
energies

Article

Combustion Optimization for Coal Fired Power Plant
Boilers Based on Improved Distributed ELM and
Distributed PSO

Xinying Xu 1, Qi Chen 1, Mifeng Ren 1,*, Lan Cheng 1 and Jun Xie 2

1 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
xuxinying@tyut.edu.cn (X.X.); chenqi0331@link.tyut.edu.cn (Q.C.); taolan_1983@126.com (L.C.)

2 College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China;
xiejun@tyut.edu.cn

* Correspondence: renmifeng@126.com; Tel.: +86-0351-6010-051

Received: 23 February 2019; Accepted: 11 March 2019; Published: 17 March 2019
����������
�������

Abstract: Increasing the combustion efficiency of power plant boilers and reducing pollutant
emissions are important for energy conservation and environmental protection. The power plant
boiler combustion process is a complex multi-input/multi-output system, with a high degree of
nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion
model by means of artificial intelligence methods. However, the traditional intelligent algorithms
cannot deal effectively with the massive and high dimensional power station data. In this paper,
a distributed combustion optimization method for boilers is proposed. The MapReduce programming
framework is used to parallelize the proposed algorithm model and improve its ability to deal with big
data. An improved distributed extreme learning machine is used to establish the combustion system
model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm
optimization algorithm based on MapReduce is used to optimize the input parameters of boiler
combustion model, and weighted coefficient method is used to solve the multi-objective optimization
problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis,
the results show that the method can optimize the boiler combustion efficiency and NOx emissions
by combining different weight coefficients as needed.

Keywords: boiler combustion model; MapReduce; distributed extreme learning machine; distributed
particle swarm optimization; weight coefficient method

1. Introduction

Coal-fired power plants have the characteristics of high power, stability, low cost and short
construction period, so consequently they occupy a leading position in many countries around the
world. However, in the thermal power generation industry, there are a series of problems such as low
boiler combustion efficiency and serious pollutant emissions. To improve boiler combustion efficiency
and reduce pollutant emissions, the boiler combustion system needs to be optimized.

The use of numerical simulation technology to model coal-fired boilers according to their
combustion mechanism and computational fluid dynamic (CFD) is a mature method which is widely
used by scholars [1,2]. However, due to the complexity of coal-fired boiler systems, it is often difficult
to establish a mathematical model by this method. In recent years, with the continuous improvement
of statistical research and the rise of artificial intelligence, support vector machine (SVM) and BP neural
network (BPNN) have been widely used in coal-fired boiler modeling [3–5]. In these applications,
because of the quadratic programming characteristics of support vector machine, it is mainly suitable
for small sample data modeling, while BPNN has the shortcomings of easily falling into a local

Energies 2019, 12, 1036; doi:10.3390/en12061036 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/12/6/1036?type=check_update&version=1
http://dx.doi.org/10.3390/en12061036
http://www.mdpi.com/journal/energies

Energies 2019, 12, 1036 2 of 24

minimum and requiring more human intervention. In 2004, Extreme Learning Machine (ELM) was
proposed by Huang, et al. in [6,7] based on generalized Single-hidden Layer Feedforward Networks
(SLFNs). ELM can speed up learning by randomly generating input weights and hidden biases and
by adopting Moore-Penrose (MP) generalized inversion to determine the output weights. Compared
with the traditional gradient-based learning algorithms, ELM not only has faster learning speed and
higher generalization performance, but also avoids the difficulties of stopping conditions, learning
rate, learning cycle and local minimization encountered by gradient-based learning methods [8].
ELM and its variants [9–11] have been applied in many fields [12–14], including boiler combustion
system modeling [15,16]. Based on the good characteristics of ELM, we choose ELM to model the large
number of high-dimensional data of boiler combustion systems.

When using ELM to model a large number of high-dimensional data of a boiler combustion
system, the huge memory consumption of matrix calculation destroys the performance of learning
algorithm in a single computer environment [17]. The MapReduce programming framework in
Hadoop can realize distributed computing of ELM [17,18], thereby improving their computing ability.
In this paper, an improved distributed extreme learning machine (IDELM), based on the ELM*I
algorithm [19], is proposed to improve the computational efficiency and generalization performance
of the algorithm. For pulverized coal-fired boilers, NOx emissions and boiler combustion efficiency
are modeled separately using the proposed IDELM. Two parameters (L and A) in the model are
analyzed to select the optimal combination of parameters. Then the two models are combined to
build a multi-objective boiler combustion model. Finally, the adjustable input parameters of the boiler
combustion model are optimized with the optimized particle swarm optimization (MR-PSO) algorithm
to get the optimal combination and use it to guide the boiler combustion system regulation.

The rest of this paper are organized as follows: Section 2 gives a brief review of MapReduce,
ELM and the particle swarm optimization (PSO) algorithm. Section 3 provides the implementation of
IDELM and evaluates it. Distributed particle swarm optimization (MR-PSO) algorithm is proposed in
Section 4. Boiler combustion model based on IDELM algorithm is established in Section 5, and then
the specific realization of boiler combustion model optimization in Section 6. Finally, Section 7 presents
the conclusions of this paper.

2. Review of MapReduce, ELM and PSO

In this section, we describe the methods used in our work, which includes a detailed description
of distributed MapReduce framework, then a brief overview of traditional ELM and Ridge Regression
Theory to ELM are proposed, finally, the PSO algorithm is introduced.

2.1. MapReduce

MapReduce [20] is a software architecture proposed by Google for parallel computing of
large-scale data sets. Its biggest advantage lies in hiding the underlying implementation details
of distributed computing. Users do not need to care about the underlying architecture of distributed
clusters. They only need to concentrate on the programming of Map and Reduce, which greatly reduces
the user’s writing difficulty. In recent years, with the demand of big data processing, MapReduce has
gradually become one of the most popular parallel programming models [21–24].

A typical MapReduce task flow chart is shown in Figure 1. First, the input data is divided into
several blocks and stored in the Hadoop Distributed File System (HDFS) [25]. These data is the input to
a MapReduce task. Each Map function is assigned a data block, and input as a key-value pair. Then in
the Map stage, the MapReduce task allocates a certain number of Mapper tasks. Each Mapper task
reads the data block and processes the data according to the user-specified Map function, and outputs
the processed set of key-value pairs in the form of another key-value pair result. In the Shuffle stage,
a set of irregular key-value pairs output by the Map are merged according to certain rules (for example,
merging different values under the same primary key into a list) to make the data have certain rules.
In the Reduce stage, the incoming intermediate result list data is sorted or further processed by the

Energies 2019, 12, 1036 3 of 24

user-written Reduce function, and produces the final output of some form of result. Finally, the final
data generated by Reduce is written back to the HDFS.

Energies 2019, 12, x 3 of 24

processed by the user-written Reduce function, and produces the final output of some form of result.

Finally, the final data generated by Reduce is written back to the HDFS.

Input

files

DFS

Split3

Split4

Split2

Split1

Mapper

Task

Mapper

Task

Mapper

Task

Mapper

Task

Shuflle

Shuflle

Shuflle

Reduce

Task

Reduce

Task

HDFS system

Result1

Result2

Figure 1. MapReduce working principle.

2.2. Extreme Learning Machine

ELM is proposed by Huang e tablet al. [6,7]. Suppose we are training SLFNs with L hidden

neurons and activation function g(x) to learn N distinct samples (xi,ti), where
T

1 2(, , ,) n

i i i inx x x x R 

,
T

1 2(, , ,) m

i i i imt t t t R 
. In ELM, the input weights and hidden biases are randomly generated instead

of tuned. Then, the nonlinear system can be converted to a linear system:

1 1

() () , 1,2, ,
L L

i i j i i j i j

i i

g x g w x b Y j N 
 

     (1)

where T

1 2(, , ,)i i i inw   

is the weight vector connecting -thi hidden neuron and input

neurons,
ib denotes the bias of -thi hidden neuron, i jw x denotes the inner product of

iw

and

jx , T

1 2(, , ,)i i i im    denotes the weight vector connecting the -thj hidden neuron and output

neurons, T

1 2(, , ,)j j j jnY y y y is the network output value.

If the actual output of the network equals to the expected output, then

1

() , 1,2, ,
L

i i j i j

i

g w x b t j N


   , the above equation can be denoted as:

H T  (2)

with:

1 1 1 1 1

1 2 1 2 1 2

1 1

() () ()

(, , , , , , , , , , ,) =

() () ()

L L

L L N

N N L N L N L

h x g x b g x b

H H b b b x x x

h x g x b g x b

 

  

 


      
   

 
   
         

 (3)

T T

1 1

T T

m

=

L NL m N

t

T

t






 

   
   

   
   
   

， (4)

where H is the hidden-layer output matrix,  is the output weight matrix, and T is the target

output matrix.

According to [7], the output weights is given as:

+H T  (5)

where H  is the MP generalized inverse of matrix H .

In [9], orthogonal projection method and ridge regression theory are applied to ELM to

decompose H  . It is pointed out that if THH is reversible, then
T T 1()H H HH  , and if TH H is

Figure 1. MapReduce working principle.

2.2. Extreme Learning Machine

ELM is proposed by Huang e tablet al. [6,7]. Suppose we are training SLFNs with L hidden neurons
and activation function g(x) to learn N distinct samples (xi,ti), where xi = (xi1, xi2, · · · , xin)

T ∈ Rn,
ti = (ti1, ti2, · · · , tim)

T ∈ Rm. In ELM, the input weights and hidden biases are randomly generated
instead of tuned. Then, the nonlinear system can be converted to a linear system:

L

∑
i=1

βigi(xj) =
L

∑
i=1

βig(wixj + bi) = Yj, j = 1, 2, · · · , N (1)

where wi = (ωi1, ωi2, · · · , ωin)
T is the weight vector connecting i−th hidden neuron and input

neurons, bi denotes the bias of i−th hidden neuron, wixj denotes the inner product of wi and xj,
βi = (βi1, βi2, · · · , βim)

T denotes the weight vector connecting the j−th hidden neuron and output
neurons, Yj = (yj1, yj2, · · · , yjn)

T is the network output value.

If the actual output of the network equals to the expected output, then
L
∑

i=1
βig(wixj + bi) = tj,

j = 1, 2, · · · , N, the above equation can be denoted as:

Hβ = T (2)

with:

H = H(ω1, ω2, · · · , ωL, b1, b2, · · · , bL, x1, x2, · · · , xN) =

 h(x1)
...

h(xN)

 =

 g(ω1 · x1 + b1) · · · g(ωL · x1 + bL)
... · · ·

...
g(ω1 · xN + b1) · · · g(ωL · xN + bL)


N×L

(3)

β =

 β1
T

...
βL

T


L×m

, T =

 t1
T

...
tN

T


N×m

(4)

where H is the hidden-layer output matrix, β is the output weight matrix, and T is the target
output matrix.

According to [7], the output weights is given as:

β = H+T (5)

where H+ is the MP generalized inverse of matrix H.

Energies 2019, 12, 1036 4 of 24

In [9], orthogonal projection method and ridge regression theory are applied to ELM to decompose
H+. It is pointed out that if HHT is reversible, then H+ = HT(HHT)

−1, and if HTH is reversible,
then H+ =

(
HTH

)−1HT. In the case of a training sample that is not very large, β can be expressed as:

β = HT
(

I
A

+ HHT
)−1

T (6)

The corresponding ELM output function is:

f (x) = h(x)β = h(x)HT(
I
A

+ HHT)
−1

T (7)

When the training sample is large, β can be expressed as:

β =

(
I
A

+ HTH
)−1

HTT (8)

Then, the ELM output function is:

f (x) = h(x)β = h(x)(
I
A

+ HTH)
−1

HTT (9)

The term 1/A in the formula is a small non-negative number added to the diagonal of HHT or
HTH matrix according to ridge regression theory, which makes the calculation more stable and has
better generalization performance [9].

2.3. Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) algorithm is a swarm intelligence optimization algorithm,
which is an algorithm proposed by Kennedy and Eberhart [26] in 1995 inspired by Reynolds’ bird
group model theory. In 1998, Shi et al. [27] introduced the inertia weight in the original PSO, which was
later called the standard PSO algorithm.

The mathematical model of PSO can be described as follows: Suppose there exists a D dimensional
solution in the search space Ω. The number of particles in a particle swarm is n, and each particle
has a velocity vector and a position vector. The position of the i−th particle is xi = (xi1, xi2, . . . , xiD),
the velocity of the i−th particle is vi = (vi1, vi2, . . . , viD), After iterating until the best position of the
i−th particle is pt

besti
= (pi1, pi2, . . . , piD), this is called the individual best solution of the particle;

the best position found in all the particles is gt
best =

(
pg1, pg2, . . . , pgD

)
, which is known as the

global optimal particle. The PSO algorithm is randomly initialized according to uniform distribution.
Then each particle is updated iteratively according to equations (10) and (11). When the convergence
condition is satisfied, the update of velocity and position is stopped and the global optimal solution
is output:

vt+1
i = wt

i v
t
i + c1r1(Pt

Besti
− xt

i) + c2r2(gt
Best − xt

i) (10)

xt+1
i = xt

i + vt+1
i (11)

where i = 1, 2, . . . , n, wt
i is the inertia weight of the i−th particle velocity; vt

i is the velocity after the
t− th iteration of particle i; c1 and c2 are accelerating factors, and the general value is c1 = c2 = 2; r1,
r2 are random numbers uniformly distributed in the [0, 1] interval; (Pt

besti
− xt

i) is self-learning vectors
and (gt

best − xt
i) is social learning vector. w in the formula uses a linear reduction scheme proposed in

literature [27], the specific formula is as follows:

wt
i = wmax − t

wmax − wmin

itermax
(12)

Energies 2019, 12, 1036 5 of 24

where wt
i is the weight of particle i in iteration t; wmax is the maximum value of inertia weight, usually

taken as 0.9; wmin is the minimum value of inertia weight, usually taken as 0.4; itermax is the preset
maximum number of iterations; t is the current iteration number.

3. Improved Distributed Extreme Learning Machine (IDELM) Algorithm

In this section, the theoretical basis of our work are firstly introduced. Then, the calculation details
of the proposed IDELM are given. Finally, the performance of IDELM is evaluated.

3.1. Preliminaries

In this paper, we use large sample of data to train ELM, so the number of training samples is
much larger than the number of hidden layer nodes, namely N � L. Therefore, HHT is bound to be a
large matrix, so that calculating HHT requires consuming a large amount of memory and calculating
time. In the worst case, memory may be insufficient. However, the dimensionality of the matrix HTH
is much smaller than that of the HHT, so the Formula (8) is more suitable for calculating the output
weight β of the ELM. To implement the ELM algorithm in the MapReduce framework, we need to find
out the parts that can be processed in parallel.

Let S = HTH, D = HTT, then:

β = (
I
A

+ S)
−1

D (13)

According to Equation (3), there are hij = g(wj · xi + bj) and hij
T = hji = g(wi · xj + bi). Then

according to the matrix multiplication law, it can be obtained:

sij =
N

∑
r=1

hT
irhrj =

N

∑
r=1

hrihrj =
N

∑
r=1

g(wi · xr + bi)g(wj · xr + bj) (14)

dij =
N

∑
r=1

hT
irtrj =

N

∑
r=1

hritrj =
N

∑
r=1

g(wi · xr + bi)trj (15)

where hri is the i−th element of the r−th row of the matrix H, and hrj is the j−th element of the
same line.

In Equation (13), the elements in the matrix S can be expressed as the sum of the products of
hri and hrj. It can be seen that, hri and hrj are all from the r−th row of hr, and hr is the hidden layer
output matrix computed by the same group of training input data xr, independent of the other groups
of training data. Similarly, hr and tr in the formula are also independent of training data from other
groups. From the above two equations shows that S and D calculation process is decomposable, so we
can make full use of MapReduce parallel framework to achieve S and D calculations. Which can get
rid of the shackles of computing and storage capabilities in a stand-alone environment and enable
ELM to efficiently train large-scale training data.

3.2. IDELM

According to the above analysis, we know that the process of calculating matrices S and D can
be realized by the MapReduce framework, which is an efficient realization to cope with massive
training data.

In [19], the ELM*I algorithm implements the calculation of matrix S and D in the MapReduce
framework. The solution of the matrix S and D in the Mapper class is partially accumulated. And, to a
certain extent, the ELM*I algorithm reduces the calculation, storage and transmission costs of the
entire matrix solution. Although ELM*I algorithm performs a partial summation of the solution to the
matrices S and D, there is still too much computation time for the program to run on the data extraction
and storage. The map and reduce methods used by the original MapReduce framework in Hadoop are
executed once for each key-value pair. Generally, there are N key-value pairs for N samples, so the

Energies 2019, 12, 1036 6 of 24

map and reduce methods are executed N times, input and output between the serious increase of the
algorithm’s calculation time. The ELM*I algorithm is implemented to the original map and reduce
methods. In order to further reduce the transmission and storage cost of the intermediate operation
result, the original MapReduce framework needs to be jumped out to reduce the time for transmitting
and storing the operation result each time. In order to overcome the shortcomings of ELM*I algorithm,
this paper improves the Map and Reduce methods in the Mapper and Reduce classes. Making them
execute only one Map or Reduce method for each Map or Reduce task, and storing the intermediate
result in HDFS. Finally, using the improved map and reduce methods to calculate the matrix S and D,
an improved distributed extreme learning machine (IDELM) is proposed. The specific algorithm steps
are shown in Algorithm 1.

Algorithm 1: Improved Distributed ELM (IDELM) S and D calculation steps

1 class SandD
2 // INITIALIZE
3 int L, m
4 s = new ASSOCIATIVEARRAY
5 d = new ASSOCIATIVEARRAY
6 class Mapper
7 h = new ASSOCIATIVEARRAY
8 x = new ASSOCIATIVEARRAY
9 map(context)
10 while (context.nextKeyValue)
11 (x,t) = Parse(contest)
12 for i = 1 to L do
13 h[i] = g(wi ·x + bi)
14 for i = 1 to L do
15 for j = 1 to L do
16 s[i][j] = s[i][j] + h[i]·h[j]
17 for i = 1 to m do
18 d[i][j] = d[i][j] + h[i]·t
19 for i = 1 to L do
20 for j = 1 to L do
21 context.write(triple (‘S’, i, j), s[i, j])
22 for j = 1 to m do
23 context.write(triple (‘D’, i, j),d[i, j])
24 method run(context)
25 map(context)
26 class Reduce
27 reduce(context)
28 while (context.nextKey())
29 sd = 0
30 for (val : values)
31 sd+=val.get()
32 context.write(key, sd)
33 method run(context)
34 reduce(context)

Algorithm 1 contains a main class, which in turn contains the Mapper and Reduce classes.
The specific implementation steps of the algorithm 1 can be summarized as follows:

Step 1: Initialize the number of hidden layer nodes L, label m, two arrays s and d, which are used to
store the calculation results of the elements in matrix S and D (Lines 3–5);

Energies 2019, 12, 1036 7 of 24

Step 2: In class Mapper, initialize the local variables h and x (Lines 6–8);
Step 3: In the map method, we first use a while loop to read a sample, and then divide the sample into

training data x and the corresponding training result t. The separated training sample attribute
value x is brought into the partial result h of the loop computation matrix H. According to the
solved h value and Formulas (14) and (15), the partial accumulation of elements in matrices S
and D is calculated, respectively, and the final results are stored in the array s and d. The role of
the while loop is that when all the <key, value> key pairs in the data block are run, the final
sum is stored in s and d (Lines 9–18);

Step 4: Put s and d in the form of key-value pairs in HDFS (Lines 19–23);
Step 5: The run method in the Mapper class is overloaded (Lines 24–25);
Step 6: The reduce method uses a while loop to extract a sample and then initialize a temporary variable.

Merge the intermediate results with the same key values in different Mapper to obtain the final
accumulated sum of the elements corresponding to the key value (Lines 27–31);

Step 7: Store the result in HDFS (Line 32);
Step 8: The run method in the Reduce class is overloaded (Lines 33–34).

Using Algorithm 1 to solve the matrix S and D in the ELM algorithm can further shorten the
overall running time and improve the operation efficiency of the algorithm. Compared with ELM*I
algorithm, except for the different calculation process of the matrix S and D, the other parts are similar
to the ELM*I algorithm.

The algorithm of the improved distributed ELM is shown in Algorithm 2. Firstly, L pairs of hidden
layer node parameters (wi, bi) are randomly generated, and then the input samples and the randomly
generated hidden layer node parameters are brought into the algorithm 1 to calculate the matrix S and
D. Put S and D into the formula to get the output vector β, and finally put β into the formula to predict
the output of the new data set.

Algorithm 2: Improved Distributed ELM (IDELM)

1 for i = 1 to L do
2 Randomly generated hidden layer node parameters (wi, bi)
3 In MapReduce,calculate S = HTH, D = HTT
4 Calculate the output weight vector β = (1/A + S)−1D
5 Forecast result f (x) = h(x) β

3.3. Algorithm Performance Analysis

Both the IDELM algorithm and the ELM*I algorithm use Equation (13) to calculate the output
weight β. The only difference between them is that the two algorithms differ in the process of
computing matrix HTH (i.e., S) and matrix HTT (i.e., D) on the MapReduce framework. Therefore,
when all the relevant parameters of the two algorithms are the same, the output weight β calculated
according to Equation (13) should be the same. In other words, the prediction accuracy of the IDELM
algorithm should be the same as the prediction accuracy of the ELM*I algorithm. Therefore, there is no
need to discuss the prediction accuracy of the two algorithms, only comparing the running time of the
two algorithms and the two performance indexes of the acceleration error. Speedup ratio is a measure
of the performance and effectiveness of program parallelization, the formula is as follows:

speedup =
Tlonely

Tcolony
(16)

where Tlonely is expressed as the execution time of the algorithm on a single machine, Tcolony is expressed
as the execution time of the algorithm on the Hadoop cluster.

Energies 2019, 12, 1036 8 of 24

Due to the limitation of the experimental conditions, the influence of the number of cluster nodes
on the performance of IDELM algorithm cannot be studied. We only study the effect of the number of
hidden layer nodes and the number of training samples on the performance of the algorithm.

3.3.1. Experiments Setup

Hadoop platform built in the laboratory consists of three nodes, including a master node and two
slave nodes. The configuration of the main node is: 32 Gb memory, an 8-core processor and 1T hard
disk, from the node configuration: 16 Gb memory, an 8-core processor and 1T hard drive. Hadoop
version 2.6.2.

Bank8FM dataset of DELVE database is used in the experiments. Bank8FM dataset has eight input
attributes and one output attribute, a total of 4499 sets of data, which randomly assigned 3400 sets of
data as training data, the remaining 1099 sets of data as the testing data, and the parameter A is set
to 28.

3.3.2. The Effect of Number of Hidden Layer Nodes on the Performance of IDELM Algorithm

In this part, seven sets of experiments are conducted with seven different number of hidden layer
nodes. Figure 2 presents the influence of the number of hidden layer nodes on the running time and
acceleration ratio of the algorithm. It can be seen from Figure 2a that as the number of hidden layer
nodes increases, the running time of the three algorithms all show an upward trend. Among them
ELM is the result of stand-alone operation, the other two are the operation result on the distributed
cluster. When the hidden layer node is greater than 200, the runtime of single ELM algorithm grows
greater than the other two algorithms. The running time of IDELM with the same number of nodes is
obvious in the two distributed algorithms less than ELM*I. In theory, distributed ELMs run faster than
standalone ELMs, but at the beginning of Figure 2a, the runtime of single ELM is less than the two
distributed ELMs, primarily because distributed ELMs require Running on a Hadoop cluster, when a
MapReduce program runs on a cluster, a large number of intermediate results are generated inside the
cluster, and intermediate results are transmitted and stored in a time-consuming manner. Therefore,
when there are fewer hidden nodes, the distributed ELM consumes more time. However, as the
number of hidden layer nodes increases, the amount of matrix computation in the algorithm will also
increase. As a result of the limitation of stand-alone computing resources and serial ELM algorithm,
the growth rate of single ELM operation time will increase. The distributed ELM is executed separately
on multiple machines, distributed computing takes less time than that of single ELM, the growth rate
is relatively small, Figure 2a coincides with this corollary. The IDELM algorithm is the improvement
and optimization of the ELM*I algorithm to transfer and store the result in the middle of the cluster, so
it runs faster than ELM*I.

Energies 2019, 12, x 8 of 24

sets of data as training data, the remaining 1099 sets of data as the testing data, and the parameter A
is set to 28.

3.3.2. The Effect of Number of Hidden Layer Nodes on the Performance of IDELM Algorithm

In this part, seven sets of experiments are conducted with seven different number of hidden
layer nodes. Figure 2 presents the influence of the number of hidden layer nodes on the running time
and acceleration ratio of the algorithm. It can be seen from Figure 2a that as the number of hidden
layer nodes increases, the running time of the three algorithms all show an upward trend. Among
them ELM is the result of stand-alone operation, the other two are the operation result on the
distributed cluster. When the hidden layer node is greater than 200, the runtime of single ELM
algorithm grows greater than the other two algorithms. The running time of IDELM with the same
number of nodes is obvious in the two distributed algorithms less than ELM*I. In theory, distributed
ELMs run faster than standalone ELMs, but at the beginning of Figure 2a, the runtime of single ELM
is less than the two distributed ELMs, primarily because distributed ELMs require Running on a
Hadoop cluster, when a MapReduce program runs on a cluster, a large number of intermediate
results are generated inside the cluster, and intermediate results are transmitted and stored in a time-
consuming manner. Therefore, when there are fewer hidden nodes, the distributed ELM consumes
more time. However, as the number of hidden layer nodes increases, the amount of matrix
computation in the algorithm will also increase. As a result of the limitation of stand-alone computing
resources and serial ELM algorithm, the growth rate of single ELM operation time will increase. The
distributed ELM is executed separately on multiple machines, distributed computing takes less time
than that of single ELM, the growth rate is relatively small, Figure 2a coincides with this corollary.
The IDELM algorithm is the improvement and optimization of the ELM*I algorithm to transfer and
store the result in the middle of the cluster, so it runs faster than ELM*I.

(a) The effect on the running time (b) The effect on speedup

Figure 2. The effect of the number of hidden layer nodes on the running time (a) and speedup of the
algorithm (b).

The most obvious change in Figure 2b is that the first point deviates greatly from the other points
and the rest of the points keep a straight line. The reason for this is already described in detail in
Figure 2a, mainly because of the small amount of data at the beginning, it takes more time to transfer
and store the intermediate result of the cluster operation, while the single computer takes less time
due to the small amount of data, so the speedup is also smaller. Overall, the speedup of IDELM is
greater than the speedup of ELM*I, which shows that IDELM algorithm outperforms the ELM*I
algorithm.

3.3.3. The Effect of Training Sample Number on the Performance of IDELM Algorithm

In order to study the impact of training samples on the running time and speedup of IDELM
algorithm, the training samples of Bank8FM data set were artificially extended to 50 times, 100 times,

Figure 2. The effect of the number of hidden layer nodes on the running time (a) and speedup of the
algorithm (b).

Energies 2019, 12, 1036 9 of 24

The most obvious change in Figure 2b is that the first point deviates greatly from the other points
and the rest of the points keep a straight line. The reason for this is already described in detail in
Figure 2a, mainly because of the small amount of data at the beginning, it takes more time to transfer
and store the intermediate result of the cluster operation, while the single computer takes less time due
to the small amount of data, so the speedup is also smaller. Overall, the speedup of IDELM is greater
than the speedup of ELM*I, which shows that IDELM algorithm outperforms the ELM*I algorithm.

3.3.3. The Effect of Training Sample Number on the Performance of IDELM Algorithm

In order to study the impact of training samples on the running time and speedup of IDELM
algorithm, the training samples of Bank8FM data set were artificially extended to 50 times, 100 times,
150 times, 200 times, 250 times and 300 times of the original data set Size of the data set, hidden layer
node selected as 10. Figure 3 presents the effect of training samples on the running time and speedup
of the algorithm.

It can be seen from Figure 3a that the training time of both algorithms increases linearly with
the number of training samples. The running time of the IDELM algorithm is less than the ELM*I
algorithm, which shows that the performance of IDELM algorithm is better than ELM*I. At the same
time, it can be seen from the Figure 3a that when the number of training samples is increased by tens
of times, the increase of training time is very small, which proves that IDELM and ELM*I are suitable
for processing high-dimensional data. Figure 3b shows the variation of the acceleration ratios of the
two algorithms with the number of training samples. The two lines are almost horizontal and the
speedup of IDELM is higher than that of ELM*I.

In summary, both distributed ELM algorithms outperformed the performance of the standalone
ELM algorithm, both in terms of the number of hidden layer nodes and the number of training samples.
Both experiments prove that the performance of IDELM algorithm is superior to the original ELM*I
algorithm, and can effectively deal with the problem of large amounts of high-dimensional data,
which has a good application prospect. In practice, with the increase of hidden nodes and the increase
of sample data, the performance advantage based on IDELM algorithm will be more obvious.

Energies 2019, 12, x 9 of 24

150 times, 200 times, 250 times and 300 times of the original data set Size of the data set, hidden layer
node selected as 10. Figure 3 presents the effect of training samples on the running time and speedup
of the algorithm.

It can be seen from Figure 3a that the training time of both algorithms increases linearly with the
number of training samples. The running time of the IDELM algorithm is less than the ELM*I
algorithm, which shows that the performance of IDELM algorithm is better than ELM*I. At the same
time, it can be seen from the Figure 3a that when the number of training samples is increased by tens
of times, the increase of training time is very small, which proves that IDELM and ELM*I are suitable
for processing high-dimensional data. Figure 3b shows the variation of the acceleration ratios of the
two algorithms with the number of training samples. The two lines are almost horizontal and the
speedup of IDELM is higher than that of ELM*I.

In summary, both distributed ELM algorithms outperformed the performance of the standalone
ELM algorithm, both in terms of the number of hidden layer nodes and the number of training
samples. Both experiments prove that the performance of IDELM algorithm is superior to the original
ELM*I algorithm, and can effectively deal with the problem of large amounts of high-dimensional
data, which has a good application prospect. In practice, with the increase of hidden nodes and the
increase of sample data, the performance advantage based on IDELM algorithm will be more
obvious.

(a) The effect on the running time (b) The effect on speedup

Figure 3. The effect of training samples on the running time (a) and speedup (b) of the algorithm.

4. Distributed Particle Swarm Optimization Algorithm

In order to solve the problem of optimizing large-scale data, this paper combines particle swarm
optimization with MapReduce algorithm to form a distributed particle swarm optimization (MR-
PSO). Figure 4 shows an iterative flow chart of the MR-PSO algorithm. It can be seen from the figure
that the whole MR-PSO can be divided into three stages in total: the population initialization stage,
the MapReduce stage and the iterative condition determination stage.

4.1. Initialization Stage

When initializing a population, n particles are randomly generated according to a given search
space and a uniform distribution function. Then, each particle is put into the fitness function in turn
for evaluation. After all the particles are evaluated, the best fitness value of all the particles is selected
according to the size of the fitness value and the corresponding particle position is set as the global
Best location gBest. The global optimal particles are then stored in the Distributed File System (DFS) as
key-value pair <Key, Value>. The contents of the key-value pair <Key, Value> are stored as shown in
Figure 5. The values i , ix , iv , iBestP , Bestg , ()ifitness x , ()iBestfitness P , ()Bestfitness g are separated
by semicolons respectively. They respectively represent the particle i , the position of particle i , the

Figure 3. The effect of training samples on the running time (a) and speedup (b) of the algorithm.

4. Distributed Particle Swarm Optimization Algorithm

In order to solve the problem of optimizing large-scale data, this paper combines particle swarm
optimization with MapReduce algorithm to form a distributed particle swarm optimization (MR-PSO).
Figure 4 shows an iterative flow chart of the MR-PSO algorithm. It can be seen from the figure
that the whole MR-PSO can be divided into three stages in total: the population initialization stage,
the MapReduce stage and the iterative condition determination stage.

Energies 2019, 12, 1036 10 of 24

Energies 2019, 12, x 10 of 24

velocity of particle i , The global optimum position, the fitness value of particle i , the fitness value
of global optimal solution of particle i , and the fitness value of global optimal particle.

Initial
swarm

Split1

Master

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Split2

Split3

Split N

Reduce() Output
HDFS

OutputMaximal
Iteration

Yes

No

Next iteration

Block1

Block2

:
:

BlockN

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Figure 4. Iterative flow chart of the MR-PSO algorithm.

I i; xi; PiBest; gBest; fitness(xi); fitness(PiBest); fitness(gBest)

Key Value

Figure 5. The structure of particles stored in DFS.

4.2. MapReduce Stage

In each iteration of PSO algorithm, the MapReduce task needs to be executed. The main task of
this MapReduce task is to update the position and velocity of the generation particle swarm based
on the previous generation information and then input the next MapReduce task. The pseudo-code
that MR-PSO executes in MapReduce is shown in Algorithm 3.

Algorithm 3: MR-PSO algorithm steps
1 class MAPPER
2 method INITIALIZE()
3 position = new ASSOCIATIVEARRAY
4 velocity= new ASSOCIATIVEARRAY
5 method Map(Key:ID,Value:particle)
6 lparticleBest = None;
7 (position,velocity,fitness) = Parse(particle);
9 for each particle do
10 positionNew = position.update(position);
11 velocityNew = velocity.update(velocity);
12 positionNew fitness = Fitness(positionNew);
13 if positionNew fitness> Fitness(lparticleBest)then;
14 lparticleBest =positionNew
15 end if
16 context.write(id,positionNew, velocityNew)
17 end for
18 context.write(localbest, lparticleBest)
19 class REDUCE

Figure 4. Iterative flow chart of the MR-PSO algorithm.

4.1. Initialization Stage

When initializing a population, n particles are randomly generated according to a given search
space and a uniform distribution function. Then, each particle is put into the fitness function in turn
for evaluation. After all the particles are evaluated, the best fitness value of all the particles is selected
according to the size of the fitness value and the corresponding particle position is set as the global
Best location gBest. The global optimal particles are then stored in the Distributed File System (DFS) as
key-value pair <Key, Value>. The contents of the key-value pair <Key, Value> are stored as shown
in Figure 5. The values i, xi, vi, PiBest, gBest, f itness(xi), f itness(PiBest), f itness(gBest) are separated by
semicolons respectively. They respectively represent the particle i, the position of particle i, the velocity
of particle i, The global optimum position, the fitness value of particle i, the fitness value of global
optimal solution of particle i, and the fitness value of global optimal particle.

Energies 2019, 12, x 10 of 24

velocity of particle i , The global optimum position, the fitness value of particle i , the fitness value
of global optimal solution of particle i , and the fitness value of global optimal particle.

Initial
swarm

Split1

Master

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Split2

Split3

Split N

Reduce() Output
HDFS

OutputMaximal
Iteration

Yes

No

Next iteration

Block1

Block2

:
:

BlockN

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Map
1.Calculate gBest from Pbest
 candidate
2.Update particles
3.Store updated particles
4.Store gBest

Figure 4. Iterative flow chart of the MR-PSO algorithm.

I i; xi; PiBest; gBest; fitness(xi); fitness(PiBest); fitness(gBest)

Key Value

Figure 5. The structure of particles stored in DFS.

4.2. MapReduce Stage

In each iteration of PSO algorithm, the MapReduce task needs to be executed. The main task of
this MapReduce task is to update the position and velocity of the generation particle swarm based
on the previous generation information and then input the next MapReduce task. The pseudo-code
that MR-PSO executes in MapReduce is shown in Algorithm 3.

Algorithm 3: MR-PSO algorithm steps
1 class MAPPER
2 method INITIALIZE()
3 position = new ASSOCIATIVEARRAY
4 velocity= new ASSOCIATIVEARRAY
5 method Map(Key:ID,Value:particle)
6 lparticleBest = None;
7 (position,velocity,fitness) = Parse(particle);
9 for each particle do
10 positionNew = position.update(position);
11 velocityNew = velocity.update(velocity);
12 positionNew fitness = Fitness(positionNew);
13 if positionNew fitness> Fitness(lparticleBest)then;
14 lparticleBest =positionNew
15 end if
16 context.write(id,positionNew, velocityNew)
17 end for
18 context.write(localbest, lparticleBest)
19 class REDUCE

Figure 5. The structure of particles stored in DFS.

4.2. MapReduce Stage

In each iteration of PSO algorithm, the MapReduce task needs to be executed. The main task of
this MapReduce task is to update the position and velocity of the generation particle swarm based on
the previous generation information and then input the next MapReduce task. The pseudo-code that
MR-PSO executes in MapReduce is shown in Algorithm 3.

Energies 2019, 12, 1036 11 of 24

Algorithm 3: MR-PSO algorithm steps

1 class MAPPER
2 method INITIALIZE()
3 position = new ASSOCIATIVEARRAY
4 velocity= new ASSOCIATIVEARRAY
5 method Map(Key:ID,Value:particle)
6 lparticleBest = None;
7 (position,velocity,fitness) = Parse(particle);
9 for each particle do
10 positionNew = position.update(position);
11 velocityNew = velocity.update(velocity);
12 positionNew

fitness = Fitness(positionNew);
13 if positionNew

fitness> Fitness(lparticleBest)then;
14 lparticleBest =positionNew

15 end if
16 context.write(id,positionNew, velocityNew)
17 end for
18 context.write(localbest, lparticleBest)
19 class REDUCE
20 method reduce(Key : localbest,ValList)
21 gBestparticle = None;
22 for each lparticleBest in ValList do
23 lparticleBest = ParticleLocalBest(VslList)
24 if Fitness(lparticleBest) > Fitness(gBestparticle) then
25 gBestparticle= lparticleBest

26 end if
27 end for
28 context.write(gbestID, gBestparticle);

Description of Algorithm 3:

(1) The input data is divided into a number of data blocks and stored in a distributed file system
(HDFS). These data are entered into a MapReduce task as key-value pairs, and then each Map
function is assigned a data block;

(2) The program in Mapper will update the velocity and position of each particle in the data block.
After the update, it will bring it into the fitness evaluation function to calculate the fitness value;

(3) Compare the fitness value of new and old particles, if the fitness value of new particle is good,
replace the position of the original particle with the current particle position and store it in HDFS;

(4) Find the fitness value of the global best particle (lparticleBest) in each Map, and compare with each
updated particle fitness value. If the fitness value of the particle is better than the fitness value of
lparticleBest, use this particle position and velocity replace lparticleBest position and velocity;

(5) Through the above particle replacement, the local optimal solution in the current map task is
finally obtained, and the local optimal solution is stored into the HDFS in the form of <key, value>
key-value pairs, where the key is a fixed value, value is the local optimal particle position;

(6) When all Map tasks have finished executing, they will be entered into a Reduce task. The main
task of Reduce is to find the global best particle (gBest) from the lparticleBest generated from all the
Maps, then replace the original global optimal particle and store the final result in HDFS.

4.3. Conditional Judgment Stage

The main task in this stage is to determine whether the number of iterations of MapReduce
satisfies the maximum number of iterations or other constraints, and if not, continue to execute the

Energies 2019, 12, 1036 12 of 24

MapReduce task. If the maximum number of iterations is reached, exit the loop and output the
global optimum.

5. Boiler Combustion Model Based on IDELM Algorithm

5.1. Model and Experiments Setup

In this paper, the field operating data of a 660 MW DC solid state slag discharge furnace
(pulverized coal-fired boiler) at a power station are used for modeling. Figure 6 shows the boiler
combustion model, we can see that the model is affected by a variety of input parameters. For real
boiler combustion systems, input parameters that affect the boiler combustion efficiency and NOx

emission can be divided into three categories: adjustable input parameters, non-adjustable input
parameters, and measurable but non-adjustable parameters.

Energies 2019, 12, x 12 of 24

gas(OCFG), boiler load (BL), etc.). In Figure 6, the directly adjustable input parameters are primary
air speed (PAS), secondary air speed (SAS), secondary air flow (SAF), coal feeding capacity of
pulverizer (CFCP), damper opening parameters (DOP). (Section 6.1.2 describes how to optimize these
directly adjustable input parameters).

Boiler combustion
efficiency

NOx emission

IDELM
model of

boiler
combustion
system in

power plant

Primary air speed (6)

Secondary air speed (17)
Secondary air flow (10)

Coal feeding capacity of pulverizer (6)

Damper opening parameters (8)
Oxygen content of flue gas (5)

Boiler load (1)

Exhaust gas temperature (1)

Coal quality parameters (3)

Figure 6. IDELM model of boiler combustion system.

The boiler combustion efficiency data of 25,921 samples in HDFS were normalized, and 18,145
sets of data were selected as the training data of the model. The remaining 7776 sets of data were used
as the test samples. As the magnitude and dimension of the experimental data are different, if they
are used directly, there may be two negative effects. On the one hand, large numerical variables may
overwrite small numerical variables in the modeling process, thus reducing the accuracy of the
model. On the other hand, if the dispersion between the data is too large, it may cause the model
convergence time is too long or cannot converge, in the training process. In order to ensure the
performance of the IDELM model, training samples and test samples need to be normalized before
the model training. In this paper, the sample data is normalized to [−1, 1]. The normalized formula is
as follows:

min

max min

2 () 1x xx
x x

∗ ⋅ −
= −

− (17)

where x is the original sample before normalization and x* is the normalized sample, xmax and xmin are
the maximum and the minimum in the original sample, respectively.

The experimental platform is the same as Section 3.3.1. The configuration of the main node is: 32
Gb memory, an 8-core processor and 1 Tb hard disk, from the node configuration: 16 Gb memory, an
8-core processor and a 1 Tb hard drive. Hadoop version 2.6.2.

5.2. Parameters L and A on IDELM Model

Before the training model, it is necessary to determine the values of the parameter regular term
A and the hidden layer node L firstly. These two parameters have a great impact on the performance
of the model, and their determination is the best model selection problem.

In this paper, cross-validation method is used to continuously adjust the values of A and L to
select the combination with the smallest cross-validation error as the optimal combination of
parameters. By calculation, the parameters A and L of the NOx emission model and the boiler
combustion efficiency model are determined as shown in Table 1.

Table 1. Parameter selection of boiler combustion model.

 Parameter Value

NOx emission model
Regularization term (A) 28
Hidden layer node (L) 1010

Boiler combustion efficiency model
Regularization term (A) 26
Hidden layer node (L) 1000

Figure 6. IDELM model of boiler combustion system.

Non-adjustable input parameters generally mainly refer to the distribution of the burner,
the internal structure, the boiler model and the size of the boiler, etc., if the values of these parameters
are to be changed, only the boiler and the burner related equipment can be changed; measurable
Non-adjustable parameters are mainly exhaust gas temperature (EGT), coal quality (CQ) data; while
the rest of the input parameters are basically adjustable input parameters (Oxygen content of flue
gas(OCFG), boiler load (BL), etc.). In Figure 6, the directly adjustable input parameters are primary air
speed (PAS), secondary air speed (SAS), secondary air flow (SAF), coal feeding capacity of pulverizer
(CFCP), damper opening parameters (DOP). (Section 6.1.2 describes how to optimize these directly
adjustable input parameters).

The boiler combustion efficiency data of 25,921 samples in HDFS were normalized, and 18,145 sets
of data were selected as the training data of the model. The remaining 7776 sets of data were used
as the test samples. As the magnitude and dimension of the experimental data are different, if they
are used directly, there may be two negative effects. On the one hand, large numerical variables may
overwrite small numerical variables in the modeling process, thus reducing the accuracy of the model.
On the other hand, if the dispersion between the data is too large, it may cause the model convergence
time is too long or cannot converge, in the training process. In order to ensure the performance of the
IDELM model, training samples and test samples need to be normalized before the model training.
In this paper, the sample data is normalized to [−1, 1]. The normalized formula is as follows:

x∗ =
2 · (x− xmin)

xmax − xmin
− 1 (17)

where x is the original sample before normalization and x* is the normalized sample, xmax and xmin are
the maximum and the minimum in the original sample, respectively.

Energies 2019, 12, 1036 13 of 24

The experimental platform is the same as Section 3.3.1. The configuration of the main node is:
32 Gb memory, an 8-core processor and 1 Tb hard disk, from the node configuration: 16 Gb memory,
an 8-core processor and a 1 Tb hard drive. Hadoop version 2.6.2.

5.2. Parameters L and A on IDELM Model

Before the training model, it is necessary to determine the values of the parameter regular term A
and the hidden layer node L firstly. These two parameters have a great impact on the performance of
the model, and their determination is the best model selection problem.

In this paper, cross-validation method is used to continuously adjust the values of A and L to select
the combination with the smallest cross-validation error as the optimal combination of parameters.
By calculation, the parameters A and L of the NOx emission model and the boiler combustion efficiency
model are determined as shown in Table 1.

Table 1. Parameter selection of boiler combustion model.

Parameter Value

NOx emission model
Regularization term (A) 28

Hidden layer node (L) 1010

Boiler combustion efficiency model Regularization term (A) 26

Hidden layer node (L) 1000

5.3. The Effect of Prediction

In order to verify the predictive ability of the model, root mean squared errors (RMSE),
mean relative error (MRE) and coefficient of determination R2 are used to evaluate the predictive
ability of the model. The specific formula are shown as follows:

RMSE =

√√√√ N

∑
i=1

(f (xi)− yi)
2/N (18)

MRE =
1
N

N

∑
1

∣∣∣∣ f (xi)− yi
yi

∣∣∣∣ (19)

R2 = 1−

N
∑

i=1
(f (xi)− yi)

2

N
∑

i=1
(yi − y)2

(20)

where N is the number of samples, f (xi) is the model predictive value, yi is the corresponding actual
measured value, y is the average of the actual measurements.

The prediction results of the NOx test sample on the IDELM model are shown in Figure 7. It can be
seen that the predicted value of NOx and the actual measured values of NOx are generally distributed
around the diagonal, indicating that the IDELM model can predict NOx emissions very well.

Table 2 shows the mean value of 20 test results for RMSE, MRE, and R2 for training samples and
test samples of NOx emissions. It can be seen that the error is small, and the error of the test sample
is slightly larger than that of the training sample. The determination coefficient R2 of the prediction
result of the model training sample is 0.863 and the determination coefficient R2 of the test sample is
0.891. The result shows that the model has a good ability of fitting and predicting.

Energies 2019, 12, 1036 14 of 24

Energies 2019, 12, x 14 of 24

5.3. The Effect of Prediction

In order to verify the predictive ability of the model, root mean squared errors (RMSE), mean
relative error (MRE) and coefficient of determination R2 are used to evaluate the predictive ability of
the model. The specific formula are shown as follows:

2

1
RMSE (()) /

N

i i
i

f x y N
=

= − (18)

()
1

1MRE
N

i i

i

f x y
N y

−
=  (19)

() 2

2 1

2

1

()
R 1

()

N

i i
i

N

i
i

f x y

y y

=

=

−
= −

−




 (20)

where N is the number of samples, ()if x is the model predictive value, iy is the corresponding
actual measured value, y is the average of the actual measurements.

The prediction results of the NOx test sample on the IDELM model are shown in Figure 7. It can
be seen that the predicted value of NOx and the actual measured values of NOx are generally distributed
around the diagonal, indicating that the IDELM model can predict NOx emissions very well.

Figure 7. NOx comparison between predicted and measured values.

Table 2 shows the mean value of 20 test results for RMSE, MRE, and R2 for training samples and
test samples of NOx emissions. It can be seen that the error is small, and the error of the test sample
is slightly larger than that of the training sample. The determination coefficient R2 of the prediction
result of the model training sample is 0.863 and the determination coefficient R2 of the test sample is
0.891. The result shows that the model has a good ability of fitting and predicting.

Table 2. Evaluation Index of NOx emission Model Based on IDELM Algorithm.

NOx RMSE MRE R2
Training set 0.0436 0.0481 0.863
Testing set 0.0313 0.0423 0.891

Figure 8 is a forecast of the efficiency of the boiler and shows the coincidence between the
predicted values of the IDELM model and the sampling data. The ordinate in the graph is negative
because the input samples are normalized [−1, 1] before training, the boiler combustion efficiency
value is relatively small in the sample data, so the normalized result is negative. It can be seen from
the Figure 8 that the predicted values of the training sample or the test sample and the sampling data
roughly coincide, indicating that the model has better accuracy and generalization performance.

Figure 7. NOx comparison between predicted and measured values.

Table 2. Evaluation Index of NOx emission Model Based on IDELM Algorithm.

NOx RMSE MRE R2

Training set 0.0436 0.0481 0.863
Testing set 0.0313 0.0423 0.891

Figure 8 is a forecast of the efficiency of the boiler and shows the coincidence between the
predicted values of the IDELM model and the sampling data. The ordinate in the graph is negative
because the input samples are normalized [−1, 1] before training, the boiler combustion efficiency
value is relatively small in the sample data, so the normalized result is negative. It can be seen from
the Figure 8 that the predicted values of the training sample or the test sample and the sampling data
roughly coincide, indicating that the model has better accuracy and generalization performance.Energies 2019, 12, x 15 of 24

Figure 8. Prediction of boiler combustion efficiency.

In order to further verify the predictive ability of the model, Table 3 shows the test results of the
RMSE, MRE, and R2 of the training and test samples, their maximum (Max), minimum (Min), and
average (Means) values are given. The results of RMSE, MRE, R2 in the table are the average of 20
experimental results. Usually RMSE, MRE smaller the more able to respond to the model of high
precision, and the R2 value closer to 1, indicating that the model better fit. It can be seen from the table
that the maximum value of RMSE and MRE in the test sample is smaller than the maximum value of
the training sample and the average value is much smaller than that of the training sample, which
shows that the model has a great generalization ability. The determination coefficient R2 of the test
sample is 0.9538, which shows that the model has better fitting and predictive ability.

Table 3. Evaluation index of boiler combustion efficiency model based on IDELM algorithm.

Boiler Combustion
Efficiency Data

RMSE MRE R2
Max Min Means Max Min Means Max Min Means

Training set 0.0189 0.0065 0.0152 0.0361 0.0101 0.0278 0.9876 0.8944 0.9256
Test set 0.0153 0.0087 0.012 0.0227 0.0141 0.0187 0.9766 0.9275 0.9538

6. The Realization of Boiler Combustion Optimization

6.1. Optimization Problem Description

6.1.1. Boiler Combustion Optimization Function Design

As boiler combustion optimization involves multi-objective optimization, it is necessary to
design an objective function that contains both low NOx emissions and high boiler combustion
efficiency, to combine both technical indicators. However, NOx emissions and boiler combustion
efficiencies have different dimensions. In order to reduce the mutual influence between the two, we
need to normalize the two optimization objectives to achieve the same order of magnitude before
optimization. In real life, each power station has different requirements on NOx emissions and boiler
combustion efficiency, so the related objective function in the multi-objective function can be
weighted. Because the objective of this paper is to find the lowest NOx emissions and the highest
combustion efficiency, this paper uses the subtraction of NOx emissions and combustion efficiency as
the objective function to achieve the goal of the same direction of the optimization. Finally, the two
objective functions are combined into a comprehensive objective function according to a certain
weight ratio. The combined objective function is as follows:

minx min

max min max min

() ()() ()min ()
() () () ()

NO NOx

NOx NOx

f x f xf x f xf x
f x f x f x f x

η η

η η

α β
−−= × − ×

− − (21)

Figure 8. Prediction of boiler combustion efficiency.

In order to further verify the predictive ability of the model, Table 3 shows the test results of
the RMSE, MRE, and R2 of the training and test samples, their maximum (Max), minimum (Min),
and average (Means) values are given. The results of RMSE, MRE, R2 in the table are the average of
20 experimental results. Usually RMSE, MRE smaller the more able to respond to the model of high
precision, and the R2 value closer to 1, indicating that the model better fit. It can be seen from the
table that the maximum value of RMSE and MRE in the test sample is smaller than the maximum
value of the training sample and the average value is much smaller than that of the training sample,

Energies 2019, 12, 1036 15 of 24

which shows that the model has a great generalization ability. The determination coefficient R2 of the
test sample is 0.9538, which shows that the model has better fitting and predictive ability.

Table 3. Evaluation index of boiler combustion efficiency model based on IDELM algorithm.

Boiler
Combustion

Efficiency Data

RMSE MRE R2

Max Min Means Max Min Means Max Min Means

Training set 0.0189 0.0065 0.0152 0.0361 0.0101 0.0278 0.9876 0.8944 0.9256
Test set 0.0153 0.0087 0.012 0.0227 0.0141 0.0187 0.9766 0.9275 0.9538

6. The Realization of Boiler Combustion Optimization

6.1. Optimization Problem Description

6.1.1. Boiler Combustion Optimization Function Design

As boiler combustion optimization involves multi-objective optimization, it is necessary to design
an objective function that contains both low NOx emissions and high boiler combustion efficiency,
to combine both technical indicators. However, NOx emissions and boiler combustion efficiencies have
different dimensions. In order to reduce the mutual influence between the two, we need to normalize
the two optimization objectives to achieve the same order of magnitude before optimization. In real
life, each power station has different requirements on NOx emissions and boiler combustion efficiency,
so the related objective function in the multi-objective function can be weighted. Because the objective
of this paper is to find the lowest NOx emissions and the highest combustion efficiency, this paper uses
the subtraction of NOx emissions and combustion efficiency as the objective function to achieve the
goal of the same direction of the optimization. Finally, the two objective functions are combined into a
comprehensive objective function according to a certain weight ratio. The combined objective function
is as follows:

min f (x) = α× fNOx(x)− fNOx(xmin)

fNOx(xmax)− fNOx(xmin)
− β×

fη(x)− fη(xmin)

fη(xmax)− fη(xmin)
(21)

Let a = fNOx(x)− fNOx(xmin)
fNOx(xmax)− fNOx(xmin)

, b =
fη(x)− fη(xmin)

fη(xmax)− fη(xmin)
, then the above equation can be simplified as:

min f (x) = α× a− β× b (22)

where fNOx (xmax), fNOx (xmin) are the maximum value and minimum value of the actual NOx emission,
fη(xmax), fη(xmin) are the maximum value and minimum value of the actual boiler combustion
efficiency. α, β are the weight of each technical indicator, and α + β = 1.

6.1.2. Constraints

In the actual operation of boilers, some parameters cannot be adjusted artificially, such as the
layout of boiler equipment, furnace type, structure, and so on, while the operation load, coal quality,
exhaust gas temperature and so on cannot be adjusted arbitrarily in practice, although they will
change during operation, they cannot be adjusted directly, and they are still regarded as non-adjustable
parameters. Adjustable parameters refer to the parameters that the operators can control and adjust in
the safe range when the boiler is running.

In Figure 6, the non-adjustable input parameters are oxygen content of flue gas (OCFG, five items),
boiler load (BL, one item), exhaust gas temperature (EGT, one item), coal quality parameters
(CQ, three items), their values remain unchanged. The adjustable input parameters are relative items
of secondary air speed correlation (SAS, SAPB and SAT, 17 items), secondary air flow (SAF, 10 items),

Energies 2019, 12, 1036 16 of 24

coal feeding capacity of pulverizer (CFCP, six items), primary air speed (PAS, six items), Damper
opening parameters (DOP, eight items), a total of 47 adjustable input parameters.

Taking the 47 adjustable parameters as optimization parameters, according to the actual data
collected by the power plant, the constraints are determined on the premise of ensuring the safe
operation of the boiler [28,29], so as to narrow the optimization scope and improve the practicability of
the model. The constraints of 47 parameters are shown in Table 4(1)–(4) (notes: SAPB is the secondary
air’s pressure bias, SAT is secondary air temperature, the abbreviations for other items are given in
Section 5).

Table 4. (1)–(4) Optimization range of each tunable parameter.

Parameter
Limit

SAPB/kpa SAS/m·s−1

SP A(R) A(L) C(R) C(L) C D(R) D(L) D E(R) E(L)

Upper −0.25 97.17 81.52 97.49 83.51 175.5 104.39 100.56 202.86 104.29 73.4
Lower −0.7 67.28 58.09 45.62 31.89 77.35 13.73 20.66 36.91 22.37 16.12

(1)

Parameter
Limit

SAS/m·s−1 SAT/oC SAF/t/h SAPB/kpa SAF/t/h

E F(R) F(L) F A B R1 R2 R3 R L1

Upper 178 128 91.7 216.8 28.1 34.4 328 325.7 326 326.1 1.09 341.54
Lower 39.8 42.3 55.4 99.57 22.3 22.2 288 290.9 288 290.9 0.3 302.53

(2)

Parameter
Limit

SAF/t/h SAPB/kpa CFCP/T·H−1 PAS/m·s−1

L2 L3 L A B C D E F A B

Upper 340 339 339.2 2.06 54.95 54.63 56.79 58.69 51.91 54.12 106.6 99.73
Lower 301 301 301.6 0.74 20.23 31.93 0 0 0 0 57.62 68.9

(3)

Parameter
Limit

PAS/m·s−1 DOP/%

C D E F R1 L1 R2 L2 R3 L3 R4 L4

Upper 100.06 104.2 102.1 92.02 50.18 50.58 50.31 55.29 99.25 98.7 100 100
Lower 56.88 59.88 50.08 55.52 0 0 0 0 0 0 0 0

(4)

6.2. Combustion Optimization Based on MR-PSO Algorithm

In the MR-PSO algorithm, Formula (22) is adopted as the fitness function of distributed particle
swarm optimization, that is, the fitness value of each particle is weighted by the values of NOx emission
and boiler combustion efficiency. The flow chart for optimization using the MR-PSO algorithm on the
IDELM model is shown in Figure 9.

MR-PSO algorithm to optimize boiler combustion model input parameters of the specific steps
are as follows:

(1) In the experiment, the initialization range of the initial population should be determined according
to the actual operating data of the boiler combustion system collected this time, and then randomly
generate n particles within the constraint range according to the uniform distribution function
and store them into the distributed File system (HDFS);

(2) The master node shaves input files in HDFS and distributes the sliced data to Map tasks.
(3) The Map task separates and extracts the particle information from the input file, separates the

particle velocity and position information respectively, and updates the particle velocity and
position according to the velocity Equation (10) and the position Equation (11), and then substitute
the updated particle’s position information into the boiler combustion IDELM model to get the
prediction result. The Fitness value is obtained by Equation (22), according to the size of the
fitness evaluation value, it is determined whether to replace the original particle velocity and

Energies 2019, 12, 1036 17 of 24

position, and store it in HDFS in a certain order. All the particles are compared with the global
optimal particle, replace its value if it is better than the original value, and storing it in the HDFS,
thereby obtaining the global optimal particle in the map;

(4) The main task of Reduce is to compare the local global optimal particles obtained by each map
task before, and get the global optimal position of the entire particle swarm, and store it into the
HDFS in key-value pairs;

(5) After the completion of the Reduce task, it is judged whether the maximum number of iterations
is satisfied. If the maximum iteration is not satisfied, the Map task is returned to step (3), and the
Map task is continued until the maximum number of Iterations is satisfied.

Energies 2019, 12, x 17 of 24

6.2. Combustion Optimization Based on MR-PSO Algorithm

In the MR-PSO algorithm, Formula (22) is adopted as the fitness function of distributed particle
swarm optimization, that is, the fitness value of each particle is weighted by the values of NOx
emission and boiler combustion efficiency. The flow chart for optimization using the MR-PSO
algorithm on the IDELM model is shown in Figure 9.

Compare, update the optimal
position of each particle, the

corresponding velocity, and the
local global optimal position

Population
initialization

Boiler combustion
prediction model

The IDELM
model of NOx

emissions

Fitness evaluation

Start

The IDELM
model of boiler

combustion
efficiency

min () af x bα β= × − ×

Update the speed and position of
each particle according to the

updated formula

N

Compare, update the optimal
position of each particle, the

corresponding velocity, and the
local global optimal position

Boiler combustion
prediction model

The IDELM
model of NOx

emissions

Fitness evaluation

The IDELM
model of boiler

combustion
efficiency

min () af x bα β= × − ×

Update the speed and position of
each particle according to the

updated formula

... ... SplitNSplit1

Mapper1 MapperN

Press <key,value> key-value
pairs to store in HDFS

Press <key,value> key-value
pairs to store in HDFS

Reduce
Select gBest from(lgBest1,…,lgBestN)

Reducer1

Store to HDFS

Maximal iteration

... ... SplitNSplit1

output

Y

Figure 9. Boiler combustion optimization by MR-PSO Algorithm.

MR-PSO algorithm to optimize boiler combustion model input parameters of the specific steps
are as follows:

(1) In the experiment, the initialization range of the initial population should be determined
according to the actual operating data of the boiler combustion system collected this time,

Figure 9. Boiler combustion optimization by MR-PSO Algorithm.

Energies 2019, 12, 1036 18 of 24

6.3. Analysis of Optimization Results under Different Weights

In this paper, we have optimized the input parameters of the 18,001-th group of conditions
with the largest NOx emissions in the sample data, so as to generate a set of parameters that can
reduce the NOx production and improve the boiler combustion efficiency. The 10 parameter values
that are not adjustable in the operating conditions are shown in Table 5. The corresponding NOx

emissions, boiler combustion efficiency and boiler load of the 18,001-th group are 412 mg/m3, 93.39%
and 349.1 MW, respectively.

Table 5. The value of the non-adjustable parameter.

Working
Condition

Boiler
Load/MW

Exhaust
Temperature/◦C

Coal Quality Parameters Oxygen Content of Flue Gas/%

Total
Moisture/%

Air-Dried
Moisture/%

Dry Base
Ash/%

Entrance
A

Entrance
B

Entrance
C

Exit
A

Exit
B

18,001 349.1 129.58 10.6 2.71 31.93 5.35 5.45 5.54 8.37 6.99

The population number of MR-PSO in the boiler combustion optimization model is 100;
the maximum number of iterations is 50; the maximum inertia weight (wmax) is 0.9; the minimum
inertia weight (wmin) is 0.4; and the acceleration factors c1 and c2 are both 2.

The focus of this article is to achieve a reduction in boiler NOx emissions, so the weight of NOx

is greater than the weight of boiler combustion efficiency. To verify the effect of weight ratio on
NOx emission and boiler combustion efficiency, we choose (α = 0.9, β = 0.1), (α = 0.8, β = 0.2),
(α = 0.7, β = 0.3), (α = 0.6, β = 0.4), (α = 0.5, β = 0.5) to be analyzed.

The MR-PSO algorithm is used to optimize the boiler combustion model under the 18,001th
working condition. The curves of the fitness values of the boiler combustion optimization model at
different weighting factor ratios are shown in Figure 10a–e. The combustion optimization model under
the five weighting ratios (α = 0.9, β = 0.1), (α = 0.8, β = 0.2), (α = 0.7, β = 0.3), (α = 0.6, β = 0.4),
(α = 0.5, β = 0.5) weighted objective function value curve. The optimized output was compared with
the original value of condition 18,001.

It can be seen from Figure 10 that the weighted objective function values of the boiler
combustion optimization model under different weights gradually decrease with the increase of
the number of iterations, except that their respective starting points and decreasing ranges are different.
Their convergence speeds are relatively fast, the trend of change in function values around the 15th
generation is very small.

Figure 11a–e show the optimized results of NOx emissions and boiler combustion efficiency at
different weighting factor ratios for a boiler combustion optimization model under a load of 349.1 MW.

Observing Figure 11a, the NOx emissions and boiler combustion efficiency decrease sharply at
the beginning and stabilize after 20 cycles, resulting in NOx emissions of 330.42 mg/m3 and boiler
combustion efficiency of 93.81%. Comparing with the 412 mg/m3 of NOx emissions and 93.39% of
boiler combustion efficiency under the initial conditions, after optimization, the NOx emissions are
reduced by 19.8% and the boiler combustion efficiency is improved by 0.45%, which is in line with the
purpose of reducing NOx emission and improving boiler combustion efficiency.

Observing Figure 11b, the NOx emissions and boiler combustion efficiency also decrease sharply
at the beginning and stabilize after about 25 generations. The optimized NOx emissions result is
333.29 mg/m3 and the boiler combustion efficiency is 93.84%. Comparing with Figure 11a, the NOx

emissions and boiler combustion efficiency all increase, but the increase is not significant. Comparing
with the data under the original conditions, the optimized NOx emissions are reduced by 19.1%,
and the optimized boiler combustion efficiency is improved by 0.48%.

Observing Figure 11c, the rate of decline in NOx emissions and boiler combustion efficiency
in Figure 11c is significantly less than in Figure 11a,b. Boiler combustion efficiency has been in the
range of [93.84%, 93.87%], and stabilizes around 35 generations later. Finally, the NOx emissions
optimization result is 345.56 mg/m3 and the boiler combustion efficiency is 93.85%. Compared to the

Energies 2019, 12, 1036 19 of 24

pre-optimization data, the optimized NOx emissions are reduced by 19.1% and the optimized boiler
combustion efficiency is reduced by 0.49%.

The most noticeable change observed in Figure 11d is that the boiler combustion efficiency
drops sharply in previous generations and then slowly increases. Comparing with Figure 11a,
and Figure 11b,c, the general trend of boiler combustion efficiency is rising in Figure 11d. This may be
due to the increase of boiler combustion efficiency weight ratio. The final NOx emissions result was
340.6 mg/m3 and the boiler combustion efficiency was 93.86%. The optimized NOx emissions were
reduced by 17.3% and the boiler combustion efficiency by 0.5% compared to the pre-optimization data.Energies 2019, 12, x 19 of 24

(a) α = 0.9, β = 0.1 (b) α = 0.8, β = 0.2

(c) α = 0.7, β = 0.3 (d) α = 0.6, β = 0.4

(e) α = 0.5, β = 0.5

Figure 10. The change curve of the weighted objective function value corresponding to the weight
ratio.

It can be seen from Figure 10 that the weighted objective function values of the boiler combustion
optimization model under different weights gradually decrease with the increase of the number of
iterations, except that their respective starting points and decreasing ranges are different. Their
convergence speeds are relatively fast, the trend of change in function values around the 15th
generation is very small.

Figure 11a–e show the optimized results of NOx emissions and boiler combustion efficiency at
different weighting factor ratios for a boiler combustion optimization model under a load of 349.1
MW.

Figure 10. The change curve of the weighted objective function value corresponding to the weight ratio.

Comparing with the first four pictures, it can be clearly seen that the boiler combustion efficiency
in Figure 11e shows an upward trend, and the fluctuation amplitude after the 10-th generation is also
significantly smaller than that of the first four pictures and finally reaches 93.945%. Moreover, the rate

Energies 2019, 12, 1036 20 of 24

of NOx emissions decline is also significantly less than the previous figures, and the final optimization
result is 374.35 mg/m3. This is because the weight ratio of NOx emissions to boiler combustion
efficiency is 5:5, and the NOx reduction is no longer emphasized. Comparing to the pre-optimization
data, the optimized NOx emissions are reduced by 9.14% and the boiler combustion efficiency is
reduced by 0.6%.Energies 2019, 12, x 20 of 24

(a) α = 0.9, β = 0.1 (b) α = 0.8, β = 0.2

(c) α = 0.7, β = 0.3 (d) α = 0.6, β = 0.4

(e) α = 0.5, β = 0.5

Figure 11. Optimization results of NOx emissions and boiler combustion efficiency under different
weight ratio.

Observing Figure 11a, the NOx emissions and boiler combustion efficiency decrease sharply at
the beginning and stabilize after 20 cycles, resulting in NOx emissions of 330.42 mg/m3 and boiler
combustion efficiency of 93.81%. Comparing with the 412 mg/m3 of NOx emissions and 93.39% of
boiler combustion efficiency under the initial conditions, after optimization, the NOx emissions are
reduced by 19.8% and the boiler combustion efficiency is improved by 0.45%, which is in line with
the purpose of reducing NOx emission and improving boiler combustion efficiency.

Observing Figure 11b, the NOx emissions and boiler combustion efficiency also decrease sharply
at the beginning and stabilize after about 25 generations. The optimized NOx emissions result is

Figure 11. Optimization results of NOx emissions and boiler combustion efficiency under different
weight ratio.

The optimization results of the tunable parameters after adjusting the boiler combustion
optimization models with different weight ratios under the condition 18,001 are shown in Table 6(1)–(6)
(notes: Pre represents pre-optimization, Post represents post-optimization).

Energies 2019, 12, 1036 21 of 24

Table 6. (1)–(6) The value of boiler operation parameters before and after optimization of
MR-PSO algorithm.

Weights Pre or
Post

NOx
Emission/mg/m3

Boiler
Combustion
Efficiency/%

SAPB/kpa SAP/m·s−1

SP A(R) A(L) C(R) C(L) C

Pre 412 93.39 −0.47 77.92 68.51 46.43 34.01 81.34
α = 0.9, β = 0.1 Post 330.42 93.81 −0.7 67.28 58.09 73.45 31.89 163.3
α = 0.8, β = 0.2 Post 333.29 93.84 −0.25 67.28 58.09 97.49 54.53 119.8
α = 0.7, β = 0.3 Post 345.56 93.85 −0.25 67.28 58.09 45.62 31.89 147.6
α = 0.6, β = 0.4 Post 340.6 93.86 −0.25 67.28 58.09 97.49 83.51 175.5
α = 0.5, β = 0.5 Post 374.35 93.945 −0.47 67.28 58.09 79.57 83.51 175.5

(1)

Weights Pre or
Post

SAS/m·s−1

D(R) D(L) D E(R) E(L) E F(R) F(L) F

Pre 84.99 85.84 169.39 89.63 64.62 153.6 49.28 63.08 111.39
α = 0.9, β = 0.1 Post 13.73 20.66 36.91 22.37 16.12 39.78 42.29 55.4 99.57
α = 0.8, β = 0.2 Post 13.73 20.66 36.91 22.37 16.12 39.78 42.29 55.4 99.57
α = 0.7, β = 0.3 Post 13.73 20.66 36.91 22.37 16.12 39.78 42.29 55.4 99.57
α = 0.6, β = 0.4 Post 13.73 20.66 36.91 22.37 16.12 39.78 127.78 55.4 99.57
α = 0.5, β = 0.5 Post 13.73 100.56 36.91 22.37 16.12 39.78 42.29 55.4 99.57

(2)

Weights Pre or
Post

SAT/◦C SAF/t/h SAPB/kpa SAF/t/h

A B R1 R2 R3 R L1

Pre 23.8 24.75 308.81 308.52 307.58 308.52 0.42 317.1
α = 0.9, β = 0.1 Post 22.3 22.18 288.02 290.84 287.83 290.84 0.66 341.54
α = 0.8, β = 0.2 Post 28.1 28.789 288.02 290.84 287.83 290.84 1.09 341.54
α = 0.7, β = 0.3 Post 28.1 22.18 288.02 290.84 287.83 290.84 0.82 341.54
α = 0.6, β = 0.4 Post 27.7 22.18 288.02 290.84 287.83 290.84 0.85 341.54
α = 0.5, β = 0.5 Post 28.1 29.87 288.02 290.84 287.83 290.84 0.79 341.54

(3)

Weights Pre or
Post

SAF/t/h SAPB/ kpa CFCP/T·H−1

L2 L3 L A B C D

Pre 315.45 314.91 315.73 0.99 42.55 49.2 0 53.96
α = 0.9, β = 0.1 Post 339.44 338.27 339.2 1.52 20.23 51.7 56.79 20.2
α = 0.8, β = 0.2 Post 339.44 331.42 339.2 2.06 20.23 54.7 0 18.68
α = 0.7, β = 0.3 Post 323.97 332.24 339.2 1.31 28.53 42 56.79 0
α = 0.6, β = 0.4 Post 339.44 301.12 339.2 2.06 20.23 53.5 0 58.69
α = 0.5, β = 0.5 Post 333.43 338.27 339.2 0.74 54.95 54.6 56.79 18.69

(4)

Weights Pre or
Post

CFCP/T·H−1 PAS/m·s−1

E F A B C D E F

Pre 40.56 0 87.07 90.17 60.04 95.37 79.02 60.05
α = 0.9, β = 0.1 Post 0 38.23 106.6 68.9 100.06 104.21 50.08 80.9
α = 0.8, β = 0.2 Post 51.91 44.12 57.62 99.73 100.06 68.21 50.08 84.74
α = 0.7, β = 0.3 Post 51.91 0 106.6 68.9 100.06 104.21 50.08 92.02
α = 0.6, β = 0.4 Post 0 54.12 106.6 99.73 100.06 59.88 97.53 55.52
α = 0.5, β = 0.5 Post 26.9 0 106.6 68.9 100.06 104.21 102.04 79.17

(5)

Weights Pre or
Post

DOP/%

R1 L1 R2 L2 R3 L3 R4 L4

Pre 0 0 0 0 0 0 0 0
α = 0.9, β = 0.1 Post 30.43 50.58 50.31 55.29 99.25 98.7 100 100
α = 0.8, β = 0.2 Post 50.18 50.58 50.31 55.29 99.25 98.7 0 100
α = 0.7, β = 0.3 Post 50.18 50.58 50.31 55.29 99.25 98.7 100 100
α = 0.6, β = 0.4 Post 50.18 50.58 50.31 55.29 99.25 98.7 100 100
α = 0.5, β = 0.5 Post 50.18 0 50.31 55.29 99.25 98.7 0 100

(6)

Energies 2019, 12, 1036 22 of 24

Through the comparison between pre-optimization and post-optimization in the table, we can see
that the NOx emission decrease after optimization, and the NOx emission increases slowly with the
decrease of the weight. Boiler combustion efficiency increases after optimization and increases as the
weight increases.

From the table of the overall data, it can be seen that, primary air volume increases after
optimization, so that of pulverized coal combustion can be fully; after optimization, the secondary
air speed and secondary air flow decline, and its reduction is conducive to reducing NOx generated.
The decrease of secondary air flow indicates that the furnace oxygen decreases, the decrease of furnace
oxygen can reduce the thermal NOx and fuel NOx formation, thereby reducing the formation of NOx.
With the damper opening to variation degrees, it is conducive to burn out of incomplete combustion
products, then it can reduce NOx emissions and prevent furnace coking. The burn-in damper is closed
before optimization, which is why the pre-optimization NOx emissions are very high and the boiler
combustion efficiency is relatively low. The amount of pulverized coal from coal mill maintains the
overall unchanged.

7. Conclusions

With the deepening of power plant intellectualization, the trend towards large amounts of
high-dimensional power plant system data is inevitable. In this paper, the field operation data of a
660 MW power plant combustion boiler (a pulverized coal-fired boiler) are used for modeling and
optimization. Because of the large amount of data, the single machine runs slowly and cannot be
processed, so Extreme Learning Machine (ELM) parallelization is realized by using the MapReduce
framework of Hadoop, a popular data platform in recent years. An improved Distributed Extreme
Learning Machine (IDELM) is proposed and applied to boiler combustion system modeling.

Due to the need to consider both low NOx emissions and high boiler combustion efficiency, this
involves multi-objective optimization. The multi-objective function of the boiler combustion system
is established by a weight coefficient method, and the multi-objective optimization model of boiler
combustion is established by an IDELM algorithm, in order to reduce the emissions of NOx and
improve the boiler combustion efficiency of boiler as much as possible. The distributed transformation
of particle swarm optimization (PSO) algorithm based on a MapReduce framework is carried out,
and the adjustable input parameters of the boiler combustion model are optimized by MR-PSO,
finally obtaining the optimal combination of a set of adjustable input parameters, to achieve low NOx

emissions and high boiler combustion efficiency. The results of this implementation reveal a good
performance of the proposed method for optimization of power plant boiler combustion.

Author Contributions: Conceptualization, X.X.; Data curation, X.X., Q.C. and J.X.; Methodology, X.X.; Project
administration, M.R.; Software, Q.C. and L.C.; Writing—review & editing, M.R.

Funding: This work was supported by the National Natural Science Foundation of China (61503271, 61603267,
21606159) and the Natural Science Foundation of Shanxi Province, China (201801D121144, 201801D221190).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. BeloševićaIvan, S.; Tomanović, I.; Beljanski, V.; Tucaković, D.; Živanović, T. Numerical prediction of processes
for clean and efficient combustion of pulverized coal in power plants. Appl. Therm. Eng. 2015, 74, 102–110.
[CrossRef]

2. Barnes, D.I. Understanding pulverised coal, biomass and waste combustion—A brief overview. Appl. Therm.
Eng. 2015, 74, 89–95. [CrossRef]

3. Zhou, H.; Zhao, J.P.; Zheng, L.G.; Wang, C.L.; Cen, K.F. Modeling NOx emissions from coal-fired utility
boilers using support vector regression with ant colony optimization. Eng. Appl. Artif. Intell. 2012, 25,
147–158. [CrossRef]

http://dx.doi.org/10.1016/j.applthermaleng.2013.11.019
http://dx.doi.org/10.1016/j.applthermaleng.2014.01.057
http://dx.doi.org/10.1016/j.engappai.2011.08.005

Energies 2019, 12, 1036 23 of 24

4. Wu, X.Y.; Tang, Z.H.; Cao, S.X. A hybrid least square support vector machine for boiler efficiency prediction.
In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference
(ITOEC), Chongqing, China, 3–5 October 2017. [CrossRef]

5. Lu, Y.K.; Peng, X.; Zhao, K. Hybrid Modeling Optimization of Thermal Efficiency and NOx Emission of
Utility Boiler. J. Chin. Soc. Electr. Eng. 2011, 31, 16–22. [CrossRef]

6. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural
networks. Neural Netw. 2004, 2, 985–990. [CrossRef]

7. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501. [CrossRef]

8. Liu, H.; Li, F.; Xu, X.; Sun, F. Multi-modal local receptive field extreme learning machine for object recognition.
Neurocomputing 2018, 277, 4–11. [CrossRef]

9. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass
classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [CrossRef] [PubMed]

10. Huang, G.B.; Chen, L. Enhanced random search based incremental extreme learning machine.
Neurocomputing 2008, 71, 3460–3468. [CrossRef]

11. Feng, G.; Huang, G.B.; Lin, Q.; Gay, R. Error minimized extreme learning machine with growth of hidden
nodes and incremental learning. IEEE Trans. Neural Netw. 2009, 20, 1352–1357. [CrossRef]

12. Zhao, X.; Wang, G.; Bi, X.; Zhao, Y. XML document classification based on ELM. Neurocomputing 2011, 74,
2444–2451. [CrossRef]

13. Zong, W.; Huang, G.B. Face recognition based on extreme learning machine. Neurocomputing 2011, 74,
2541–2551. [CrossRef]

14. Mohammed, A.A.; Minhas, R.; Wu, Q.M.J.; Sid-Ahmed, M.A. Human face recognition based on
multidimensional PCA and extreme learning machine. Pattern Recognit. 2011, 44, 2588–2597. [CrossRef]

15. Tan, P.; Xia, J.; Zhang, C.; Fang, Q.Y.; Chen, G. Modeling and reduction of NOx emissions for a 700 MW
coal-fired boiler with the advanced machine learning method. Energy 2016, 94, 672–679. [CrossRef]

16. Li, G.; Niu, P.; Ma, Y.; Wang, H.; Zhang, W. Tuning extreme learning machine by an improved artificial bee
colony to model and optimize the boiler efficiency. Knowl. Based Syst. 2014, 67, 278–289. [CrossRef]

17. Wu, B.; Yan, T.H.; Xu, X.S.; He, B.; Li, W.H. A MapReduce-Based ELM for Regression in Big Data.
In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning,
Yangzhou, China, 12–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 164–173. [CrossRef]

18. Luo, M.; Zhang, L.; Liu, J.; Guo, J.; Zheng, Q. Distributed extreme learning machine with alternating direction
method of multiplier. Neurocomputing 2017, 261, 164–170. [CrossRef]

19. Xin, J.; Wang, Z.; Chen, C.; Ding, L.; Wang, G.; Zhao, Y. ELM*: Distributed extreme learning machine with
MapReduce. World Wide Web 2014, 17, 1189–1204. [CrossRef]

20. Dean, J.; Ghemawat, S. MapReduce: A flexible data processing tool. Commun. ACM 2010, 53, 72–77.
[CrossRef]

21. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51,
107–113. [CrossRef]

22. McKenna, A.; Hanna, M.; Sivachenko, E.B.A.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.;
Altshuler, D.; Gabriel1, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [CrossRef]

23. Ramírez-Gallego, S.; Fernández, A.; García, S.; Chen, M.; Herreraa, F. Big data: Tutorial and guidelines
on information and process fusion for analytics algorithms with MapReduce. Inf. Fusion 2018, 42, 51–61.
[CrossRef]

24. Afrati, F.; Stasinoppulos, N.; Ullman, J.D.; Vassilakopoulos, A. Sharesskew: An algorithm to handle skew for
joins in mapreduce. Inf. Syst. 2018, 77, 129–150. [CrossRef]

25. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. Mass storage systems
and technologies (MSST). In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), Incline Village, NV, USA, 3–7 May 2010. [CrossRef]

26. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995.
[CrossRef]

http://dx.doi.org/10.1109/ITOEC.2017.8122547
http://dx.doi.org/10.13334/j.0258-8013.pcsee.2011.26.009
http://dx.doi.org/10.1109/IJCNN.2004.1380068
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2017.04.077
http://dx.doi.org/10.1109/TSMCB.2011.2168604
http://www.ncbi.nlm.nih.gov/pubmed/21984515
http://dx.doi.org/10.1016/j.neucom.2007.10.008
http://dx.doi.org/10.1109/TNN.2009.2024147
http://dx.doi.org/10.1016/j.neucom.2010.12.038
http://dx.doi.org/10.1016/j.neucom.2010.12.041
http://dx.doi.org/10.1016/j.patcog.2011.03.013
http://dx.doi.org/10.1016/j.energy.2015.11.020
http://dx.doi.org/10.1016/j.knosys.2014.04.042
http://dx.doi.org/10.1007/978-3-319-46257-8_18
http://dx.doi.org/10.1016/j.neucom.2016.03.112
http://dx.doi.org/10.1007/s11280-013-0236-2
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1016/j.inffus.2017.10.001
http://dx.doi.org/10.1016/j.is.2018.06.005
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MHS.1995.494215

Energies 2019, 12, 1036 24 of 24

27. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. Evolutionary Computation Proceedings, 1998.
In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings.
IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 4–9 May
1998. [CrossRef]

28. Duda, P.; Dwornicka, R. Optimization of heating and cooling operations of steam gate valve.
Struct. Multidiscip. Optim. 2010, 40, 529. [CrossRef]

29. Duda, P.; Rząsa, D. Numerical method for determining the allowable medium temperature during the
heating operation of a thick-walled boiler element in a supercritical steam power plant. Int. J. Energy Res.
2012, 36, 703–709. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1007/s00158-009-0370-8
http://dx.doi.org/10.1002/er.1825
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Review of MapReduce, ELM and PSO
	MapReduce
	Extreme Learning Machine
	Particle Swarm Optimization Algorithm

	Improved Distributed Extreme Learning Machine (IDELM) Algorithm
	Preliminaries
	IDELM
	Algorithm Performance Analysis
	Experiments Setup
	The Effect of Number of Hidden Layer Nodes on the Performance of IDELM Algorithm
	The Effect of Training Sample Number on the Performance of IDELM Algorithm

	Distributed Particle Swarm Optimization Algorithm
	Initialization Stage
	MapReduce Stage
	Conditional Judgment Stage

	Boiler Combustion Model Based on IDELM Algorithm
	Model and Experiments Setup
	Parameters L and A on IDELM Model
	The Effect of Prediction

	The Realization of Boiler Combustion Optimization
	Optimization Problem Description
	Boiler Combustion Optimization Function Design
	Constraints

	Combustion Optimization Based on MR-PSO Algorithm
	Analysis of Optimization Results under Different Weights

	Conclusions
	References

