University of Petroleum (Beijing, China). During the course of observation,
the magnification ranged from 60 to 2000 with an acceleration voltage of 20 kV.

2.3. Multifractal Analysis Theory

Compared with monofractal analysis, multifractal theory uses a continuous function, termed
multifractal singularity spectrum, rather than a single fractal dimension, to characterize the multifractal
features. Detailed multifractal theories have been introduced in some references [41,42]. In this paper,
the box-counting algorithm multifractal method is adopted and briefly described here.

The MICP data can be distribution can be segmented in N(ε) parts within scale ε: The multifractal
theory is mainly used to study the normalized probability distribution of the target objects within the scale.
Denoting n as the point number of the MICP data, n could equal to j power of 2 through interpolation
method, i.e., n = 2j, j = 1, 2, 3 . . . The scale of MICP can be defined as ε = n*2−k (k = 0, 1, 2, . . . , j). The MICP
data can be segmented in N(ε) part within scale ε:

N(ε) =
L
ε
= 2k (1)

For each box, the probability mass distribution of box densities can be expressed as:

Pi(ε) =
vi(ε)

∑
N(ε)
i=1 vi(ε)

(2)

where vi(ε) is MICP data of the ith box, and N(ε) is the total number of boxes for ε.
Defined the partition function as χq(ε), equal to the q square and weighted sum of the probability

Pi(ε). χq(ε) can be expressed as:

χq(ε) =
N(ε)

∑
i=1

Pi(ε)
q ∝ ετ(q) (3)

where χq(ε) is a partition function of q with the scale of ε; τ(q) is the mass exponent.
The number of the boxes in multifractals is defined as Nα(ε), which is related to scale ε and can be

expressed as [43,44]:
Nα(ε) = ε− f (α) (4)

Meanwhile, when taking the logarithm on both sides of Equation (3), τ(q) can be written as:

τ(q) =
Lnχq(ε)

Ln(ε)
ε→ 0 (5)
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The mass exponent τ(q) can be taken as the slope of the curve Lnχq(ε) ∼ Ln(ε). τ(q) can be
used to calculate the generalized fractal dimension Dq. With the different values of q, the generalized
fractal dimension has different definitions:

Dq =


τ(q)
q−1 = 1

q−1 lim
ε→0

log ∑
N(ε)
i=1 Pi(ε)

q

log ε , q 6= 1

∑
N(ε)
i=1 Pi(ε) log Pi(ε)

log ε , q = 1
(6)

The singularity exponent α and multifractal spectrum f (α) can be transformed into [45,46]:

α(q) =
dτ(q)

dq
(7)

and:
f (α) = qα(q)− τ(q) (8)

In fact, the multifractal spectrum α ∼ f (α) and the generalized dimension spectrum q ∼ Dq are
two sets of different parameters describing the fractal characteristics [4,17,33].

2.4. Mercury Injection Capillary Pressure (MICP) Theory

The MICP method assumes that the inner space of the porous material is cylindrical, and each
pore can be extended to the outer surface of the sample to contact with the mercury directly, and the
contact angle is about 140◦ [47–49]. Under a certain pressure, the method assumes mercury can only
penetrate into the pores of the corresponding size, and the amount of mercury injected represents the
volume of the effective porosity, as the following Equation (9) (Young-Laplace law) shows [25]:

PHg =
2σHg cos θHg

r
(9)

where PHg is capillary pressure, MPa; r is the pore throat radius, µm, when the capillary pressure is
equal to PHg; σHg is surface tension, mN/m, always taken as 480 mN/m, θHg is contact angle, (◦),
about 140◦. So, Equation (9) can be written as:

r =
0.735
PHg

(10)

Increasing the pressure and calculating the amount of mercury entry, the pore volume distribution
of porous materials can be measured [50,51].

In order to better analyze MICP data, several related parameters P50, R50, r, Pd, Smax and We

are introduced. P50 is median pressure, MPa, referring to the capillary pressure corresponding to
the mercury saturation 50%. R50 is the median radius, µm, pore radius corresponding to median
pressure P50. r is the average throat radius, µm, indicating the pore structure distribution. The three
front parameters, P50, R50 and r all reflect the physical properties of rock pores. Pd, Smax and We are
three MICP parameters, respectively, referring to displacement pressure (MPa), maximum mercury
saturation (%) and efficiency of mercury withdrawal (%). The latter three parameters, Pd, Smax and We

reflect the difficulty of mercury injection and mercury withdrawal, are also the embodiment of the
complexity of the pore structure and clay content [52,53].

3. Results and Discussion

3.1. Porosity, Permeability and MICP Data

The porosity and permeability (K) values of the samples are listed in Table 1, together with a series
of MICP parameters. The porosity range of the samples is from 5.7% to 15% with an average value
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of 12.10%. The permeability ranges from 0.108 mD to 9.987 mD with most of them less than 1 mD,
and thus corresponding to tight sandstone. The relationship between the porosity and permeability is
shown in Figure 2. The pore throat sizes calculated by Equation (10) are divided into three categories,
large pores (pore throat sizes > 10 µm), medium pores (pore throat sizes range from 1–10 µm) and small
pores (pore throat sizes < 1 µm). The proportions of different types of pores are listed in Table 1, too.

Table 1. The porosity, permeability and mercury injection capillary pressure (MICP) parameters
of samples.

No. Porosity (%) K (mD) P50 (MPa) R50 (µm) r (um) Pd (MPa) Smax (%) We (%) Large Pore (%) Medium Pore (%) Small Pore (%)

1 12.2 0.635 21.8635 0.0336 0.1362 1.6577 75.49 32.3168 0 36.47 39.02
2 14.1 9.987 4.5277 0.1624 1.4537 0.1341 72.59 37.2628 33.47 19.46 19.66
3 12.8 1.553 4.6343 0.1586 0.7140 0.3210 76.47 29.1339 25.96 27.38 23.13
4 13.3 1.318 7.9185 0.0928 0.5350 0.4078 73.78 30.1309 16.23 32.9 24.65
5 14.5 2.951 5.9248 0.1241 0.7622 0.2800 78.42 31.2342 27.2 24.23 26.99
6 13.4 1.285 9.3323 0.0788 0.5089 0.4364 74.11 30.1099 16.36 31.5 26.25
7 13.5 1.151 4.9514 0.1485 0.5617 0.3976 82.15 32.5816 22.36 30.91 28.88
8 15.0 5.365 5.8377 0.1259 0.9252 0.2202 74.77 32.7690 27.18 24.22 23.37
9 13.6 1.244 4.5437 0.1618 0.6162 0.4111 75.79 29.7635 23 30.77 22.02

10 13.6 1.515 4.0092 0.1834 0.6537 0.4114 76.13 30.5637 26.91 27.55 21.67
11 13.4 2.088 4.0521 0.1814 0.8023 0.3387 72.23 28.0463 30.56 23.35 18.32
12 5.7 0.108 29.7888 0.0247 0.0629 5.2180 64.38 31.5089 0 10.58 53.8
13 13.6 1.107 3.2311 0.2275 0.5251 0.3982 81.24 29.9167 15.25 42.66 23.33
14 13.6 1.107 3.9024 0.1884 0.3257 0.7812 79.67 33.3898 2.33 53.54 23.8
15 13.8 2.585 2.5664 0.2864 0.8658 0.1289 84.58 28.2272 30.89 28.38 25.31
16 14.0 0.486 6.0551 0.1214 0.1679 1.4097 84.15 31.8996 0 52.21 31.94
17 10.2 0.392 6.9278 0.1061 0.1420 1.9421 88.75 36.6435 0 50.19 38.56
18 9.7 0.156 13.7947 0.0533 0.0979 2.1185 75.9 20.6429 0 27.61 48.29
19 7.9 0.168 9.9355 0.0740 0.1976 0.9940 79.53 28.3013 0.91 43.11 35.51
20 10.8 0.271 10.0876 0.0729 0.1335 1.9989 81.85 31.1925 0 44.17 37.68
21 10.3 0.395 9.9605 0.0738 0.1609 1.5684 68.03 20.1933 0.43 40.5 27.1
22 11.7 0.800 4.5632 0.1611 0.3004 0.7287 80.32 29.9648 3.82 52.64 23.86
23 10.5 0.451 3.5488 0.2071 0.4010 0.4524 86.62 27.8590 11.59 49.73 25.3
24 10.5 0.279 6.7273 0.1093 0.1505 1.4602 88.1000 30.7172 0 50.65 37.45

Notes: Large pore: pore throat sizes > 10 µm; Medium pore: pore throat sizes range from 1–10 µm; Small pore: pore
throat sizes < 1 µm.
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The average pore radius r of the samples is distributed between 0.0629–5.2180 µm,
with an average value of 0.4677 µm. The displacement pressure Pd ranges from 0.1289 MPa to
5.218 MPa, showing a good negative correlation with r. The sensitivity to the permeability of different
parameters listed in Table 1 is diverse. Among them, only the average pore radius r and displacement
pressure Pd show a good correlation (or negative correlation) with permeability (R2 > 0.7), while the
correlations between permeability and the other petrophysical parameters are less the 0.25. r and Pd
are good parameters to reflect the heterogeneity of tight sandstone in the study area. The maximum
capillary pressure is only 49.871 Mpa, the maximum mercury saturation Smax of almost all samples
reaches over 70%. This ensures that our experimental mercury injection curves can reflect most pore
volume, some microporous information still will be omitted. When studying the reservoirs with lower
permeability, the maximum capillary pressure should be higher than 100 MPa [54]. The mercury
removal efficiency of the samples is about 30%. The efficiency of mercury withdrawal We is often
influenced by physical properties, the type and content of clay. In general, the better the physical
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properties are, the greater mercury withdrawal efficiency is [55]. The values of Pd and We shows that
the pore throats are fine and have poor connectivity and low percolation capacity.

3.2. Classification of the Pore Structure

Only partial thin sections and electron micrographs of samples were collected and observed.
Through the observation and comparison of the thin sections, most of the samples belong to lithic
feldspar sandstone and lithic feldspar sandstone (Table 2), and the rock particles are not well round,
with a medium sorting, basically angular or sub angular. The primary intergranular pores as the
most important pore space, are not developed. Plastic mica minerals are filled between particles,
damaging the seepage capacity of rocks (Figure 3a,b). The surface of some particles is covered by
padded chlorite, as Figure 3c shows. The development of chlorite always indicates the dominant
reservoir [37]. Dissolution of feldspar particles has a constructive effect on pore structure (Figure 3a,d).
In the study reservoir, the higher content of chlorite and feldspar represented the improvement of the
porosity and permeability. Considering the accuracy of data from thin section observations, no further
quantitative analysis of mineral content was made.

Table 2. The thin section observations of samples.

No. Quartz (%) Feldspar (%) Mica (%) Chlorite (%) Iron Calcite (%) Main Particle Size (µm) Sorting Grinding Roundness Cementation Type

1 18 42 23 5 2 0.10–0.30 M A chlorite thin film
3 22 53 5 4 6 0.2–0.5 M A chlorite thin film
4 20 54 7 4 2 0.15–0.5 M SA-A chlorite thin film
7 21 55 3 4 7 0.15–0.4 M A pore-chlorite thin film
9 23 57 0 6 1 0.1–0.3 M-G SA-A chlorite thin film

11 22 55 5 6.5 1 0.1–0.32 M-G SA-A chlorite thin film
12 15 50 7 0 18 0.10–0.35 M A pore
13 20 60 3 6 2 0.10–0.30 M-G A chlorite thin film
15 21 56 5 5 3 0.10–0.35 M A pore-chlorite thin film
16 22 55 6 7 3 0.05–0.15 G A pore-chlorite thin film
20 30 39 8 2 1 0.05–0.20 M SA chlorite thin film-pore
21 23 53.5 3 3 1.5 0.2–0.5 M SA chlorite thin film-pore
22 22 48 8.5 3 2 0.12–0.38 M A pore-chlorite thin film
23 22 55 6 3 2 0.16–0.28 G A pore
24 22 52 6 3 0 0.12–0.24 G A pore-chlorite thin film

Notes: M: medium sorted; G: good sorted; A: angular; SA: sub-angular.
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Figure 3. Thin section images and scanning electron microscopy (SEM) images of the tight sandstone
in the study area: (a) intergranular pores and feldspar dissolution pore; (b) intergranular pores
and enriched mica; (c) the surface of the rock particles covered with padded chlorite; (d) feldspar
dissolved pore.
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The samples with different pore structure have been divided into three types based on porosity,
permeability, pore structure parameters, and the proportion of different pores. Pore structure of three
types of reservoirs are represented by samples in Figure 4. The range and mean value of the parameters
of different types are listed in Table 3.
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Figure 4. The mercury injection capillary pressure (MICP) curves of different types of reservoirs:
(a) the pore throat size distributions of different types; (b) the mercury capillary pressure curves of
different types.

Table 3. Classification of reservoirs according to physical properties and MICP parameters.

Type Porosity (%) K (Md) P50 (MPa) r (um) Pd (MPa) Large Pore (%) Medium Pore (%) Small Pore (%)

Type I 12.8–15 1.151–9.987 2.57–5.92 0.56–1.45 0.13–0.41 22.36–33.47 19.46–30.91 18.32–28.88
13.81 3.160 4.56 0.82 0.29 27.50 26.25 23.26

Type II 10.5–13.6 0.451–1.318 3.23–9.33 0.30–0.54 0.40–0.78 2.33–16.36 31.5–53.54 23.33–26.25
12.68 1.011 5.42 0.43 0.53 10.93 43.83 24.53

Type III 5.7–14 0.108–0.635 6.06–29.79 0.06–0.20 0.99–5.22 0–0.91 10.58–52.21 27.1–53.8
10.3 0.369 11.97 0.15 1.91 0.52 40.81 37.32

3.3. Pore Characteristics of Reservoirs with Different Pore Structure Types

As Figures 4 and 5 show, different types of samples have different pore structures. Samples of
Type I belong to the best reservoir in the study formation. The average porosity and permeability
are the highest among the three types, are 13.81% and 3.160 mD, respectively. Large pores and
medium pores are the main channels of Type I reservoir. The average proportion of large pore and
medium pore are respectively 27.5% and 26.25%. Both of them are important indicators of permeability.
With the porosity and permeability increasing in Type I reservoir, the proportion of medium pore
decreases and the large pore proportion increases (Figure 6). The proportion of large pore has a good
positive correlation with the permeability (R2 = 0.56), while the proportion of medium pore has a
better negative correlation with the permeability (R2 = −0.75). Because the contribution of the large
pores to the permeability is far greater than medium pores and small pores, and with the increasing
proportion of the medium pores, the proportion of the large pores will decrease. Therefore, the
proportion of the medium pores seems to be negatively correlated with the permeability. Meanwhile,
as a non-major seepage channel, the change of small pore proportion has little effect on the permeability
of Type I reservoirs.
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pore structure types.

The average porosity and permeability of Type II reservoir are 13.68% and 1.011 mD, tighter than
Type I reservoir. In Type II reservoir, the proportion of medium pore ranges from 33.5% to 53.54%,
with an average value of 43.83%. The medium pores, distributed from 1 µm to 10 µm seem to be the
main seepage channels of the Type II reservoir, with the highest proportion. But with the increasing of
the proportion of medium pore, permeability shows a reduced trend. In fact, the large pores of less
proportion still greatly affected the permeability of samples. With the difference in diagenesis and
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cementation types, there is a bad correspondence between permeability and the proportion of different
pores in Type II reservoir.

In reservoirs with Type III pore structure, the distribution of the pores is very different from the
two above. The values of porosity and permeability are extremely low. There are little large pores;
medium pores are the most major storage space and percolation path. With the increase of medium
pore proportion, the permeability increases. In this kind of reservoirs, the proportion of medium pores
and small pores both have good correlations with permeability. The Type III reservoir is the tightest
type among them, with an average permeability of 0.369 mD.

3.4. Multifractal Spectrum Parameters

In this research, the values of q range from −10 to 10, with a step of 0.1. With the different values
of q, the mass exponent τ(q), the slope of the curve Lnχq(ε)~ Ln(ε), can be described by Figure 7.
The mass exponent spectrum q ∼ τ(q) is nonlinear, indicating the multifractal characteristics of
MICP data. After the determination of τ(q), the multifractal spectrum α ∼ f (α) and the generalized
dimension spectrum q ∼ Dq can be calculated by Equations (6) and (8), and the results are shown in
Figure 7.
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Figure 7. Multifractal analysis of the MICP data in the tight sandstone. (a) the mass exponent τ(q);
(b) the generalized dimension spectrum q ∼ Dq; (c) the multifractal spectrum α ∼ f (α).

As q increases from −10 to 10, Dq gradually decreased, eventually approaching a balance,
where D−10 represents Dmin and D10 represents Dmax. D0, D1 and D2 also are important dimension
spectrum parameters, with the meanings of the capacity dimension parameter, information dimension
parameter and correlation dimension parameter, respectively.

The multifractal spectrum α ∼ f (α) can also reveal the multifractal characteristics of the tight
sandstones. αmin and αmax represent α−10 and α10, respectively. At the same time, αmin is a subset
of the maximum probability, while αmax is corresponding to a subset of the minimum probability.
When q < 0, f (α) increases as α increasing. Contrary to when q < 0, f (α) decreases as α increases.
The singularity strength range is defined as ∆α = αmax − αmin. ∆α is used to describe the complexity
and heterogeneity of multifractal objects. With the heterogeneity of the pore structure increasing,
∆α increases. The parameter ∆ f is defined as the difference between the value of f (αmax) and f (αmin),
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which is equal to the ratio of the minimum value to the maximum value of multifractal singularity
spectrum [4].

3.5. Multifractal Characteristics of Pore Structure in Tight Sandstones

Multifractal analysis was performed on all the MICP data of tight sandstone samples, and the
relationship trends of mass exponent spectrum q ∼ τ(q), the generalized dimension spectrum q ∼ Dq

and the multifractal spectrum α ∼ f (α) were similar to Figure 7. However, the characteristics of
the multifractal spectrum of samples with different pore structures are distinctly different. All three
types of tight sandstones have strong multifractal characteristics and heterogeneity, as Figure 8 shows.
The mass exponent spectrum q ∼ τ(q) and the generalized dimension spectrum q ∼ Dq of different
rock types are monotonically decreasing. Type I pore structure has the highest values of τmax and
Dmax, while Type III pore structure always has the highest values of τmin and Dmin. In the multifractal
spectrum α ∼ f (α), the highest points of f (α) are almost the same. With the changes of pore structure
types, the left and right hook both change a lot, which indicates the heterogeneity of pore throat
distribution of different types of reservoirs.
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Figure 8. Multifractal spectrum of MICP data in tight sandstone samples with different types of
reservoirs. (a) the mass exponent τ(q) of different types; (b) the generalized dimension spectrum
q ∼ Dq of different types; (c) the multifractal spectrum α ∼ f (α) of different types.

The morphological parameters, such as αmax, αmin, Dmax, Dmin, D1, D2, f max, f min, ∆α and 4 f ,
were obtained from the analysis of the multifractal spectrum α ∼ f (α) and the generalized dimension
spectrum q ∼ Dq. Table 4 lists the multifractal parameters of three pore structure types. The average
values of αmax, αmin, Dmax, Dmin, D1, D2 and f min increase from Type I to Type III reservoir, while the
average values of f max and4 f decrease. In Table 4, among all the multifractal parameters, αmin, Dmax,
D1, D2 and f max can be used to type the different pore structure types.
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Table 4. Multifractal parameters of tight sandstone samples with different types of pore structure.

Type αmax αmin Dmax Dmin D1 D2 f max f min 4α f

Type I 1.18–1.24 0.14–0.28 0.17–0.32 1.11–1.15 0.56–0.70 0.31–0.53 0.22–0.50 −0.01–0.00 0.90–1.06 0.22–0.50
1.21 0.21 0.24 1.13 0.63 0.42 0.37 0.00 0.99 0.37

Type II 1.16–1.90 0.26–0.46 0.29–0.49 1.11–1.71 0.67–0.80 0.48–0.67 0.00–0.59 0.00–0.20 0.79–1.54 −0.01–0.55
1.33 0.36 0.39 1.23 0.71 0.56 0.29 0.07 0.97 0.23

Type III 0.99–2.14 0.34–0.79 0.40–0.82 0.91–1.92 0.71–0.92 0.58–0.93 −0.28–0.19 −0.19–0.55 0.2–1.80 −0.30–0.45
1.66 0.48 0.53 1.50 0.77 0.69 −0.07 0.08 1.17 0.05

3.6. The Relationship between Multifractal Parameters and the Porosity and Permeability

In Table 4, a series of multifractal parameters αmax, αmin, Dmax, Dmin, D1, D2, f max, f min, ∆α and
4 f were used to classify the pore structure types. Figure 9 shows that the parameters αmax, αmin, Dmax,
Dmin, D1, D2, and ∆α are negatively correlated with porosity and permeability, whereas f max and4 f
are negatively correlated with the porosity and permeability. As Figure 9 shows, some multifractal
parameters, such as αmin, Dmax, D1, and D2 are in strong correlations with porosity and permeability,
with the absolute values of the correlation coefficients higher than 0.57.Energies 2018, 11, x FOR PEER REVIEW  12 of 16 
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Figure 9. The cross plots between multifractal parameters and the porosity & permeability. (a) the cross
plots between αmax, αmin and porosity; (b) the cross plots between Dmax, Dmin and porosity; (c) the cross
plots between D1, D2 and porosity; (d) the cross plots between f max, f min and porosity; (e) the cross
plot between4 f and porosity; (f) the cross plot between ∆α and porosity; (g) the cross plots between
αmax, αmin and permeability; (h) the cross plots between Dmax, Dmin and permeability; (i) the cross plots
between D1, D2 and permeability; (j) the cross plots between f max, f min and permeability; (k) the cross
plot between4 f and permeability; (l) the cross plot between ∆α and permeability.
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They can be used to effectively indicate the heterogeneity of pore structure. Meanwhile, the other
multifractal parameters, αmax, Dmin, f max, f min, ∆α and4 f display weak correlations with porosity and
permeability, with correlation coefficients ranging from 0.0112 to 0.5097. Although these parameters
are different in different types of reservoirs, the correlation coefficients are still not high enough, which
might relate to the pore throat tortuosity and different cementation type. In conclusion, multifractal
parameters, αmin, Dmax, D1, and D2 are great indicators of the porosity and permeability in tight
sandstone reservoirs.

3.7. The Relationship between Multifractal Parameters and Pore Structure Parameters

The cross plots between multifractal parameters and MICP parameters are shown in Figure 10,
and the correlation coefficients are listed in Table 5. There are fine correlations between the pore
structure parameters and multifractal parameters, too. P50 and Pd are positively correlated with αmax,
αmin, Dmax, Dmin, D1, D2, f min and ∆α, but negatively correlated with f max and4 f , with logarithmic
curve fitting. r is negatively correlated with αmax, αmin, Dmax, Dmin, D1, D2, f min and ∆α, but positively
correlated with f max and4 f , with logarithmic curve fitting. The correlation coefficients between small
pore proportion and large proportion to multifractal parameters are good but totally opposite, as their
contributions to the permeability are different. Combined with the preceding conclusions, the average
pore radius r and the displacement pressure Pd are good parameters to reflect the heterogeneity of
tight sandstone in the study area; the multifractal parameters αmin, Dmax, D1 and D2 display strong
correlations with porosity and permeability. The multifractal parameters αmin, Dmax, D1 and D2 are
also in good correlation with both the average pore radius r and the displacement pressure Pd.

Table 5. The correlation coefficients between multifractal parameters and pore structure parameters.

αmax αmin Dmax Dmin D1 D2 f max f min ∆α f

Porosity −0.278 −0.580 0.618 −0.264 −0.737 −0.730 0.393 −0.054 −0.024 0.224
K −0.261 −0.682 −0.714 −0.238 −0.780 −0.831 0.510 −0.101 −0.011 0.316

P50 0.192 0.443 0.476 0.188 0.439 0.514 −0.189 0.047 0.012 −0.062
r −0.328 −0.686 −0.718 −0.302 −0.712 −0.804 0.582 −0.114 −0.028 0.360

Pd 0.312 0.635 0.664 0.290 0.649 0.742 −0.523 0.099 0.028 −0.316
L-pore −0.383 −0.512 −0.547 −0.359 −0.598 −0.660 0.572 −0.060 −0.069 0.373
M-pore 0.164 0.006 0.006 0.155 0.032 0.030 −0.225 −0.012 0.133 −0.205
S-pore 0.149 0.642 0.680 0.132 0.653 0.735 −0.363 0.118 0.000 −0.171

Notes: L-pore: Large pore proportion; M-pore: Medium pore proportion; S-pore: Small pore proportion.
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Figure 10. The cross plots between multifractal parameters and MICP parameters. (a) the cross plots
between αmax, αmin and P50; (b) the cross plots between αmax, αmin and average pore radius; (c) the cross
plots between αmax, αmin and Pd; (d) the cross plots between αmax, αmin and small pore proportion;
(e) the cross plots between αmax, αmin and medium pore proportion; (f) the cross plots between αmax,
αmin and large pore proportion; (g) the cross plots between Dmax, Dmin and P50; (h) the cross plots
between Dmax, Dmin and average pore radius; (i) the cross plots between Dmax, Dmin and Pd; (j) the
cross plots between Dmax, Dmin and small pore proportion; (k) the cross plots between Dmax, Dmin and
medium pore proportion; (l) the cross plots between Dmax, Dmin and large pore proportion.

4. Conclusions

In this research, the pore structures of the Triassic Yanchang Formation in the Ordos Basin, China
were studied. A series of experiments were conducted to collect more geophysical information about
the tight sandstone samples. Different MICP parameters and multifractal parameters were used to
characterize the heterogeneity of the tight sandstone and type the reservoirs. The following conclusions
were obtained:

(1) The pore structures of the tight sandstone reservoir of the study area can be classified into
three types. Type I reservoir indicates the most effective reservoir, and large pores with a pore throat
bigger than 10 µm are the main seepage channel. Type III reservoir has little large pores, the main
percolation channels of Type III are small pores. The permeability of Type II reservoir is between them.

(2) Different minerals have different effects on the physical properties of tight sandstone reservoirs.
Plastic mica minerals filled between particles will negatively affect the seepage capacity of rocks.
The higher content of chlorite and feldspar always results in an improvement of the porosity and
permeability. The qualitative relationships between them need further research.

(3) The average pore radius r and the displacement pressure Pd are sensitive and effective
parameters. They can be used to reflect the heterogeneity of tight sandstone in the study area.

(4) The multifractal parameters, αmin, Dmax, D1, and D2 are great indicators of the heterogeneity
of reservoirs, they are also in good correlation with the average pore radius r and the displacement
pressure Pd.
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