Supplementary Materials

(Detailed description of the numerical analysis model)

1. Shear-stress transport (SST) k-ω model

In the shear-stress transport (SST) k-ω model to predict the flow of rim seal is as follows, the turbulent kinetic energy k and the specific rate of dissipation ω are calculated using the following transport equation.

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho u_i k) = \frac{\partial}{\partial x_j}\left(\Gamma_k \frac{\partial k}{\partial x_j}\right) + G_k - Y_k + S_k$$

$$\frac{\partial}{\partial t}(\rho \omega) + \frac{\partial}{\partial x_i}(\rho \omega u_i) = \frac{\partial}{\partial x_j}\left(\Gamma_\omega \frac{\partial \omega}{\partial x_j}\right) + G_\omega - Y_\omega + D_\omega + S_\omega$$

G_k: the production of turbulence kinetic energy.
G_ω: the generation of ω, $G_\omega = \alpha^\omega_k G_k$
Γ_k and Γ_ω: the effective diffusivity of k and ω.
Y_k and Y_ω: the dissipation of k and ω due to turbulence.
D_ω: the cross-diffusion term.
S_k and S_ω: user-defined source terms.

2. Species transport model

The local mass fraction of each species, Y_i, is predicted through the solution of a convection-diffusion for the i^{th} species. This conservation equation takes the following general form.

$$\frac{\partial}{\partial t}(\rho Y_i) + \nabla \cdot (\rho \vec{v} Y_i) = -\nabla \cdot \vec{j}_i + R_i + S_i$$

R_i: the net rate of production of species i by chemical reaction.
S_i: the rate of creation by addition from the dispersed phase plus any user-defined sources.
\vec{j}_i: the diffusion flux of species i, which arises due to gradients of concentration and temperature.

The mass diffusion in turbulent flows is as follows.

$$\vec{j}_i = -\left(\rho D_{i,m} + \frac{\mu_t}{S_c} \right) \nabla Y_i - D_{T,i} \frac{\nabla T}{T}$$

$D_{i,m}$: the mass diffusion coefficient for species i in the mixture.
$D_{T,i}$: the thermal (Soret) diffusion coefficient.
S_c: the turbulent Schmidt number. $S_c = \frac{\mu_t}{\rho \nu_t}$, where μ_t is the turbulent viscosity and ν_t is the turbulent diffusivity.
Reference
1. ANSYS Fluent. 15.0 Theory Guide.