
energies

Article

Implementation of Optimal Two-Stage Scheduling
of Energy Storage System Based on Big-Data-Driven
Forecasting—An Actual Case Study in a
Campus Microgrid

Byeong-Cheol Jeong, Dong-Hwan Shin, Jae-Beom Im, Jae-Young Park and Young-Jin Kim *

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang,
Gyungbuk 37673, Korea; jeongbc8874@postech.ac.kr (B.-C.J.); sdhwan05@postech.ac.kr (D.-H.S.);
jaebeom@postech.ac.kr (J.-B.I.); luckypark@postech.ac.kr (J.-Y.P.)
* Correspondence: powersys@postech.ac.kr; Tel.: +82-54-279-2368

Received: 15 February 2019; Accepted: 19 March 2019; Published: 22 March 2019
����������
�������

Abstract: Optimal operation scheduling of energy storage systems (ESSs) has been considered as
an effective way to cope with uncertainties arising in modern grid operation such as the inherent
intermittency of the renewable energy sources (RESs) and load variations. This paper proposes a
scheduling algorithm where ESS power inputs are optimally determined to minimize the microgrid
(MG) operation cost. The proposed algorithm consists of two stages. In the first stage, hourly
schedules during a day are optimized one day in advance with the objective of minimizing the
operating cost. In the second stage, the optimal schedule obtained from the first stage is repeatedly
updated every 5 min during the day of operation to compensate for the uncertainties in load demand
and RES output power. The ESS model is developed considering operating efficiencies and then
incorporated in mixed integer linear programming (MILP). Penalty functions are also considered
to acquire feasible optimal solutions even under large forecasting errors in RES generation and
load variation. The proposed algorithm is verified in a campus MG, implemented using ESSs and
photovoltaic (PV) arrays. The field test results are obtained using open-source software and then
compared with those acquired using commercial software.

Keywords: energy storage system (ESS); implementation; Internet of Things (IoT); microgrid
(MG); microgrid energy management system (MEMS); mixed integer linear programming (MILP);
open-source; optimal scheduling; two-stage

1. Introduction

The concept of microgrids (MGs) and corresponding applications have drawn considerable
attention from researchers over the last decades, given that it is now possible to reliably and efficiently
integrate distributed energy resources (DERs) into today’s power systems [1,2]. They can integrate
distributed renewable energy generation and storage capacity to meet the electrical needs of customers.
They greatly enhance local power supply reliability [3]. However, many challenging issues are
associated with MGs operation, the most common of which is the reliable integration of renewable
energy sources (RESs), such as photovoltaic (PV) and wind turbine (WT), given their inherent variability
and uncertainty in terms of power generation [4–7]. Sharp fluctuations in load demands on a MG
constitute additional unpredictable variables [8,9]. However, the impact of these uncertainties can
be compensated with the aid of the energy storage system (ESS) [10,11]. Optimal energy scheduling
using an ESS is crucial to cope with the uncertainties of RESs and loads, and to ensure the reliable and
economical operation of the MG. The MG can operate in the grid-connected and islanded modes [12,13].
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MG energy management system (MEMS) successfully provides the reference signals in real time and
scheduling time horizons, so that the MG operates in both modes reliably.

Single-stage approaches have been popular because they are easy to implement [14–21].
In reference [14], online optimal control strategies for ESSs was developed. The optimization problem
was formulated as a robust mixed integer linear programming (MILP) problem to handle uncertainty in
the forecast load demands and RESs power generation. In reference [15], a two-layer optimal dispatch
model with ESSs and supercapacitors was formulated. An upper layer minimized the total operational
costs, and a lower layer then mitigated load fluctuations and RES forecast errors. It demonstrated that
two types of energy storage could be utilized in a hierarchical dispatch model. An execution monitoring
and replanning approach for optimal 24-h dispatch considering the uncertainties in weather conditions
and load profiles were developed in [16]. A multi-objective function was devised to minimize energy
losses, fuel costs, and carbon dioxide emissions. However, the single-stage approaches in [14–16] were
modeled only using numerical software.

Some studies have focused on actual-to-laboratory-scale MGs [17–21]. An energy management
system (EMS) was proposed to minimize the overall operations costs in [17]. It considered a complete
non-linear optimal power flow problem, which determined the active and reactive power injections
at all network buses. It compared the solution that derived using a linearized optimal power flow
problem. Optimal operation of an isolated system using a virtual power producer was proposed
to minimize the generation costs and optimize battery charging/discharging in [18]. Reference [19]
proposed the use of offline scheduling to minimize operating costs by using day-ahead forecast data.
It focused on modeling a MG and design of an EMS. An EMS maximizing total MG profit considering
the total capacities of the RESs and storage systems in terms of future expansion was developed
in [20]. Reference [21] proposed the use of an EMS based on unit commitment with a rolling horizon
to reduce the uncertainties of forecasting. The goal of their proposed optimization was to minimize
the operational costs of the MG.

However, the day-ahead single-stage approach is vulnerable to forecasting errors and
unpredictable variations in renewable power generation and load demands. Thus, the optimal
operating schedule obtained using a single-stage approach may not guarantee optimal operation of
an actual MG. Such issues focus attention on two-stage scheduling approaches, which are robust
under forecasting errors and unpredicted changes in operation conditions [22]. Most literature on the
two-stage scheduling approach has focused on simulation-level demonstrations [23–29]. Reference [23]
addressed energy resources scheduling for the day-ahead and in real time to minimize the total
operation cost of a grid-connected MG. It considered the case where all types of loads were imposed
in a demand response program. In references [24,25], day-ahead scheduling determined the hourly
generation schedules to minimize MG operation costs. Real-time scheduling at a time scale of 5 min
allowed the MG to follow the day-ahead scheduled power exchange with the main grid. Two different
time scales were applied; 1 h for cooling energy and 5 min for electrical energy. In reference [26],
each stage of the two-stage scheduling was two-level. The lower level of the day-ahead scheduling
module was to maximize the expected profit, and the upper level was to minimize the total cost of
MG operation during the day. The second stage featured hour-ahead scheduling at 15-min intervals.
The aim of the lower level of the second stage was to maximize the use of RESs when following the
day-ahead schedule. The upper level of the second stage was the same as the upper level of the first
stage. A two-stage robust optimization method to plan ESS charging/discharging, and direct load
control (DLC) was developed to maximize the total profit of the MG in [27]. In the first stage, ESS
charging/discharging power was scheduled to decrease energy purchases from the main grid, and
DLC scheduling was then set 15 min earlier to complement ESS operation. In reference [28], hourly
scheduling of the day-ahead optimal economic dispatch was performed to minimize the daily MG
operational costs, followed by intra-hour adjustment using two layers to smooth fluctuations and
follow day-ahead scheduling. In the second stage, two different dispatch time intervals were set, one
for virtual energy storage system and the other for the vehicle-to-building system. In reference [29],
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a two-stage scheduling framework optimization problem was formulated to optimize the real-time
operation of a battery and an ultracapacitor. Hour-ahead scheduling was first performed to minimize
the operation cost of the MG, followed by real-time scheduling to eliminate power imbalances caused
by the uncertainties in the RESs and loads.

Only a few studies have validated the two-stage optimization problem using real MGs [30,31].
A heuristic optimal operation was proposed to minimize the MG operating cost in [30]. The proposed
strategy featured both day-ahead and real time scheduling and performance of three different heuristic
algorithms was compared. Reference [31] assessed peak load shifting, onsite PV performance and
grid support by formulating an MILP optimal dispatch problem, featuring both month-ahead and
day-ahead scheduling. The first stage determines DERs scheduling to minimize total operating costs
(on a monthly basis), and the second stage then considers the same optimization problem but over a
day-long time horizon. Table 1 presents a summary of previous studies on the optimal scheduling
optimization problem types, and the validation methods used.

Table 1. Summary of previous studies on the optimal scheduling using ESS in MG.

Ref.
Problem Types 1 Validation Methods 2

SS TS S I Test-Bed

[14]
√ √

Grid-connected MG

[15]
√ √

Grid-connected MG

[16]
√ √

Centro Elettrotecnico Sperimentale Italiano, Italy

[17]
√ √

University of Genoa Smart Polygeneration Microgrid, Italy

[18]
√ √

Budapest Tech Renewable Equipment, Hungary

[19]
√ √

MG Research Laboratory in Aalborg University, Denmark

[20]
√ √

Institue of Nuclear Energy Research MG, Taiwan

[21]
√ √

Huatacondo village, Chile

[23]
√ √

Grid-connected MG in distribution network

[24,25]
√ √

Cooling and electricity coordinate MG

[26]
√ √

14 bus radial system

[27]
√ √

IEEE 33 bus radial system

[28]
√ √

MG in an office building

[29]
√ √

7 bus MG

[30]
√ √

Islanded Catalonia Institute for Energy Research MG

[31]
√ √

University of California San Diego, USA
1 SS: Single-Stage, TS: Two-Stage. 2 S: Simulation level, I: Implementation level.

This paper proposes a two-stage scheduling, which consists of the day-ahead scheduling and the
hour-ahead scheduling with consideration of the ESS. It is implanted in a MEMS in a campus MG and
then validated both in actual case and in simulation to show the effectiveness of the proposed method.
The main contributions of this paper are as follows:

• This paper proposes two-stage scheduling—day-ahead and hour-ahead scheduling—to mitigate
uncertainty and forecasting errors. The first stage is performed one day in advance to minimize
the operation cost, while the second stage is performed every 5 min to minimize the difference
between the input power from the main grid before the day and that during the day.

• Unlike previous papers [23–29], we engage in practical implementation of the proposed two-stage
scheduling system. An Internet-of-Things (IoT)-based campus MG, composed of PV and ESS,
is used as a case study to evaluate the proposed method. The method is developed using not only
the forecast data on load demand and required PV generation but also actual data on electricity
prices and device parameters.
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• The proposed scheduling optimization problem is modelled in PuLP (i.e., a modeling environment
in Python) using an open-source solver coin-or branch and cut (CBC). The optimization module
in the implemented MEMS is completely open-source based.

• Additional case studies are performed to deal with limitations of the implementation in the
campus MG. We verify that completely open-source software can be used to develop the
small-scale MG and that the algorithm is applicable at various PV and battery capacities.

The remaining manuscript of this paper outlines as follows: Section 2 describes an overview of the
implemented campus MG; Section 3 formulates our proposed two-stage scheduling; Section 4 describes
the results of not only implementation but also simulation case studies; and Section 5 concludes the
paper. Note that this paper focuses especially on optimization.

2. Overview of the Implemented IoT-Based Campus MG

2.1. Description of the Implemented Campus MG

Figure 1 presents the architecture of the campus MG. The MG ensures uninterrupted operation of
critical loads in the library (S-01). As shown in the figure, the MG is grid-connected and includes PV
and ESS. The rated PV power of the panels (300 modules) is 100 kW and the panels are installed on the
roof of the outdoor parking lot. A total of 250 kWh of lithium-ion batteries (four racks) and a MEMS
operating center are situated on the first floor of the library.
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Figure 1. Architecture of the implemented IoT-based campus MG.

Moreover, two types of IoT sensors are installed throughout the library. One is a power
sensor (P-type) and the other is a high-speed sensor (H-type). Table 2 lists the features of the
two types of sensor. The reliability of sensors is important since inaccurate sensing and data
measurement can cause various malfunctions in the EMS and consequently unstable operation of
the MG [32]. Note that the average and maximum error rates of two sensors were measured in the
field demonstration experiments. 54 P-type sensors have been installed in the electric distribution
panels where lighting and plug-in loads are connected. In addition, 23 H-type sensors have been
installed in the distribution panels for heating, ventilation, and air conditioning (HVAC) systems
(e.g., air cleaners, thermos-hydrostats, package air conditioners, and pumps). The H-type sensors will
be more extensively exploited particularly for the analysis of dynamic operation and control of the
campus MG, which is considered a next research topic.
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Table 2. Features of P-type and H-type IoT sensors.

Types
(Number)

Sampling
Frequency (Hz)

Average/Maximum
Error Rates (%) Load Types Information

P (54) 1 0.43/4.94 Lightning and
plug-in loads

voltage, current, power factor,
active/reactive/apparent power

H (23) 8× 103 0.50/4.32 HVAC systems

voltage, current, power factor,
active/reactive/apparent power

frequency, total harmonic
distortion/crest factor

2.2. Configuration of an Implemented MG

Figure 2 illustrates the configuration of the campus MG. Existing loads are classified into two
types: general loads (e.g., lighting, air conditioners, and heaters) and critical loads (e.g., central
computer, super computer, and big-data server). Both types of loads are supplied with power when
the MG is in the grid-connected mode. However, in case of failure of the main grid, the general loads
may not receive enough power because the critical loads have priority over the general loads.Energies 2019, 12, x FOR PEER REVIEW 6 of 20 
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IoT sensors are installed on the sides of the general and critical loads and generate huge amounts
of data. All information (e.g., general load power PL_gen and critical load power PL_crit parameters)
received by the IoT sensors is transmitted to a cloud-based IoT platform over a communication link [33].
An efficient data communication system is required for continuous, fast, reliable, and accurate transfer
of information among sensors. Thus, no disturbance and disconnection is acceptable when sharing
information [34]. The P-type sensors use the Ethernet for information transfer, and the H-type sensors
communicate via Wi-Fi. The information in the cloud-based IoT platform is sent to a big-data server
designed to store and analyze huge amounts of data and to provide a monitoring system. The database
(DB) in the MEMS retrieves the required information (e.g., PL_gen and PL_crit) from the big-data server
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over the communication link. The MG bus, the PV and the battery are equipped with measuring units.
The utility and PV-side units measure voltage, current, active power (i.e., utility power Pu, PV power
PPV). An additional state-of-charge (SOC) is measured at the battery side measuring units. All of these
data pass through a supervisory control and data acquisition (SCADA) system and are then forwarded
to the MEMS; the DB then acquires the data.

The MEMS consists of four modules: forecasting, optimization, data analysis, and human-machine
interface (HMI) [35]. The forecasting module operates at different time scales: day-ahead and
2 hours-ahead. It provides forecasts of PV generation power and load demands and delivers the
forecasts to the optimization module. The optimization module makes decisions scheduled utility
power Pu

s and battery power Pb
s using data from the forecasting module and DB. Note that the

campus MG is implemented using two-stage scheduling, which is described specifically in Section 3.
The battery power reference signal Pb

ref is transferred to the battery controllers through the SCADA,
which compensates for any mismatch between the scheduled power and the actual MG power [19].
A bit flag (0/1) is also delivered to the SCADA to decide whether the scheduled results are performed
or not in practice. It is zero only when the parameters input by the MEMS operator exceed bounds or
when required data (e.g., the forecast load demands and PV generation power, market information, and
measurements) are not delivered to the optimization module. The MEMS collects vast amounts of data
such as forecasts, measurements, market information, DER parameters, and the result of scheduling.
These data must be analyzed properly to provide insights on how to improve the performance of
the forecasting and optimization modules [36]. A MEMS should also provide real-time monitoring
and control of a MG. This is performed by the HMI, and keeps operators aware of current MG status
and delivers accessible information [36]. Turning briefly to communication, no standard form of
communication for MEMS operations has yet been defined [37]. However, as the numbers of DERs in
MGs increase, a new type of communication system is needed to improve the quality and stability of
the system. For example, IEC 61850 deals with real-time supervision and control of electrical systems
and is widely used to exchange real-time information [38].

3. The Proposed Two-Stage Scheduling Algorithm

In practice, variations between forecast data and real-time data are inevitable due to variations
and uncertainties in load demands and PV generation. However, it is possible to obtain more accurate
forecasts as real-time operation becomes more imminent [26,27]. Thus, it is not possible to use only
day-ahead scheduling at 1-hour intervals to reflect variability well [29]. Thus, the two-stage scheduling
is proposed to mitigate forecast errors and improve the accuracy of scheduling. Figure 3 presents
the time framework of our proposed scheduling for the campus MG, which includes day-ahead
scheduling and hour-ahead scheduling, especially at a typical time t = N (hour) for ∆t where N ∈ {0, 1,
· · · , 23}. Also, both stages are formulated as MILP problems, the objective functions of which include
penalty terms.

1. Day-ahead scheduling stage: This stage is performed only once before the day to determine the
optimal scheduling for the next day. The time window (TW) is 24 h, and the time interval (∆t) is
1 h. The scheduled profiles do not change with ∆t.

2. Hour-ahead scheduling stage: This is performed every 5 min during the day for peak saving.
Note that hour-ahead scheduling is not conducted at the beginning of every 5-min interval,
but rather follows the day-ahead scheduled profile. In other worlds, the second stage runs not
12 times but rather 11 times per ∆t. The time window is TW′ − k∆t′ where k ∈ {1, · · · , 11}, and
the time interval ∆t′ is 5 min. Only the first interval of each run set serves as a final decision and
the rest of the intervals are for reference only.
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3.1. Day-Ahead Scheduling Stage

In the first stage, the objective function contains the two terms, shown in Equations (1) and (2).
The first term is to minimize the total daily operation cost of the campus MG, and the second is a
penalty function that takes into account the situation when the scheduled utility power exceeds the
contracted power. Note that it is taken into consideration the case of the MG exporting the surplus PV
output power to the main grid, where the scheduled utility power can become negative.

min{∑ (ctPs,d
u,t ) + θ1M2,t}∀t ∈ T, (1)

M2,t = max(0, Ps,d
u,t − Pcont)∀t ∈ T, (2)

where ct is the hourly electricity price of the main grid. Moreover, Pu,t
s,d is the scheduled utility power

imported from the main grid at tth period. Furthermore, Pcont is the contracted power and M2,t is an
additional decision variable, which is the larger of the 0 and (Pu,t

s,d − Pcont) at time t. In (1), θ1 is a
penalty factor and T is the set of hourly periods (i.e., T = [0, 1, · · · , 23]).

However, the second term needs to be linearized when formulating a MILP problem. It is based
on Appendix A and can be achieved using Equations (3)–(5).

Ps,d
u,t = M1,t + M2,t + r0∀t ∈ T, (3)

(r1 − r0)W1,t ≤ M1,t ≤ (r1 − r0) (4)

0 ≤ M2,t ≤ (r2 − r1)W1,t (5)

where M1,t is a continuous decision variable at time t. Moreover, r0, r1, and r2 are parameters.
Furthermore, W1,t is a binary decision variable at time t. All facilitate the piecewise linearization of the
penalty function M2,t.

Moreover, the power balance between total power production and consumption at any time t
must be guaranteed. The linearized DistFlow formulation for the power flow equations is adopted.
It has been largely used in both distribution grids and MGs [39,40]. In this paper, we use active power,
neglecting power losses on the lines, which can be formulated as Equation (6).

Ps,d
u,t + ∑

j:(i,j)∈L
Ps,d

j,i,t = ∑
k:(k,i)∈L

Ps,d
i,k,t +

(
Ps,d

ch,t − Ps,d
dch,t

)
+

(
P f ,d

Li ,t
− P f ,d

PV,t

)
∀i, j, k ∈ B, ∀t ∈ T, (6)

where Pj,i,t
s,d and Pi,k,t

s,d is the day-ahead scheduled active power that flows from jth bus to ith and
from ith bus to kth, respectively, at time t. Moreover, PLi,t

f,d is the day-ahead forecast load demand
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power at ith bus at time t, and PPV,t
f,d is the forecast PV generation power at time t. In addition, Pch,t

s,d

and Pdch,t
s,d are the day-ahead scheduled battery charge and discharge powers at time t. Furthermore,

B is the set of buses and L is the set of lines in the implemented MG. Furthermore, B is the set of buses
and L is the set of lines in the implemented MG.

The SOC and power output constraints are important battery issues. Equation (7) shows that
the energy stored in the battery at time t is affected by not only its previous value but also the charge
and discharge power at the present moment. To prevent the battery from becoming overcharged or
overdischarged, the SOC limit must be satisfied, which is described in Equation (8).

SOCt
s,d = SOCt−1

s,d + ((ηchPs,d
ch,t − Ps,d

dch,t/ηdch

)
∆t)/ECmax∀t ∈ T, (7)

SOCmin ≤ SOCs,d
t ≤ SOCmax∀t ∈ T, (8)

where SOCt
s,d is the state of charge describing how much energy is stored in the battery at time t.

Furthermore, SOCmin and SOCmax are the minimum and maximum amounts of energy that can be
stored in the battery, respectively. Moreover, ηch and ηdch are the charge and discharge efficiency of the
battery, respectively. In addition, ECmax is the capacity of the battery.

Inequality constraints dealing with the charging and discharging power capacity limits of the
battery can be derived from Equations (9) and (10). The battery has three operating states: standby,
charging, and discharging. The three cannot be in play at the same time t. This can be achieved by
introducing a new variable ut, (i.e., charging/standby (1) and discharging/standby (0)). When the
scheduled battery powers Pch,t

s,d and Pdch,t
s,d are zero, standby is in play.

0 ≤ Ps,d
ch,t ≤ utPmax

ch ∀t ∈ T, (9)

0 ≤ Ps,d
dch,t ≤ (1− ut)Pmax

dch ∀t ∈ T, (10)

where Pch
max and Pdch

max are the maximum charge and discharge powers of the battery, respectively.
In addition, ut is a binary variable preventing simultaneous battery charging and discharging.

Another limitation should be satisfied during the operation of the proposed scheduling to meet the
scheduling requirements of the next dispatch day and safe operation of the battery [41]. Equation (11)
means that the energy stored at the last time of scheduling should be set to its initial value.

SOCs,d
23 = SOCinit (11)

where SOC23
s,d is the scheduled battery SOC at 23:00 p.m.; SOCinit is the initial value of the SOC.

3.2. Hour-Ahead Scheduling Stage

The objective function is to minimize the discrepancies between the day-ahead scheduled utility
power profiles and the hour-ahead scheduled utility powers, expressed as the first term of Equation (12).
Due to natural discharge of the SOC, the actual SOC value could exceed the upper or lower limit. Thus,
the second and third terms are added to prevent this situation.

min{(|Ps,d
u,t − Ps,h

u,t |)− θ2M3,t + θ3M5,t}∀t ∈ T′, (12)

M3,t = min(0, SOCs,h
t − SOCmin)∀t ∈ T′, (13)

M5,t = max(0, SOCs,h
t − SOCmax)∀t ∈ T′, (14)

where Pu,t
s,h is the scheduled utility power at time t to be determined in the second stage. Moreover,

SOCt
s,h represents the scheduled SOC at time t; M3,t is an additional decision variable, which is the

smaller of the 0 and (SOCt
s,h − SOCmin) at time t. Furthermore, M5,t is another decision variable, which
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is the larger of the 0 and (SOCt
s,h − SOCmax) at time t. In addition, θ2 and θ3 are penalty factors and T′

is the time set of the second stage (i.e., T′ = [5, 10, · · · , 1435] for the unit time interval of 5 min).
Because the three terms of the objective function are all nonlinear, they must be linearized for the

MILP problem. The first term includes an absolute value, which can be changed to a linear form by
adding auxiliary variables covering positive and negative deviations. Both the second and third term
can be linearized using Equations (15)–(18) in a manner similar to that shown in the first stage, which
is also based on Appendix A.

SOCs,h
t = M3,t + M4,t + M5,t + r3∀t ∈ T′, (15)

(r4 − r3)W2,t ≤ M3,t ≤ (r4 − r3)∀t ∈ T′, (16)

(r4 − r3)W3,t ≤ M4,t ≤ (r5 − r4)W2,t∀t ∈ T′, (17)

0 ≤ M5,t ≤ (r6 − r5)W3,t∀t ∈ T′, (18)

where M4,t is a continuous variable at time t. Moreover W2,t and W3,t are binary decision variables at
time t. In addition, r3, r4, r5 and r6 are additional parameters. All decision variables are required for
piecewise linearization of the penalty functions M3,t and M5,t.

The constraints are similar to those imposed on the day-ahead scheduling, except that the SOC
limit constraint is considered in the objective function. Note that Equation (23) is appropriate for
continuous operations, as is Equation (11), which means that the energy stores of the last frame
(running at the final time step) should be equal to the initial values.

Ps,h
u,t + ∑

j:(i,j)∈L
Ps,h

j,i,t = ∑
k:(k,i)∈L

Ps,h
i,k,t + (Ps,h

ch,t − Ps,h
dch,t) + (P f ,h

Li ,t
− P f ,h

PV,t)∀i, j, k ∈ B, ∀t ∈ T′, (19)

SOCs,h
t = SOCs,h

t−1 + ((ηchPs,h
ch,t − Ps,h

dch,t/ηdch)∆t)/ECmax∀t ∈ T′, (20)

0 ≤ Ps,h
ch,t ≤ utPmax

ch ∀t ∈ T′, (21)

0 ≤ Ps,h
dch,t ≤ (1− ut)Pmax

dch ∀t ∈ T′, (22)

SOCs,h
23_55min = SOCinit (23)

where Pj,i,t
s,h and Pi,k,t

s,h is the hour-ahead scheduled active power that flows from jth bus to ith and
from ith bus to kth, respectively, at time t. Moreover, PLi,t

f,h is the hour-ahead forecast load demand
power at ith bus at time t, and PPV,t

f,h is the forecast PV generation power at time t. In addition, Pch,t
s,h

and Pdch,t
s,h are the hour-ahead scheduled battery charge and discharge powers at time t. In (23),

SOC23_55min
s,h is the scheduled battery SOC at 23:55 p.m.

A surcharging system is considered for the case where the maximum demand power of the
15-min average exceeds the contracted power to stabilize the supply. A constraint in Equation (24)
represents this.

(Ps,h
u,t−1 + Ps,h

u,t + Ps,h
u,t+1)/3 ≤ Pcont∀t ∈ T′, (24)

3.3. Flowchart of the Proposed Two-Stage Scheduling

Figure 4 summarizes the proposed two-stage scheduling for 1 day. This section presents a
detailed flowchart.

Step (1) Initialize the time windows TW and TW′ as 24 h and 1 h, respectively, and the time intervals
∆t and ∆t′ as 1 h and 5 min, respectively. Then, set the current time t = N + k = 0.

Step (2) Obtain input information on the PLi,t
f,d, PPV,t

f,d (time window: TW, time interval: ∆t) from the
forecast module of MEMS for the first stage, measured SOC data from SCADA, time-of-use
(TOU) and ESS parameters from the DB in MEMS.
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Step (3) Formulate and solve a MILP optimization problem for the first stage (Section 3.1).
Step (4) Determine Pu,t

s,d, Pb,t
s,d (time window: TW, time interval: ∆t)

Step (5) When time t attains N+k∆t′, update the input data, which are PLi,t
f,h, PPV,t

f,h (time window:
2TW′, time interval: ∆t′) from the forecasting module in MEMS for the second stage, measured
SOC and utility power from the SCADA, and Pu,t

s,d from the first-stage.
Step (6) Formulate and solve a MILP optimization problem for the second stage (Section 3.2).
Step (7) Make final decisions on Pu,t

s,h, Pb,t
s,h (time window: TW′ − (k + 1)∆t′, time interval: ∆t′) Note

that the time windows of the forecast data and the scheduled profiles differ.
Step (8) If k 6= 12 and N 6= 24, jump to step 5 after N = N + 1, otherwise jump to step 5 after k = k + 1.
Step (9) If N = 24, obtain the final optimal battery charge/discharge power to minimize MG

operation costs.
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4. Case Study and Results

Section 4.1 discusses the implementation results and the effect of hour-ahead scheduling.
Section 4.2 discusses other case studies to compare the simulation results obtained not only using
different solvers (Section 4.2.1), but also different battery and PV capacities (Section 4.2.2). In the
battery scheduling profiles, a negative value indicates the charged state and a positive value means
the discharged state. Note that safe battery operation is more important than economical operation in
real life, but not during simulation. The run time mentioned Section 4 is the total time that it takes to
acquire the input data from the DB, obtain the optimal operating schedules of the ESS, and print out
the optimal results to the monitoring system.

4.1. Implementation Results

To evaluate the performance of our proposed two-stage scheduling, we applied it to the campus
MG shown in Figure 2 where MEMS ran over the top of Linux. The proposed two-stage scheduling
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uses an open-source MILP solver, CBC [42]; an open-source modeling tool PuLP ver. 1.4.6 [43] in the
Python environment. Additionally, scheduling was performed using actual data from the forecasting
module and the DB in the appropriate time frame.

Table 3 lists the technical parameters of the ESS used. The minimum and maximum SOC values
are divided into two types: hard limits SOCh_lim and soft limits SOCs_lim. The values of SOCs_lim are
applied to define the SOC limits of the first stage and the SOC penalty functions of the second stage,
considering additional reserve in the battery energy capacity. Moreover, the values SOCh_lim are the
upper and lower bounds of the second-stage SOC values. The safe, reliable operation of the campus
MG is of utmost importance, which could be successfully achieved with the reserve margins of the
ESS. SOC have a significant influence on the reserve power of the ESSs [44]. Thus, an additional 5%
reserve margin was taken into account in the first stage scheduling, considering that the maximum
and minimum SOC levels were set to be 20% and 80%, respectively. In other words, the SOC level
could vary between 25% and 75%. The charge and discharge efficiencies of the battery were set to 80%.
Table 4 lists the TOU rates for three periods: off-peak (23:00 p.m. ~ 09:00 a.m.), mid-peak (09:00 a.m.
~ 10:00 a.m., 12:00 p.m. ~ 13:00 p.m., 17:00 p.m. ~ 23:00 p.m.), and on-peak (10:00 a.m. ~ 12:00 p.m.,
13:00 p.m. ~ 17:00 p.m.). The contracted power was assumed to be 2000 kW. It is also assumed that the
selling price for the exported power is assumed to be equal to the buying price for the imported power.

Table 3. ESS parameters.

Parameters Values Units

Pch
max 125 (kW)

Pdch
max 250 (kW)

ECmax 250 (kWh)
SOCh_lim

max 90 (%)
SOCs_lim

max 80 (%)
SOCh_lim

min 10 (%)
SOCs_lim

min 20 (%)
ηch 80 (%)
ηdch 80 (%)

Table 4. Considered TOU price.

Classifications Time Periods Prices ($/kWh)

Off-peak 23:00 ~ 09:00 0.0487

Mid-peak
09:00 ~ 10:00
12:00 ~ 13:00 0.0687
17:00 ~ 23:00

On-peak 10:00 ~ 12:00
0.094813:00 ~ 17:00

Figure 5 presents HMI screens showing the forecasted and actual loads and the PV generation
profiles on the day before and during a typical winter day. The black line represents the day-ahead
data for the first stage, the blue line the 2-h-ago data for second stage scheduling, the red line the actual
values, and the green histogram the difference between the 2-h-ahead forecast and the actual values.
All profiles of Section 4.1 are shown in the HMI at 15-min intervals (kWh). Note that the zero values of
the red line at about 17.50 and the blue line at about 19.25 do not indicate faults, rather simply that no
data are yet available.
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4.1.1. Day-Ahead Scheduling

Day-ahead scheduling is performed before the day. The scheduling results in terms of utility
power from the main grid and battery charge/discharge powers are shown in Figure 6a, in which the
red line indicates the scheduled battery power, the green line the utility power, and the purple line
the net load (the difference between the load demand and the PV generation power). The scheduling
results of each time step are maintained for 1 h. More utility power is imported when the TOU is
low and less when the TOU is high. Also, the ESS is charged when utility power is inexpensive and
discharged when it is expensive, to minimize operation costs. The maximum utility power is imported
from 08:00 to 09:00 (28.25 kWh per 15 min). The utility power remains within the contracted power
because the objective function imposes a large deviation penalty for exceeding the contracted power.
However, battery charge/discharge was minimal because the efficiency was assumed to be 80% and a
5% SOC safety margin was applied. The computation time required for a solution was 27.97 s, and the
electricity cost was $97.59 during the day.

4.1.2. Hour-Ahead Scheduling

Hour-ahead scheduling makes decision the utility and battery powers every 5 min to minimize
deviations between the day-ahead and hour-ahead scheduled utility powers. The results are shown in
Figure 6b, in which the colors have the same meanings as in Figure 6a. The total objective value of
hour-ahead scheduling is zero, which means that the scheduled utility power of hour-ahead scheduling
and that of day-ahead scheduling overlap perfectly. Compared to the day-ahead ESS scheduling,
where the ESS is on standby most of the time, the battery is not on standby in the second scheduling
stage. The ESS is used to compensate for forecast errors caused by uncertainty and variations in load
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demand and PV generation. The battery power changes frequently to ensure that the utility power is
equal to that of the day before. The first time interval of hour-ahead scheduling is 6.69 s on average.Energies 2019, 12, x FOR PEER REVIEW 13 of 20 
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4.2. Performance Analysis

In this section, we analyze the performances of open-source solvers and DER capacities at the
simulation level. The battery charge and discharge efficiency were both set to 85 %. The other values
were unchanged. All simulations were performed using an AMD Ryzen 7 model 1700 eight-core
3-GHz processor with 32.0 GB of memory.

4.2.1. Open-Source Solver Performance

CPLEX is widely used to solve MILP problems. However, the optimization module of our
campus MG module is completely open-source. To analyze the performance of the open-source solver,
we compared CPLEX and CBC. Both are established in Python. We assumed that the forecast error
range between day-ahead and 2-h-ahead would be ±5%, thus relatively small.

Table 5 compares the optimal values and required computation times of two-stage scheduling.
The computation times required by the two solvers for day-ahead scheduling were 11.06 s and 0.29 s,
respectively. We also compared the average computation times required for the first-time interval
of hour-ahead scheduling, because it takes the longest time in the second stage. The times were
3.25s and 0.16 s, respectively. In other words, CBC requires far more computation time than CPLEX
for both stages. Figure 7 presents the scheduling imported utility power, battery power, and SOC
profiles calculated by the two MILP solvers. This shows that the campus MG worked safely with
the reserve margin. The optimal value derived by CBC is exactly that derived by CPLEX for both
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day-ahead and hour-ahead scheduling. The simulation results thus show that CBC is acceptable for
practical implementation in small-scale MGs even though CPLEX affords better performance in terms
of computation time.

Table 5. Comparison results of CBC and CPLEX.

MILP Solvers
Optimal Values ($) Computation Time (s)

Day-Ahead Hour-Ahead Day-Ahead Hour-Ahead 1

CBC 84.21 0 11.06 3.25
CPLEX 84.21 0 0.29 0.16

1 First time interval of the hour-ahead scheduling.
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4.2.2. DER Capacity Performance

In Section 4.2.2, we compared the operation costs of the first stage as the PV and battery capacities
changed. Battery capacity was changed over the range of 100–400 kWh. The PV capacity varied from
0–300 W. Figure 8 presents the MG operating costs within this range. It is assumed that the extent of
PV generation at each time is proportional to the PV capacity. The operation costs decreased from
about $117.80 to about $49.82 as the PV and battery capacities increased. In other words, the operation
costs of the MG are inversely proportional to the PV and battery capacities. However, the PV system
affects operating costs more than the battery does. Our findings also demonstrate that our proposed
two-stage scheduling algorithm can handle various PV and battery capacities.
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5. Conclusions

In this paper, we proposed optimal two-stage scheduling of a MG, considering forecasting errors.
It consists of two stages: day-ahead and hour-ahead scheduling. The first stage is performed before the
day to minimize operation costs. The second minimizes deviations from the utility powers scheduled
by the first stage. The proposed optimal operation system was formulated as an MILP problem and
solved by CBC. The application of the proposed method to a real case (a campus MG) proved that
our system effectively compensated for forecasting errors and was applicable in practice. Simulations
revealed that our proposed scheduling method is also valid during implementations in which the
battery is inactivated because of safety concerns. The simulation case studies show that an open-source
solver can be used to control small-scale MGs even though the performance is lower than that of a
commercial solver; our proposed algorithm is applicable over a wide range of PV and battery capacities.

Further work is required to increase the efficiency of our proposed two-stage scheduling for the
campus MG. The error rate of the forecasting module should be decreased, because the economic
savings imparted by scheduling improve as the accuracy of forecast data improves. Additionally,
our proposed two-stage scheduling algorithm should be implemented using various open- source
solvers (e.g., GNU linear programming kit (GLPK), Solving constraint integer programs (SCIP)) or
other open-source modeling environments such as Pyomo of Python or JuMP of Julia. We will also
measure the required computation times and derive optimal values for larger scale operations in case
the campus MG is extended in future.
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Nomenclature

Acronyms
CBC Coin-or branch and cut
DB Database
DER Distributed energy resource
DLC Direct load control
EMS Energy management system
ESS Energy storage system
HMI Human-machine interface
HVAC Heating ventilation, and air conditioning
GLPK GNU linear programming kit
SCIP Solving constraint integer programs
MEMS Microgrid energy management system
MG Microgrid
MILP Mixed integer linear programming
IoT Internet-of-things
PV Photovoltaic
RES Renewable energy sources
SCADA Supervisory control and data acquisition
SOC State-of-charge
TOU Time-of-use
WT Wind turbine
Sets and Indices
T Set of hourly periods in the first stage
T′ Set of 5 min periods in the second stage
B Set of buses in the MG
L Set of lines in the MG
i, j, k Node of electrical network i, j, k ∈ B and (i,j), (k,i) ∈ L
t Time periods, t ∈ T and t ∈ T′ for the first and second stages, respectively
d Day-ahead stage values
h Hour-ahead stage values
s Scheduled values
f Forecasted values
max, min, ref Maximum/minimum/reference values
s_lim, h_lim Soft/hard limit values
Parameters and Constants
TW Time window for the first stage
TW′ Time window for the second stage
Pcont Contracted power
θ Penalty factor
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∆t Time interval of the first stage
∆t′ Time interval of the second stage
r Parameter for objective function linearization
SOCmin, SOCmax Minimum/maximum of the SOC
ηch, ηdch Battery charge/discharge efficiencies
ECmax Battery capacity
Pch

max, Pdch
max Maximum charge/discharge power

SOCinit Initial SOC
Variables
ct Hourly TOU price at time t
Pu,t Imported power from the utility at time t
Mt Continuous variable for objective function linearization at time t
Wt Binary variable for objective function linearization at time t
Pi,j,t Power flow from i to j at time t
PLi ,t Load demands at node i at time t
PPV,t PV generation power at time t
Pch,t, Pdch,t Battery charge/discharge power at time t
SOCt SOC at time t
ut Binary variable for determining battery charging/discharging at time t

Appendix A

Appendix A.1 Piecewise Linear Approximation of max(0, kt) Function

Figure A1a shows the piecewise linear approximation of max(0,kt) function.

Appendix A.1.1 The Objective Function

The objective function is to minimize max(0,kt), which is described in Equation (A1).

min.max(0, kt) (A1)

where kt equals to (xt − r1).

Appendix A.1.2 Constraints

Equations (A2)–(A5) are required as constraints.

M2,t = max(0, kt)∀t, (A2)

xt = r0 + M1,t + M2,t∀t, (A3)

(r1 − r0) ·W1,t ≤ M1,t ≤ (r1 − r0)∀t, (A4)

0 ≤ M2,t ≤ (r1 − r0) ·W1,t∀t, (A5)

where M1,t, M2,t and xt are continuous decision variables at time t. In the day-ahead scheduling stage,
xt is Pu,t

s,d. Moreover, r0, r1, and r2 are parameters. Furthermore, W1,t is a binary decision variable at
time t. All facilitate the piecewise linearization of the penalty function max(0, kt). The values of r0–2

listed in Table A1. The value of r0 is determined based on the PV generation power whose rated power
is set to 100 kW. Moreover, r1 is a reference point to determine whether penalty is imposed or not.
Furthermore, r2 represents the limit of the scheduled utility power, which is assumed to be smaller
than two times of the contracted power Pcont.

Appendix A.2 Piecewise Linear Approximation of {−min(0, st) + max(0, lt)} Function

Figure A1b shows the piecewise linear approximation of {−min(0, st) + max(0, lt)} function.



Energies 2019, 12, 1124 18 of 20

Appendix A.2.1 The Objective Function

min.{−min(0, st) + max(0, lt)}∀t, (A6)

where st and lt equal to (xt − r4) and (xt − r5), respectively. Note that st is negative.

Appendix A.2.2 Constraints

Equations (A7)–(A12) are required as constraints.

M3,t = min(0, st)∀t, (A7)

M5,t = max(0, lt)∀t, (A8)

xt = r3 + M3,t + M4,t + M5,t∀t, (A9)

(r4 − r3) ·W2,t ≤ M3,t ≤ (r4 − r3)∀t, (A10)

(r4 − r3) ·W3,t ≤ M4,t ≤ (r5 − r4) ·W2,t∀t, (A11)

0 ≤ M5,t ≤ (r6 − r5) ·W3,t∀t ∈ T′, (A12)

where M3,t, M4,t, M5,t, xt are continuous variables at time t. In the hour-ahead scheduling stage, xt is
SOCt

s,h. Moreover W2,t and W3,t are binary decision variables at time t. In addition, r3, r4, r5 and r6 are
additional parameters. All decision variables and parameters are required for piecewise linearization
of the penalty function {−min (0, st) +max (0, lt)}. The values of r3–6 listed in Table A1. For the proposed
hour-ahead scheduling, r3 and r6 are set to the minimum and maximum hard limits on SOC levels,
respectively. Moreover, r4 and r5 are the minimum and maximum soft limits on SOC values.
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