A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip

Najiyah Safwa Khashi’ie 1,2,*, Norihan Md Arifin 1,3, Roslinda Nazar 4, Ezad Hafidz Hafidzuddin 5, Nadihah Wahi 3 and Ioan Pop 6

1 Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; norihana@upm.edu.my
2 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
3 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; nadihah@upm.edu.my
4 School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; rmn@ukm.edu.my
5 Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; ezadhafidz@upm.edu.my
6 Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca, Romania; popm.ioan@yahoo.co.uk
* Correspondence: najiyah@utem.edu.my

Received: 12 January 2019; Accepted: 19 February 2019; Published: 2 April 2019

Abstract: The numerical study of nanofluid stagnation point flow coupled with heat and mass transfer on a moving sheet with bi-directional slip velocities is emphasized. A magnetic field is considered normal to the moving sheet. Buongiorno’s model is utilized to assimilate the mixed effects of thermophoresis and Brownian motion due to the nanoparticles. Zero nanoparticles’ flux condition at the surface is employed, which indicates that the nanoparticles’ fraction are passively controlled. This condition makes the model more practical for certain engineering applications. The continuity, momentum, energy and concentration equations are transformed into a set of nonlinear ordinary (similarity) differential equations. Using bvp4c code in MATLAB software, the similarity solutions are graphically demonstrated for considerable parameters such as thermophoresis, Brownian motion and slips on the velocity, nanoparticles volume fraction and temperature profiles. The rate of heat transfer is reduced with the intensification of the anisotropic slip (difference of two-directional slip velocities) and the thermophoresis parameter, while the opposite result is obtained for the mass transfer rate. The study also revealed the existence of non-unique solutions on all the profiles, but, surprisingly, dual solutions exist boundlessly for any positive value of the control parameters. A stability analysis is implemented to assert the reliability and acceptability of the first solution as the physical solution.

Keywords: nanofluid; stagnation sheet; three-dimensional flow; slip condition; stability analysis

1. Introduction

Nanofluids are a special class of fluids that have been the subject of developing research in the recent years. The dispersion of single nanoparticles like metals, oxides, carbon nanotubes or carbides in a fluid can create a modern class of fluids known as nanofluid. Water, oil and ethylene glycol are the common base fluid used in the formation of nanofluid. The invention of nanofluids that have good thermophysical properties can improve heat transfer performance for enormous
futuristic applications such as in nuclear cooling systems, solar water heating, biomedical applications, lubrication, thermal storage, refrigeration, coolant in automobile radiator, and many others [1–13]. Choi et al. [14] initiated an experiment on nanotube-in-oil suspensions and measured that the thermal conductivity is inevitably greater than the theoretical predictions. An analytical model by Buongiorno [15] highlighted the importance of thermophoresis and Brownian motion that can induce a relative velocity between the nanoparticles and base fluid. Nield and Kuznetsov [16] implemented Buongiorno's model on the Cheng–Minkowycz problem for flow in a porous medium filled with nanofluid. A brief study of nanofluid and its thermal conductivity has also been examined by Buongiorno et al. [17]. Kuznetsov and Nield [18] revised their model [16] by introducing a new boundary condition that could manipulate the nanoparticles’ volume fraction at the surface. Based on the report, it is assumed that the nanoparticles’ volume fraction is passively controlled at the boundary which could make the new model more realistic and physically applicable as compared to the existing model. Muhammad et al. [19] also imposed coupled effects of convective heat and zero nanoparticles flux on conditions for Darcy–Forchheimer flow of Maxwell nanofluid. In addition, research works on the zero nanoparticles flux condition were also considered by Rehman et al. [20], Rahman et al. [21], Uddin et al. [22], ur Rahman et al. [23] and Jusoh et al. [24]. Furthermore, studies on the boundary layer problem utilizing Buongiorno’s model of nanofluid were also conducted by these researchers [25–31].

Magnetohydrodynamics (MHD), also acknowledged as hydromagnetics and magneto-fluid dynamics, is the study on the behaviour of electrically conducting fluids including liquid metals, plasmas, electrolytes and salt water. The magnetic fields can generate currents or Lorentz force in a moving fluid, which give resistance to the fluid flow and, simultaneously, changes the magnetic field. Magnetohydrodynamics are effectively applied in many devices such as generators, power pumps, heat exchangers and electrostatic filters. The imposition of the magnetic field is also practical in maintaining the boundary layer flow. Rashidi et al. [32] introduced a new analytical method (DTM–Padé) to solve the boundary-layer equations of an MHD micropolar fluid near an isothermal-stretching sheet and concluded that the DTM–Padé is applicable for solving magnetohydrodynamic (MHD) boundary-layer equations. Rashidi et al. [33] concluded that the magnetic nanofluid flow over a porous rotating disk was beneficial in rotating MHD energy generators for new space systems. Sheikholeslami et al. [34] investigated the problem of an eccentric semi-annulus saturated with nanofluid under the influence of a magnetic field. Hayat et al. [35] studied the combined effects of magnetic field, velocity slip and nonlinear thermal radiation on the three-dimensional nanofluid flow. Kandasamy et al. [36] considered the convective condition for an MHD mixed convection flow in a nanofluid while Bhatti et al. [37] analyzed the MHD Williamson nanofluid over a porous shrinking sheet. An external magnetic field was imposed, while the induced magnetic field was neglected due to the negligible magnetic Reynolds number. Bhatti et al. [38] examined the coupled effects of MHD and partial slip on the blood flow using a Ree–Eyring fluid model. Makulati et al. [39] utilized the Tiwari and Das model of water-alumina nanofluid to study the impact of a magnetic field in inclined C-shaped enclosures. Hussain et al. [40] found that an upsurge of magnetic field, Hall current, rotation and chemical reaction had an impact on the fluid flow over an accelerated moving plate.

Stagnation point flows are fluid flows that approach the surface of a solid object and then separate into different streams. Stagnation region which meets the maximum pressure, heat transfer and mass deposition are essential in the industrial and technological field. Early classical works on stagnation flow that excluded the slip velocity effect were examined by Hiemenz [41] for the two-dimensional problem, Homann [42] for the axisymmetric case and Howarth [43] for the flow near the stagnation region. According to Wang [44], anisotropy is reflected in the difference of bi-directional (direction) slip velocities. Previously, Wang had considered the problem of two-dimensional stagnation flow with symmetric axes on dissimilar surfaces; stationary plate with isotropic slip [45] and moving plate [46], respectively. The results indicated that the enhancement of slip parameter will change the surface resistance and velocity profile. Hussain et al. [47] studied the slip flow and heat transfer of nanofluids embedded in a Darcy-type porous medium. From the analysis, the increment in the
permeability of the porous medium and the velocity slip parameter increased the heat transfer rate, whereas it decreased the momentum and thermal boundary layer thicknesses. Khan et al. [48] also pointed up the significance of wall velocity slip for a reliable design and operation of microfluidic devices made of hydrophobic devices. The emerging numbers of industrial and technological applications make the study of anisotropic slip that relies upon the flow direction, which is influential for these types of surfaces: hydrophobic [49–54] and porous [55,56]. Rashad [57] investigated the coupled effects of anisotropic slip and convective condition in an unsteady nanofluid saturated with porous medium. Hafidzuddin et al. [58] discussed the anisotropic slip on stagnation flow due to a permeable moving surface, which resulted in dual solutions attained with the presence of a suction parameter. Numerous studies involving three-dimensional stagnation nanofluid flow towards a moving anisotropic slip surface are conducted by Raees et al. [59], Uddin et al. [60] and Balushi et al. [61]. Very recently, Sadiq [62] concluded that the intensity of magnetic field and velocity slip cause an increase in the nanofluid velocity while the boundary layer thickness decreases near the stagnation point region.

Motivated by the literature mentioned earlier, the current work accentuates the anisotropic slip effect on the numerical solution of stagnation point flow with nanoparticles due to a moving surface. Buongiorno’s model of nanofluid with an assumption of zero normal flux condition at the wall is implemented. A set of transformations is applied on the governing model to simplify them into nonlinear ordinary differential equations (ODEs). The bvp4c function in MATLAB software (R2017b, MathWorks, Natick, MA, USA) is utilized to perform the numerical computations. The numerical results are demonstrated in the graph forms of velocity, nanoparticles concentration and temperature including the skin friction coefficient, heat and mass transfer rate within the specific range of related parameters. The authors also concern about the emergence of non-unique solutions and the way of stability analysis is conducted to prove the physical solution. The pioneer works on formulation of stability analysis were conducted by Merkin [63], Weidman et al. [64], Harris et al. [65] and Rośca and Pop [66]. A brief of explanation on stability analysis was also discussed by the following literature [67–74]. To the best of the authors’ knowledge, the results are new and have not been published.

2. Mathematical Formulation

Consider a steady, three-dimensional stagnation point flow of a nanofluid towards a moving sheet with the presence of anisotropic slip as illustrated in Figure 1. U_x and V_y are the moving plate velocities along the x- and y-directions while the z-axis is the axis of stagnation flow. A magnetic field of consistent strength B_0 is applied normal to the plate. The surface is kept with fixed temperature, T_w while variable nanoparticles fraction, $D_\theta \frac{\partial C}{\partial z} + D_\nu \frac{\partial T}{\partial z}$ is adapted at $z = 0$. This condition is applied to achieve practically applicable results [18–24]. The ambient nanofluid concentration and temperature are denoted as C_∞ and T_∞.

![Figure 1. The coordinate system of the physical model.](image-url)
The following assumptions for the physical model are also contemplated in the present work:

- The nanoparticles and the base fluid is maintained in a thermal equilibrium state.
- The Buongiorno’s model of nanofluid is used to mix the combined effects of Brownian motion and thermophoresis.
- The insignificant value of the magnetic Reynolds number is assumed so that the induced magnetic field is zero.
- The Hall current effect is also omitted due to the absence of any externally applied electric field.

Under all these assumptions, the flow equations are:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \]

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = U_e (x) \frac{dU_e (x)}{dx} + v \nabla^2 u - \frac{\sigma_M B_0^2}{\rho} (u - U_e (x)), \]

\[u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = V_e (y) \frac{dV_e (y)}{dy} + v \nabla^2 v - \frac{\sigma_M B_0^2}{\rho} (v - V_e (y)), \]

\[u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = v \nabla^2 w, \]

subject to the initial and boundary conditions

\[u (x, y, 0) = \lambda U_e + \mu S_1 \frac{\partial u}{\partial z} \bigg|_{(x,y,0)}, \quad v (x, y, 0) = \lambda V_e + \mu S_2 \frac{\partial v}{\partial z} \bigg|_{(x,y,0)}, \quad w (x, y, 0) = 0, \]

\[\left\{ \begin{array}{l}
T (x, y, 0) = T_w, \\
\quad \left[D_B \frac{\partial C}{\partial z} + D_T \frac{\partial T}{\partial z} \right] \bigg|_{(x,y,0)} = 0,
\end{array} \right. \]

\[u (x, y, z) \rightarrow U_e (x) = bx, \quad v (x, y, z) \rightarrow V_e (y) = by, \quad T (x, y, z) \rightarrow T_\infty, \quad C (x, y, z) \rightarrow C_\infty \quad \text{as} \quad z \rightarrow \infty, \]

where \((u, v, w)\) are the respective velocities in \((x, y, z)\) directions, \(T\) is the fluid temperature, \(C\) is the nanoparticles volume fraction, \(\nu\) is the kinematic viscosity, \(\mu\) is the dynamic viscosity, \(\sigma_M\) is the electrical conductivity of the fluid, \(\rho\) is the fluid density, \(\tau_1\) is the ratio of heat capacity of the nanoparticles to the base fluid, \(\kappa\) is the thermal diffusivity, \(D_B\) is the Brownian diffusion coefficient, \(D_T\) is the thermophoretic diffusion coefficient, \(S_1\) is the slip coefficient in \(x\)-direction, \(S_2\) is the slip coefficient in \(y\)-direction, \(b\) is the strength of the stagnation flow, and \(\lambda\) is the moving parameter such that \(\lambda > 0\) and \(\lambda < 0\) refer to the moving plate, which is out and towards the origin, respectively [58,75].

The following similarity transformations which satisfy Equation (1) are employed to convert the PDEs in Equations (2)–(6) aligned with the conditions (see Equations (7) and (8)) into a set of ODEs:

\[\begin{aligned}
&u = bx f'(\eta) + U_e h(\eta), \quad v = by g'(\eta) + V_e k(\eta), \quad w = -\sqrt{\nu} \left[f(\eta) + g(\eta) \right], \\
&T = (T_w - T_\infty) \theta(\eta) + T_\infty, \quad C = (C_w - C_\infty) \phi(\eta) + C_\infty, \quad \eta = \sqrt{\nu} z,
\end{aligned} \]

where \(\eta\) is the similarity variable. Hence, the transformed nonlinear ODEs in conjunction with the conditions are:

\[f''' = (f')^2 - (f + g) f'' + M (f' - 1) - 1, \]
\[g'' = (g')^2 - (f + g)g'' + M(g' - 1) - 1, \]
\[h'' = hf' - (f + g)h' + M, \]
\[k'' = kg' - (f + g)k' + M, \]
\[\theta'' = -Pr \left[(f + g)\theta' + Nb\theta' + Nt(\theta')^2 \right], \]
\[\phi'' = -Le Pr(f + g)\phi' - \frac{Nt}{Nb} \theta'', \]
\[f(0) = g(0) = 0, \quad \gamma_1 f''(0) = f'(0), \quad \gamma_2 g''(0) = g'(0), \quad \lambda + \gamma_1 h'(0) = h(0), \quad \lambda + \gamma_2 k'(0) = k(0), \]
\[\theta(0) = 1, \quad Nb\phi'(0) + Nt\theta'(0) = 0, \]
\[f'(\eta) \to 1, \quad g'(\eta) \to 1, \quad h(\eta) \to 0, \quad k(\eta) \to 0, \quad \theta(\eta) \to 0, \quad \phi(\eta) \to 0 \quad \text{as} \quad \eta \to \infty, \]

where primes denote differentiation with respect to similarity variable \(\eta \), \(M = \frac{\sigma_M B_0^2}{\rho b} \) is the magnetic field parameter, \(Nt = \frac{\tau_1 D_T (T_w - T_{\infty})}{\nu T_{\infty}} \) is the thermophoresis parameter, \(Nb = \frac{\tau_1 D_B (C_w - C_{\infty})}{\nu} \) is the Brownian motion parameter, \(Pr = \frac{v}{\alpha} \) is the Prandtl number, \(Le = \frac{\alpha}{D_B} \) is the Lewis number, \(\gamma_1 = \mu S_1 \sqrt{\frac{B}{V}} \) and \(\gamma_2 = \mu S_2 \sqrt{\frac{B}{V}} \) are the slip parameters in the bi-directional \(x \)- and \(y \)-axis, proportionately. The physical interests in the study are the dimensionless skin friction coefficient, local Nusselt number (heat transfer rate) and local Sherwood number (mass transfer rate) which is denoted by

\[C_j Re^{1/2}_x = f''(0), \quad \frac{Nu_x}{Re^{1/2}_x} = -\theta'(0), \quad \frac{Sh_x}{Re^{1/2}_x} = -\phi'(0), \]

accordingly.

3. Stability Analysis

The implementation of stability analysis is essential to affirm mathematically the stability and reliability of the dual solutions. The first non-unique solution which is asymptotically satisfying the boundary conditions will be denoted as the first or upper branch solution. For stability purposes, a time-dependent problem needs to be considered based on study in previous literature [67–73]. The unsteady form of Equations (2)–(6) is

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = U_e(x) \frac{dU_e(x)}{dx} + v \nabla^2 u - \frac{\sigma_M B_0^2}{\rho} (u - U_e(x)), \]

\[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = V_e(y) \frac{dV_e(y)}{dy} + v \nabla^2 v - \frac{\sigma_M B_0^2}{\rho} (v - V_e(y)), \]

\[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = v \nabla^2 w, \]

\[\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \kappa \nabla^2 T + \tau_1 D_B \left[\frac{\partial T}{\partial x} \frac{\partial C}{\partial x} + \frac{\partial T}{\partial y} \frac{\partial C}{\partial y} + \frac{\partial T}{\partial z} \frac{\partial C}{\partial z} \right] + \frac{\tau_1 D_T}{T_{\infty}} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 + \left(\frac{\partial T}{\partial z} \right)^2 \right], \]

\[\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} = D_B \nabla^2 C + \frac{D_T}{T_{\infty}} \nabla^2 T. \]
New transformations are applied to the unsteady problem (see Equations (19)–(23)) where \(\tau \) is the non-dimensional time variable:

\[
\begin{align*}
 u &= bx \frac{\partial f(\eta, \tau)}{\partial \eta} + U_x h(\eta, \tau), \\
v &= by \frac{\partial g(\eta, \tau)}{\partial \eta} + V_y k(\eta, \tau), \\
w &= -\sqrt{\nu} [f(\eta, \tau) + g(\eta, \tau)], \\
T &= (T_w - T_\infty) \theta(\eta, \tau) + T_\infty, \\
 C &= (C_w - C_\infty) \phi(\eta, \tau) + C_\infty, \\
 \eta &= \sqrt{\frac{b}{\nu}} \tau, \\
 \tau &= bt.
\end{align*}
\]

Using Equation (24), the following equations can be attained:

\[
\begin{align*}
 \frac{\partial^3 f}{\partial \eta^3} + (f + g) \frac{\partial^2 f}{\partial \eta^2} - \left(\frac{\partial f}{\partial \eta} \right)^2 - M \left(\frac{\partial f}{\partial \eta} - 1 \right) + \frac{\partial^2 f}{\partial \eta \partial \tau} &= 0, \\
 \frac{\partial^3 g}{\partial \eta^3} + (f + g) \frac{\partial^2 g}{\partial \eta^2} - \left(\frac{\partial g}{\partial \eta} \right)^2 - M \left(\frac{\partial g}{\partial \eta} - 1 \right) + \frac{\partial^2 g}{\partial \eta \partial \tau} &= 0,
\end{align*}
\]

with the transformed conditions

\[
\begin{align*}
 f(\eta, 0, \tau) &= g(\eta, 0, \tau) = 0, \\
 \lambda + \gamma_1 \frac{\partial f}{\partial \eta} \bigg|_{(0, \tau)} &= 0, \\
 \lambda + \gamma_2 \frac{\partial k}{\partial \eta} \bigg|_{(0, \tau)} &= k(0, \tau), \\
 \theta(0, \tau) &= 1, \\
 \phi(0, \tau) &= 0.
\end{align*}
\]

For the stability process, steady flow solutions \(f(\eta) = f_0(\eta), g(\eta) = g_0(\eta) \), \(h(\eta) = h_0(\eta) \), \(k(\eta) = k_0(\eta), \theta(\eta) = \theta_0(\eta) \) and \(\phi(\eta) = \phi_0(\eta) \) which have satisfied Equations (10)–(17) are examined by the following expressions:

\[
\begin{align*}
 f(\eta, \tau) &= f_0(\eta) + e^{-\sigma \tau} F(\eta), \\
 g(\eta, \tau) &= g_0(\eta) + e^{-\sigma \tau} G(\eta), \\
 h(\eta, \tau) &= h_0(\eta) + e^{-\sigma \tau} H(\eta), \\
 k(\eta, \tau) &= k_0(\eta) + e^{-\sigma \tau} K(\eta), \\
 \theta(\eta, \tau) &= \theta_0(\eta) + e^{-\sigma \tau} P(\eta), \\
 \phi(\eta, \tau) &= \phi_0(\eta) + e^{-\sigma \tau} R(\eta)
\end{align*}
\]

where \(\sigma \) is an eigenvalue, \(F(\eta), G(\eta), H(\eta), K(\eta), P(\eta) \) and \(R(\eta) \) are small relative to \(f_0(\eta), g_0(\eta), h_0(\eta), k_0(\eta), \theta_0(\eta) \) and \(\phi_0(\eta) \), correspondingly [66]. The linearized eigenvalue problem will be attained by replacing Equation (33) into Equations (25)–(32):

\[
\begin{align*}
 F'''' + (f_0 + g_0) F'' + (F + G) f_0'' - (2f_0' - \sigma + M) F' &= 0, \\
 G'''' + (f_0 + g_0) G'' + (F + G) g_0'' - (2g_0' - \sigma + M) G' &= 0,
\end{align*}
\]
There are four separate codes in bvp4c function; code a for solving steady flow equations, code b for continuation of code a, code c and d for stability analysis of dual solutions. In the bvp4c code a, bvp4c function implements a finite difference scheme known as 3-stage Lobatto IIIa [74,76–78].

\[H'' + (f_0 + g_0) H' + (F + G) h_0' - h_0 F' - (f_0' - \sigma + M) H = 0, \]
\[K'' + (f_0 + g_0) K' + (F + G) k_0' - k_0 G' - (g_0' - \sigma + M) K = 0, \]
\[P'' + Pr \left[(f_0 + g_0) P' + (F + G) \theta_0' + Nb (\phi_0' P' + \theta_0' R') + Nt (2\theta_0' P') + \sigma P \right] = 0, \]
\[R'' + Le Pr \left[(f_0 + g_0) R' + (F + G) \phi_0' + \sigma R \right] + \frac{NI}{Nb} P'' = 0, \]

along with the conditions
\[
\begin{align*}
F(0) &= G(0) = 0, & \gamma_1 F''(0) &= F'(0), & \gamma_2 G''(0) &= G'(0), \\
\gamma_1 H'(0) &= H(0), & \gamma_2 K'(0) &= K(0), & P(0) &= 0, & Nb R'(0) + Nt P'(0) &= 0 \\
F'(\eta) &\to 0, & G'(\eta) &\to 0, & H(\eta) &\to 0, & K(\eta) &\to 0, & P(\eta) &\to 0, & R(\eta) &\to 0 \text{ as } \eta \to \infty.
\end{align*}
\]

The stability of the solutions \(f_0(\eta), g_0(\eta), h_0(\eta), k_0(\eta) \) and \(\phi_0(\eta) \) depends on the smallest eigenvalue, \(\gamma_1 \) by solving the governing linearized eigenvalue model in Equations (34)–(41). Relaxation of a boundary condition is necessary to attain a possible range of eigenvalues [65]. Hence, in the present paper, the boundary condition \(F'(\eta) \to 0 \) as \(\eta \to \infty \) (see Equation (41)) is relaxed and replaced with the normalizing boundary condition \(F''(0) = 1 \).

4. Results and Discussion

The similarity solutions for the transformed ODEs in Equations (10)–(15) aligned with the conditions (see Equations (16) and (17)) are found with the aid of bvp4c function in MATLAB software. The bvp4c function implements a finite difference scheme known as 3-stage Lobatto IIIa [74,76–78]. There are four separate codes in bvp4c function; code a for solving steady flow equations, code b for continuation of code a, code c and d for stability analysis of dual solutions. In the bvp4c code a, \(\eta_{\infty} = 10 \) is used for the numerical calculations, but it is found that \(\eta_{\infty} = 5 \) is sufficient enough to fulfill the boundary conditions based on all the profiles demonstrated in the present study. For the method validation, few values in the case of Newtonian fluid with the absence of magnetic parameter and heat transfer have been compared to the results by Wang [44] and Balushi et al. [61]. The present numerical values are in positive agreement with others as tabulated in Table 1.

<table>
<thead>
<tr>
<th>(\gamma_2)</th>
<th>Present</th>
<th>Wang [44]</th>
<th>Balushi et al. [61]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>f'(0)</td>
<td>0.896418</td>
<td>0.895885</td>
</tr>
<tr>
<td>2.5</td>
<td>g'(0)</td>
<td>0.896418</td>
<td>0.809985</td>
</tr>
<tr>
<td>5</td>
<td>h(0)</td>
<td>0.122554</td>
<td>0.123428</td>
</tr>
<tr>
<td>2.5</td>
<td>k(0)</td>
<td>0.122554</td>
<td>0.221884</td>
</tr>
</tbody>
</table>

Figures 2–17 exhibit that dual solutions are possible in the present study. The first and second solutions are depicted by the straight and dashed lines, respectively. Generally, the solution which converges first is assumed as the first or physical solution, and in this case, the stability analysis as discussed in the previous section will affirm which solution is physically realizable. Figures 2–7 display the nanofluid velocities on \(x \)- and \(y \)-directions, temperature and concentration profiles in limiting numbers of \(\gamma_2 \) when \(Le = Pr = 1, Nb = Nb = 0.2, M = 0.5, \lambda = -1,1 \) and \(\gamma_1 = 5 \). Both of the velocities as revealed in Figures 2 and 3 increase because the shear stress decrease with the enlargement of the slip parameter and this is supported by the result in Figure 11. Figures 4 and 5 demonstrate the slip velocity profiles \(h(\eta) \) and \(k(\eta) \) in both directions, respectively. There are opposite and symmetrically
effect for both profiles at $\lambda = \pm 1$. The changes in λ only influence the slip velocity profiles since the moving parameter only remains in the initial condition at $h(0)$ and $k(0)$ (see Equation (16)). Boundary layer thickness for both solutions diminishes with an increment of γ_2 as manifested in Figures 4 and 5.

The nanofluid temperature as illustrated in Figure 6 declines with the expanding values of γ_2 while the opposite result is obtained for the nanoparticles’ volume fraction profile in Figure 7. Meanwhile, Figures 8–10 present the influence of the Nb and Nt on both nanoparticles volume fraction (concentration) and temperature profiles. The nanofluid concentration diminishes as Nb increases while expands as Nt increases and these outcomes are in conjunction with the previous results by Balushi et al. [61]. An inflation of Nt seems to boost the thermal boundary layer thickness and temperature, whereas the presence of Nb give zero impact on the nanofluid temperature. The appearance of the nanoparticles in the base fluid will generate thermophoresis parameter. As Nt increases, the higher thermal conductivity in nanofluid will enhance both temperature and concentration.

Variations of $g''(0)$, $k'(0)$, $-\theta'(0)$ and $-\phi'(0)$ against the slip parameter, γ_1 for selected values of γ_2, Nb and Nt are visualized in Figures 11–17, respectively. Unlike the other studies which conduct stability analysis for non-unique solutions, no critical value or turning point is found in this analysis. Critical value is defined as a value that separates the first (physical) and second solutions. Both upper and lower branches existing boundlessly for each value of γ_1 and for the graph visualization, $0 \leq \gamma_1 \leq 30$ have been selected. There is no significant effect of γ_2 on $f''(0)$ and $h'(0)$, hence the graph is not highlighted. This is supported by the velocity and slip velocity profile that have been shown previously in Figures 2 and 4. Variations of $-\theta'(0)$ and $-\phi'(0)$ as can be seen in Figures 13 and 14 only show minimal changes as γ_2 increase but since the value of Nb and Nt is same, $-\theta'(0) = -(\phi'(0))$ for all values of γ_1 and γ_2. An increasing values of the Brownian motion parameter Nb escaltate the mass transfer rate whereas the thermophoresis parameter Nt reduces both heat and mass transfer rate as displayed in Figures 15–17.

Since dual solutions are obtained in the study, a stability analysis has been conducted by solving Equations (34)–(39) with the conditions (see Equations (40) and (41)) using Matlab bvp4c code c and d. Generally, negative σ_1 indicates an initial upsurge of disturbances, which signifies that the flow is unstable while there are opposite flow characteristics for positive σ_1. The smallest eigenvalue, σ_1 for some values of γ_1, is tabulated in Table 2. It shows that the first and second solutions have positive and negative eigenvalues, respectively, which validate the stability and reliability of the first solution.

![Figure 2](image_url). Nanofluid velocity along the x-direction for diverse values of γ_2 with $\lambda = -1, 1$.

Figure 3. Nanofluid velocity along the y-direction for diverse values of γ_2 with $\lambda = -1, 1$.

Figure 4. Slip velocity along the x-direction for diverse values of γ_2 with $\lambda = -1, 1$.

Figure 5. Slip velocity along the y-direction for diverse values of γ_2 with $\lambda = -1, 1$.
Figure 6. Nanofluid temperature in a limiting range of γ_2 with $\lambda = -1, 1$.

Figure 7. Nanoparticles volume fraction profile in a limiting range of γ_2 with $\lambda = -1, 1$.

Figure 8. Nanoparticles’ volume fraction profile in limiting range of Nb when $Le = Pr = 1$, $Nt = 0.2$, $\gamma_1 = 5$, $\gamma_2 = 10$, $M = 0.5$ and $\lambda = -1, 1$.
Figure 9. Nanofluid temperature in limiting range of Nt when $Le = Pr = 1, Nb = 0.2, \gamma_1 = 5, \gamma_2 = 10, M = 0.5$ and $\lambda = -1, 1$.

Figure 10. Nanoparticles’ volume fraction profile in a limiting range of Nt when $Le = Pr = 1, Nb = 0.2, \gamma_1 = 5, \gamma_2 = 10, M = 0.5$ and $\lambda = -1, 1$.

Figure 11. Variations of $g''(0)$ towards γ_1 for selected values of γ_2.
Figure 12. Variations of $k'(0)$ towards γ_1 for selected values of γ_2.

Figure 13. Variations of $-\theta'(0)$ towards γ_1 for selected values of γ_2.

Figure 14. Variations of $-\varphi'(0)$ towards γ_1 for selected values of γ_2.
Figure 15. Variations of $-\phi'(0)$ towards γ_1 for selected values of Nb.

Figure 16. Variations of $-\theta'(0)$ towards γ_1 for selected values of Nt.

Figure 17. Variations of $-\phi'(0)$ towards γ_1 for selected values of Nt.
Table 2. σ_1 for diverse γ_1 when $\gamma_2 = 5$, $Le = 1$, $Nb = Nt = 0.2$, $M = 0.5$, $Pr = 1$ and $\lambda = -1$.

<table>
<thead>
<tr>
<th>γ_1</th>
<th>σ_1 (First Solution)</th>
<th>σ_1 (Second Solution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2051</td>
<td>-0.7977</td>
</tr>
<tr>
<td>5</td>
<td>0.3720</td>
<td>-0.8347</td>
</tr>
<tr>
<td>10</td>
<td>0.4375</td>
<td>-0.8626</td>
</tr>
<tr>
<td>13</td>
<td>0.4590</td>
<td>-0.8692</td>
</tr>
<tr>
<td>15</td>
<td>0.4690</td>
<td>-0.8721</td>
</tr>
</tbody>
</table>

5. Conclusions

A numerical investigation on three-dimensional MHD stagnation point flow due to a moving plate with the presence of anisotropic slip has been accomplished. Buongiorno’s model of nanofluid is selected to integrate the thermophoresis and Brownian motion parameters. A set of transformations was used to reduce the governing model into a set of nonlinear differential equations. The similarity equations are then transformed into the bvp4c algorithm to perform the numerical computation. The numerical results are illustrated graphically on the specific physical parameters such as thermophoresis parameter Nt, slip parameters γ_1, γ_2 and Brownian motion parameter Nb to study the flow, heat and mass transfer characteristics of the nanofluid. Non-unique solutions exist boundlessly for all positive values of related parameters in the present study. The implementation of stability analysis using bvp4c code proves the reliability of the first solution. The thickness of boundary layer for the non-physical solution is larger compared to the physical solution. The rate of heat transfer is reduced with the augmentation of the anisotropic slip (difference of slip velocities), while the opposite result is obtained for the mass transfer rate. The rising values of Nb reduce the boundary layer thickness for nanoparticle concentration and increase the Sherwood number while an adverse trend is observed for the higher values of Nt.

Funding: The authors would like to express their great appreciation to the Universiti Putra Malaysia through the Putra Grant (9570600). The main author also would like to acknowledge Universiti Teknikal Malaysia Melaka and Ministry of Education (Malaysia) for the financial support through a UTEM-SLAB scholarship. The work by Ioan Pop has been supported from the grant PN-III-P4-ID-PCE-2016-0056, UEFISCDI, Romania.

Acknowledgments: The authors appreciate the valuable feedback and recommendations by the reviewers.

Conflicts of Interest: The authors declare no conflict of interest.
Abbreviations

The following abbreviations are used in this manuscript:

- B_0: magnitude of the magnetic field strength
- C: nanoparticle concentration
- D_B: Brownian diffusion coefficient
- D_T: thermophoretic diffusion coefficient
- Le: Lewis number
- M: magnetic parameter
- Nb: Brownian motion parameter
- Nt: thermophoresis parameter
- Pr: Prandtl number
- Re_x: local Reynolds number
- S_1, S_2: slip coefficient in x- and y-directions, respectively
- T: nanofluid temperature
- T_w: wall temperature
- T_∞: free stream temperature
- U_e: free stream velocity along the x- axis m/s
- U_x: moving plate velocity along the x- axis m/s
- V_e: free stream velocity along the y- axis m/s
- V_y: moving plate velocity along the y- axis m/s
- b: strength of the stagnation flow
- f, g: dimensionless stream function along x- and y-directions, respectively
- h, k: slip velocity along x- and y-directions, respectively
- t: time s
- u, v, w: velocities along the x-, y-, z- directions, respectively
- α: thermal diffusivity of the fluid
- γ_1, γ_2: slip parameters in the x- and y- axis, respectively
- θ: dimensionless temperature
- λ: moving parameter
- μ: dynamic viscosity m2/s
- ν: kinematic viscosity m2/s
- ρ: density of base fluid kg/m3
- σ: unknown eigenvalue
- σ_M: electrical conductivity of the fluid $s^3A^2/(kgm^3)$
- τ: dimensionless time variable
- τ_1: ratio of the heat capacity of the nanoparticles to the base fluid
- ϕ: dimensionless nanoparticle volume fraction/concentration

References

23. Ur Rahman, M.; Khan, M.; Manzur, M. Boundary layer flow and heat transfer of a modified second grade nanofluid with new mass flux condition. Results Phys. 2018, 10, 594–600. [CrossRef]

29. Bakar, N.A.; Bachok, N.; Ariffin, N.M. Rotating flow over a shrinking sheet in nanofluid using Buongiorno model and thermophysical properties of nanoliquids. J. of Nanofluids 2017, 6, 1215–1226. [CrossRef]

77. Rahman, M.M. Effects of second-order slip and magnetic field on mixed convection stagnation-point flow of a Maxwellian fluid: Multiple solutions. *J. Heat Tran.* 2016, 138, 122503. [CrossRef]