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Abstract: This article discusses how to enhance corporate sustainability by simultaneously 
measuring operational and environment achievements. In past decades, most companies have made 
steady efforts to enhance their sustainability levels. However, they still have strategic space for 
improving sustainability. This research proposes a new use of environmental measurement by data 
envelopment analysis. We apply the approach to Japanese industrial sectors and obtain five 
implications. First, they maintain a high level of unified efficiency on resource allocation and energy 
usage under natural disposability (priority: operation). Second, the efficiency under managerial one 
(priority: environment) is generally lower than that of natural disposability. Third, among the 
industries with high operational achievement, only the pharmaceutical product industry presents 
high attainment on environmental protection. Fourth, the pulp and paper industry as well as the 
textile product industry have a potential for efficiency improvement by investing in green 
technology. Finally, desirable congestion indicates a potential of performance improvement by 
investing in green technology. Those results imply that the current business situation is different 
from the previous image on Japanese industries, often referred to as “Japan Inc.”, where all firms 
used to operate like a single entity under the governmental regulation. 

Keywords: sustainability; green technology; Japanese industries; Data Envelopment Analysis 
(DEA) 

 

1. Introduction 

Japan’s Prime Minister, Shinzo Abe, has recently proposed a new economic policy, referred to 
as “Abenomics,” which suggests various directions for Japanese productivity improvements. A 
report prepared by McKinsey and Company [1] has discussed a guidance regarding the Japanese 
industrial direction. 

Acknowledging the importance of such a new policy direction, we have two major concerns. 
One of them is that Japan has been gradually losing productivity growth in manufacturing industries. 
The Japanese firms are now facing fierce competition with overseas firms. The Japanese 
manufacturing sectors need to improve their productivity. See a report by Nissay Asset Management 
[2]. The other concern is that Japan has historically faced various environmental problems along with 
its industrialization. 

Besides the two concerns, the participation in international agreements on pollution prevention 
(e.g, the Kyoto protocol in 1997 and the Paris agreement in 2016) provide the Japanese government 
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with an official excuse on strict regulation, in particular on greenhouse gas (GHG) emission. A policy 
drawback of the Abenomics is that it does not explicitly discuss the policy necessity in addressing 
environmental pollution associated with economic activity and growth of industries. Saito [3] has 
discussed the business direction of Japanese manufacturing sectors. 

In discussing the current policy issues from Japanese sustainability, this study conducts an 
empirical investigation concerning the manufacturing industries. We use data envelopment analysis 
(DEA) that can provide us with a total performance measure on operational and environmental 
attainments. The method was first proposed by Charnes et al. [4]. For additional references, see 
Glover and Sueyoshi [5] and Sueyoshi and Goto [6]. The latter provides a detailed historical review 
on the method. 

This research uses DEA for our empirical purpose since it can avoid a specifying error to decide 
a functional form between production factors (i.e., inputs and outputs). The method provides a multi-
dimensional productivity measurement. In DEA, the term of “efficiency” is specified by a percentage 
expression and it is used to measure a total productivity level that is different from a single 
performance measure such as “labor productivity”.  

The purpose of this research is to measure the performance of Japanese manufacturing 
industries by Data Envelopment Analysis (DEA). To investigate our research concern, discussed 
above, we first restructure the method in the manner that it can measure their achievements on 
operational and environmental attainments. Then, we apply it to the Japanese industries and then 
discuss business implications obtained from the proposed application.  

The remainder of this study is organized as follows: Section 2 summarizes a literature study 
related to this research. Section 3 discusses underling concepts used for the DEA assessment on 
industrial sectors. Section 4 describes DEA’s analytical structure. Section 5 reorganizes the method 
so that we can use the new approach for our empirical study. Section 6 applies the new formulations 
for measuring the performance of Japanese manufacturing industries. Section 7 concludes this study 
along with addressing future research tasks. The end of this article lists all abbreviations and variables 
used in the article. 

2. Literature Summary 

Previous studies on DEA applied to Japanese pollution prevention are classified into the 
following three groups: 

The first group discussed DEA environmental assessment applied to Japanese industries. The 
group started with Sueyoshi and Goto [7]. Their study applied DEA to assess the performance of 
Japanese manufacturing industries. The research indicated that large firms had financial and 
managerial capabilities to improve their environmental attainments because of their capital 
accumulations. However, the study could not find the similar business linkage in small and medium 
companies. Sueyoshi and Goto [8] applied DEA for comparison between Japanese Chemical and 
Pharmaceutical industries. The research investigated their scale measures (i.e., returns to scale (RTS) 
and damages to scale (DTS)). Finally, Sueyoshi and Goto [9] conducted comparisons between 
Japanese manufacturing and service industries. They concluded that the former outperformed the 
latter in their efficiencies. 

The second group contained various studies on statistics and econometrics applied to Japanese 
industries. The group used DEA and traditional measures (e.g., total-factor productivity). The group 
was interested in performance assessment on many types of industrial sectors that utilized input 
resources to yield outputs, but often excluded pollution in their assessments. The group included 
Honma [10] which discussed total-factor energy efficiency measurement regarding the Japanese 
regional economics. Sueyoshi et al. [11] discussed a corporate governance issue from operational 
performance in the manufacturing industries. Oggioni et al. [12] measured the environmental 
efficiency of the world’s cement industries, including the Japanese ones. Wen et al. [13] proposed an 
asset based business model for sustainability competitiveness and applied it to examining the 
Japanese semi-conductor industry. Goto et al. [14] discussed the deregulation issue between 
generation and transmission in the Japanese electric power industry. Sotome and Takahashi [15] 
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indicated that Japanese employment systems influenced corporate productivity. They also discussed 
that their employment systems harmed the productivity improvements. Honma and Hu [16] 
discussed the total-factor energy efficiency in developed countries by comparing them with Japanese 
ones.  

The third group was related to the energy and the environment. Sueyoshi et al. [17] contained 
693 articles on DEA applications on energy improvement and environment protection. Sueyoshi and 
Goto [6] also included approximately 800 peer reviewed articles that discussed a use of DEA for 
environmental advancement and sustainability enhancement. Since both [6] and [17] summarize a 
long list of previous studies, this research does not need to specify them, except noting two findings 
on DEA applications. First, the electric power industry is the main research target in the early stage 
of DEA applications due to data accessibility to the industry. Second, the research on energy is 
classified into (a) electricity, (b) oil, (c) coal, (d) gas, (e) heat, (f) renewable and (g) energy efficiency 
and saving. The previous works on energy included 4 articles in the 1980s, 20 articles in the 1990s, 94 
articles in the 2000s and 289 articles in the 2010s. Meanwhile, the environment and sustainability 
included 1 article in the 1980s, 6 articles in the 1990s, 41 articles in the 2000s and 222 articles in the 
2010s. The applications in the two areas have been rapidly increasing during the past four decades. 

This study methodologically belongs to the first and the third research groups. The DEA 
application belongs to the second group, but this study utilizes the method differently from the 
previous one used in the second group.  

The proposed approach has four unique features. First, this research classifies outputs into two 
categories (i.e., desirable and undesirable). Then, we combine them for DEA-based performance 
assessment. Second, this study discusses how to identify a possible occurrence of undesirable 
congestion (UC, i.e., a limit on production) and that of desirable congestion (DC, i.e., eco-technology). 
Third, we reorganize DEA formulations under an occurrence of DC under the assumption that 
“undesirable outputs are the by-products of desirable outputs”. Lastly, this study discusses an 
analytical rationale concerning why we can examine DC in the DEA environmental assessment.  

3. Concepts 

This section prepares underlying concepts for the methodological development used in this 
study.  

3.1. Disposability 

To examine the performance of Japanese manufacturing industries, this study introduces two 
disposability concepts, where each concept implies the elimination of inefficiency. One of them is 
“natural disposability” where the priority is economic success. The other is “managerial 
disposability” whose priority is pollution reduction.  

To describe how we include the two disposability concepts in this research, we consider mX R∈ +  

as an input vector with m components, sG R∈ +  as a desirable output vector with s components, and
hB R∈ +  as an undesirable output vector with h components. The subscript (j) indicates the j th 

decision making unit (DMU), whose components are strictly positive. Those components are 
specified by x, g and b.  

Natural (N) disposability and managerial (M) disposability expresses unified production and 
pollution possibility sets as follows:  

j j
1 1 1 1

 B B , X X 1  (  = 1,.., )λ λ λ λ λ
= = = =

  = ≤ ≥ ≥ = ≥    
  

n n n nN
v j j j j j j

j j j j
P ( X ) (G,B ):G G , , & 0 j n &

j j
1 1 1 1

 B B , X X , 1 &  (  = 1,.., )λ λ λ λ λ
= = = =

  = ≤ ≥ ≤ = ≥    
  

n n n nM
v j j j j j j
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P ( X ) (G,B ):G G , 0 j n . 
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NP ( X )v  indicates the set for natural disposability. Meanwhile, MP ( X )v  is that of managerial 
disposability. The subscript (v) implies variable RTS or DTS. The two axiomatic expressions 
incorporate the addition constraint ( n 1jj 1λ == ) to express the variability on RTS or DTS. A 

difference between them is that the production technology under natural disposability has
nX X j jj 1 λ≥ = . The constraint implies that DMUs attempt to attain an efficiency frontier by reducing 

X. In contrast, the managerial disposability has an opposite direction of X in the constraint of
nX X j jj 1 λ< = .  

3.2. Disposability Unification 

The proposed assessment needs to classify outputs into desirable (good) and undesirable (bad) 
categories in this research because they are different in terms of their vector directions. After the 
output separation, we need to develop a conceptual guideline and its related computational process 
for unification.  

Figure 1, separated from I to III, visually indicates the unification process. The three processes 
(I, II and III) are later integrated into the proposed DEA approach. The figure depicts a case of a single 
component of those vectors. Later, we extend the case to the case of multiple components in our 
framework. 

 

Figure 1. Unification between two groups of outputs. EF indicates an efficiency frontier. (a) The g and 
b stand for two different outputs. PrPS indicates a production possibility set, PoPS indicates a 
pollution possibility set. (b) Pr&PoPS indicate a production and pollution possibility set. (c) The last 
process (III) is for final unification by assuming that b is the by-product of g. This study considers the 
assumption under managerial disposability. 
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The first process (I) has two sub-processes: (A) and (B). Process I (A) shows the relationship 
between x and g. In this process, all DMUs have the same amount of b. The production possibility set 

(PrPS) locates below a curve, depicting an efficiency frontier (EFg), in the x-g space. Most previous 
DEA investigations have considered the assessment within the PrPS. In the region, a DMU needs to 
decrease or maintain the current level of x for performance improvement along with an increase of g. 
Process I (A) depicts such a basis for measuring all conventional applications.  

In environmental assessment, this research is conceptually different from the conventional DEA 
efforts. Such a difference may be found in Process I (B). A pollution possibility set (PoPS) locates 

above the curve, expressing an efficiency frontier (EFb), in the x-b space. In this case, all DMUs 
produce the same amount of g. In depicted Process I (B), we consider that the PoPS is independent 
from the PrPS. The relationship between them is different from the reality of modern business 
because b may not exist without g.  

Next, Process II unifies the two sets of Process I. In the process, the vertical axis indicates g and 
b. The unification process identifies a region for production and pollution possibility set (Pr&PoPS) 

between EFg and EFb. The set depicts the area where we can identify an existence of “sustainability” 
in which all DMUs increase X and decrease B.  

Such a case is attained in Process III that is the final stage for unification in which we incorporate 
the by-product assumption. The assumption changes the two efficiency frontiers to be shaped by 

convex curves, as visually specified in the bottom of Figure 1. In the unification, the EFg increase with 

the enhancement of x. Meanwhile, the EFb increases and then decreases because of green technology 
innovation on b. Both curves are convex because of the by-product assumption. As a result of the 
assumption, the efficiency frontiers are structurally different from those of Processes I and II.  

3.3. Undesirable Congestion (UC) and Desirable Congestion (DC) 

Figure 2 illustrates the type of congestion that may occur on g and b. The concept is classified 
either UC or DC. The figure depicts dissimilarity between them. The left hand side shows the three 
types of UC on the horizontal axis (b) and the vertical axis (g). The right hand side shows the three 
types of DC in the space between g on a horizontal axis and b on the vertical axis.  

The occurrence of UC can be identified on the slope of a supporting hyperplane. As depicted in 
the left hand side, the negative slope indicates an occurrence of “strong UC”. The occurrence indicates 
a capacity limit on a production facility that lessens efficiency (e.g., transmission congestion in an 
electric power industry). In contrast, the positive slope implies an opposite case, or “no UC”. The 
“weak UC” exists between them. 

 

Figure 2. Undesirable congestion (UC) and desirable congestion (DC). (a) The left hand side indicates 
an occurrence of UC while the right hand side indicates that of DC. The UC implies a production 
capacity limit on g. The DC implies eco-technology innovation on b. 
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Admitting the importance of UC (e.g., Cooper et al. [18]) in production analysis, however, we 
are interested in the sustainability development by pollution prevention. This research pays attention 
to the occurrence of DC, not UC, because the DC implies a potential of green technology for 
sustainability enhancement. The right hand side of Figure 2, along with Process III of Figure 1, 
exhibits such a DC development. The negative slope indicates “strong DC”. In contrast, the positive 
slope implies an opposite case, or “no DC”. The “weak DC” exists between them.  

 
Figure 3. A conceptual flow incorporated into environmental assessment. (a) The upper part visually 
describes that DEA starts with specifying X and G. Then, it determines which models are used for the 
proposed research. The process excludes B. The part depicts a conventional use of DEA that assesses the 
performance of DMUs. (b)The lower part depicts how new proposed concepts are included into the 
proposed assessment. The process distinguishes between G and B. The separation needs two disposability 
concepts (i.e., N and M) for the unification between them. Then, we incorporate equality constraints on G 
or B to identify a potential of green technology innovation or that of a capacity limit on a production system, 
respectively. We also incorporate the new assumption that B is the by-product of G. Finally, the assessment 
produces three unified efficiency measures under the two disposability concepts and the by-product 
assumption. 

After describing the DC, we return to the three processes of Figure 1 to specify the lower and 
upper bounds of an input change, because it is closely related to the scope of sustainability. First, in 
this research, a DMU can reduce X until it can reach EFg. The frontier serves as a “lower bound” for 
the input reduction. In contrast, the DMU can increase X until it can reach EFb. The frontier indicates 
an “upper bound” for the input increase. Thus, the sustainably is defined by the two frontiers 
depicted in Figure 1.  

In other words, the sustainability is visually specified as Pr&PoPS surrounded by EFg and EFb. 
See the last stage of Figure 1. The frontier on the left hand in the region serves as the lower limit and 
the frontier in the right hand serves as the upper limit. In the sustainability development, the DEA 
assessment measures the lower limit by natural disposability where we need to reduce X (thereby 
reducing B) and increase G. In contrast, the assessment measures the upper limit by managerial 
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disposability where we need to increase both X and G. For the purpose, green technology and 
pollution prevention (e.g., recycling) are necessary in reducing B.  

Here, it is important to note that this research needs to discuss the economic activities of DMUs 
in terms of the sustainability measurement, but not considering their financial measures such as 
return on assets (ROA) and return on equity (ROE). Such financial measures are important in 
discussing corporate “survival” (e.g., avoiding bankruptcy), but they are not directly linked to B. So, 
we do not incorporate the financial measures in this research. 

At the end of this section, Figure 3 shows a whole flow for computation incorporated into the 
proposed DEA models. The application starts with specifying inputs and outputs. Then, we 
determine which models are used for empirical investigation. The upper part depicts such a 
conventional use of DEA. The lower part depicts how new concepts are included into the proposed 
DEA assessment. The process classifies outputs into G and B. The distinction needs the two concepts 
(i.e., N and M) for unifying between them. The unification includes equality allocation on constraints 
related to G or B so that we can identify an occurrence of DC and/or that of UC. This study also 
incorporates the hypothesis that B is the by-product of G. Finally, our new assessment produces the 
three types of unified efficiency measures under the two disposability concepts and the by-product 
assumption. 

4. Methodology  

4.1. Formulations 

An underlying assumption is that DEA relatively evaluates n DMUs, denoted by j. Each DMU 
uses m inputs, denoted by i, to yield s desirable outputs, denoted by r. The production process is 
associated with h undesirable outputs, denoted by f. The end of this article lists all variables used in 
this section.  

DEA has three different models to measure the unified efficiencies of DMUs. Those are radial, 
non-radial and intermediate models (e.g., [19]). This research uses the non-radial model because it 
measures a level of unified efficiency by slacks on optimality, not depending upon an efficiency score, 
as found in the other two models. The type of measurement is referred to as the Pareto–Koopmans 
measure [20] and widely used in DEA-based assessment. Another benefit on the use is that the model 
makes it possible that we can evaluate DMUs, whose data contains zeros and/or negative values in a 
data set [21]. The analytical capability is important in assessing the attainment on various types of 
DMUs.  

In the proposed model, this study needs to specify the following three types of data ranges (R) 
according to the upper and lower bounds on each factor:  

( ) { } { }( )
( ) { } { }( )
( ) { } { }( )

11

11

11

max | 1,...,  min | 1,..., ,

max | 1,...,  min | 1,..., ,

max | 1,...,  min | 1,..., ,

x
i ij ij

g
r rj rj

b
f fj fj

R m s h x j n x j n

R m s h g j n g j n

R m s h b j n b j n

−−

−−

−−

= + + = − =

= + + = − =

= + + = − =

 (2) 

for all i, r and f. The rationale for them is that DEA can avoid the case where zero is found in a dual 
variable(s). They function as weights among production factors. The zero implies that the 
corresponding factor is not employed in the assessment. That is problematic. Aida et al. [22] first 
proposed the range allocation and referred to it as “range adjusted measure (RAM)”. Thus, this 
research has originated from the RAM. Sueyoshi and Sekitani [23] mathematically compared RAM’s 
strengths and drawbacks with the other DEA models. 

4.1.1. Formulation for Natural Disposability 

To compute the level of UEN under natural disposability, this research combines G and B 
regarding the k-th DMU under variable RTS. The resulting model becomes follows: 
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(3) 

The right hand side indicates an observed data concerning the k-th DMU. Meanwhile, the left 
hand side shows the formulations for the best practice measures which are identified on the two 
efficiency frontiers. They correspond to the first process (I) in Figure 1. Model (3) has the three types 
of slacks, denoted by d-related variables, for the proposed inefficiency measurement. Among them, 
the model includes input deviations ( xdi

−+ ) to attain the status of natural disposability. 

The unified efficiency ( NRUENv ) of the k-th DMU is measured by: 

m s hg g*NR x x * b b*UEN ( d R d d ).v r ri i f fi r fε −= − + += = =  1 R R1 1 1
 (4) 

here, NR stands for non-radial and the three d-related slack variables are obtained from the optimality 
of Model (3). The equation within the parenthesis expresses the degree of unified inefficiency. As 
specified by the above equation (4), we subtract the inefficiency from unity to decide the degree of 
efficiency. The symbol (*) indicates optimality. 

4.1.2. Formulation for Managerial Disposability 

The managerial disposability compute the unified efficiency measure ( NRUEMv ) of the k-th DMU 
under variable DTS by the subsequent model: 

ε

λ

+ + += = =
+− ==

  



 ( )1 1 1

     . .        (  ) &1
                  int    (3).

g gm s hx x b bMaximize R d R d R di i r r f fi r f
n xs t x d x all iij j i ikj

same constra s in Model

 (5) 

Model (5) considers input deviations ( xdi
+− ) to attain the status of managerial disposability. The 

other constraints in Model (5) are the same as those of Model (3). 
The unified efficiency ( NRUEMv ) concerning the k-th DMU becomes 

m s hg g*NR x x * b b*UEM ( d R d d ).v r ri i f fi r fε += − + += = =  1 R R1 1 1
 (6) 

where all the slacks are found on optimality. The equation within the parenthesis, obtained from the 
optimality, implies the degree of unified inefficiency. We subtract it from unity to decide the level of 
efficiency. 

4.2.A Possible Occurrence of Undesirable Congestion (UC) or Desirable Congestion (DC) 

As depicted in the left hand side of Figure 2, this study incorporates UC under natural 
disposability. To examine the occurrence, we use the following model that allocates equality 
constraints (i.e., no slack) on B: 
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Model (7) eliminates slacks related to B. These related constraints are considered as equality. The 
other constraints regarding X and G are structured by inequality because they have slacks in the 
formulation (7). 

A unified efficiency, or NR*UEN(UC )v , of the k-th DMU becomes, 

m s g g*NR x x *UEN ( d R d ).v r ri ii rε −= − += = 1 R1 1
 (8) 

All variables used in Equation (8) are determined on the optimality of the Model (8). The equation 
within the parenthesis indicates the unified inefficiency. The efficiency is determined by subtracting 
it from unity. 

As depicted in the right hand side of Figure 2, this study incorporates DC into managerial 
disposability. To examine the DC occurrence, we utilize the following model which allocates equality 
constraints (so, no slack) on G: 

x x b bm h
i i f fi 1 f 1

xn
ij j i ikj 1

n
rj j rkj 1

bn
fj j f fkj 1

n
jj 1
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=

=

=

=
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=

+ =
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i   f
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                 d 0 (all i ) &  d 0 (all f ).

λ
+

= ≥

≥ ≥

 
(9) 

The model eliminates slacks related to G. These related constraints are considered as equality. The 
other groups of constraints on X and B have slacks so that they are inequality constraints. 

A unified efficiency, or NR*UEM(DC)v , of the k-th DMU becomes, 

m hNR x x * b b*UEM( DC ) ( d d ).v i i f fi fε += − += = 1 R R1 1
 (10) 

where all variables are determined on the optimality of Model (9). The equation within the 
parenthesis indicates the magnitude of unified inefficiency. The efficiency, along with a possible 
existence of DC, is determined by subtracting it from unity. 

5. Extension: Formulation for By-Product Assumption 

The structure of the final unification (III) incorporates the by-product assumption. The 
incorporation is important because B depends upon G. This assumption makes it possible that the 
production of G on EFg increases with the X enhancement. Meanwhile, the pollution of B on EFb 
increases and then decreases with the input increase due to the assumption. The increasing trend 
shifts to decreasing after the installation of new technology for environment protection. The green 
innovation may have such an impact on B. 

Under the assumption on by-product assumption, Model (9) is reorganized as: 
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The formulation (11) replaces the sign of bd f+  in Model (9) by negative ( bd f− ) in Model (11). The 

rationale is because both G and B have a similar (convex) structure on X as in the last unification 
process. That is, EFg and EFb become convex as depicted in Figure 1. Furthermore, Model (11) is 
prepared under managerial disposability and a possible existence of DC. 

An efficiency score of the k-th DMU becomes ε += − += = m hNR x x * b b*UEM(DC) 1 ( R d R d )v i i f fi 1 f 1
 

where all variables are determined on the optimality of Model (11). The equation within the 
parenthesis denotes a degree of unified inefficiency. 

To describe an analytical rationale regarding why Model (11) measures the degree of efficiency 
in the last unification process, this research documents the following dual formulation that is 
originated from Model (11): 

m s hMinimize v x u g w bi ik r rk f fki r f
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(12) 

To describe the analytical implication of the dual formulation (12), we need to consider the 
complementary slackness conditions between (11) and (12). That is, they have the following 
conditions: 

m s hv x u g w bi ij r rj f fj ji r f σ λ − + − + = = = = 
   01 1 1

 for all j. (13) 

here, RSk  indicates a reference set for the k-th DMU that consists of efficient DMUs with 0jλ >  

for j RSk∈  in Model (11). The supporting hyperplane is determined by, 

m s hv x u g w bi ij r rj f fji r f σ− + − + == = =   01 1 1
 for j RSk∈  (14) 

The slopes of the supporting hyperplane are determined by the marginal rate of transformation 
(MRT) of bf  to gr . Sueyoshi and Yuan [24] provide a mathematical definition on MRT. The 

measure becomes f * *MRT b / g u / wr f r r f= ∂ ∂ =  for all r and all f. Since *w 0f > , the sign of *ur  

determines the direction concerning MRT. After solving Model (12), assuming a unique optimal 
solution, the MRT indicates a possible existence of DC by the following guideline: 

(a) *ur = 0  for some (at least one) r indicates an occurrence of “weak DC”, 

(b) <* 0ur  for some (at least one) r indicates an occurrence of “strong DC” and (15) 
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(c) >* 0ur  for all r indicates “no” occurrence of DC. 

Figure 4 depicts the whole computational flow that is utilized in this research. 

 
Figure 4. A computational flow for proposed assessment. (a) First, model (3) computes the degree of UEN 
as depicted in the process I(A). Second, model (5) calculates the degree of UEM as depicted in the process 
I(B). Third, the second process (II) is used to prepare the last process (III), Fourth, model (7) incorporates 
UC while model (9) incorporates DC. Fifth, the primal model (11) and its dual model (12) incorporate the 
by-product assumption and compute the degree of UEM(DC) as depicted in the process (III). Lastly, the 
classification rule (15) identifies the type of DC. (b) This research uses the third and fourth steps for the 
model development for the fifth step. Both the third and fourth steps do not maintain the by-product 
assumption. The fifth step includes the assumption to unify them under managerial disposability. The first 
and second steps compute UEN and UEM measures. The fifth and sixth steps compute UEM(DC) along 
with the DC classification. 

6. Japanese Manufacturing Industries 

To discuss the current situation in Japanese manufacturing industries, this study incorporates 
corporate resource and energy factors in the proposed assessment and compares their performance 
measures. Then, this study examines the following three research concerns: 

First, Japanese firms look for their operational achievements to attain high sustainability [7]. 
Economic success is the first priority for them because it allows them to operate under natural 
disposability. They need capital accumulation to invest in green technology innovation. 

Second, Japanese firms need to prevent their industrial pollutions. The assessment for 
environmental protection belongs to managerial disposability [6]. Large firms have capital 
accumulation at the level that becomes large enough to invest in green technology. In addition to the 
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governmental regulation on environment, they need to pay attention to consumers’ consciousness on 
various pollution issues [7]. 

Finally, we are interested in the influence of regulation. Japanese industrial policy regulates and 
controls all industries. Previously, it was believed that all manufacturing firms worked like a single 
entity, often referred to as “Japan Inc.” However, recent fierce competition changes the business 
environment. The commutation is brought about by information technology incorporated into an 
advanced world-wide supply chain system. Corporate behaviors are driven by their survival 
strategies in a global market [6]. Consequently, a conventional relationship between government and 
business may not exist anymore in Japan. This study examines the current Japanese situation. 

6.1. Data 

This application examines the performance of Japanese manufacturing industries that include 
13 industrial sectors with 110 companies during 2013 to 2015. The industrial sectors are food items 
(10), textile products (5), pulp and paper (3), chemicals (25), pharmaceutical products (9), gum 
products (3), glass, soil and stone products (2), iron and steel (3), non-ferrous metal and metal 
products (4), machinery (9), electrical equipment (23), transportation equipment and precision 
instrument (11), and other products (3), where the number in parentheses is that of companies per 
industrial sector. The total number of observations is 330 (the total number of companies = 110 firms 
× 3 years). 

For the assessment, this study uses five input resources, two desirable outputs, and three 
undesirable outputs. We have collected economic data and environmental data from Toyo Keizai Inc. 
The database is well-known and often used for sustainability studies in Japan. All companies are 
listed in the first section of the Tokyo Stock Exchange. This study follows a guideline provided by the 
database in selecting the industrial groups and the three production factors. 

Five inputs are the following items: (a) total assets: this item represents a total amount of each 
company’s assets used for plant operation, office property, and equipment for production. Those are 
listed in a balance sheet; (b) total operating expenses: this is a total amount of company’s incurred 
expenses used for day-to-day operation and production. Depreciation and amortization of assets are 
included but financial expenses are excluded from the item; (c) environmental protection cost: this is 
a company’s cost used for environmental protection and investment; (d) total energy input: this is an 
amount of energy used for operation; and (e) total water resource input: this is the total amount of 
water resource inputs used per operation. 

The inputs and desirable outputs are obtained from “Toyo Keizai Financial Data Digest,” where 
Toyo Keizai is one of the well-known Japanese publishers. Undesirable outputs are from “Toyo 
Keizai CSR (Corporate Social Responsibility Souran (a comprehensive handbook in Japanese) that is 
the famous CSR database on Japanese firms.  

6.2. Unified Efficiencies 

Tables 2 and 3 represent unified efficiencies of pharmaceutical products and machinery 
industries which are obtained from Models (3), (5), and (11). The two industries are selected for 
illustration purposes. The dual variables for two desirable outputs and the type of DC are determined 
by Model (12). 

Two desirable outputs are (a) revenues: total amount of sales gained from operation and (b) 
market capitalization: this represents a current aggregate value of a firm. It is calculated from a sum 
of current share price multiplied by the number of outstanding shares. 

Three undesirable outputs are: (a) greenhouse gas emissions: a total amount of GHG emissions 
from an operation; (b) total waste discharges: this is an amount of waste discharged from an 
operation; and (c) total waste water discharges: this is an amount of waste water discharged from an 
operation.
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Table 1. Descriptive statistics. 

 Statistics Total Assets Total Operating 
Expenses 

Environment 
Protection Cost 

Total Energy 
Input 

Total Water 
Resource Input 

Revenues Market 
Capitalization 

Greenhouse Gas 
Emissions 

Total Waste 
Discharges 

Total Waste 
Water Discharges 

 Unit MioJPY MioJPY MioJPY 1000 GJ 1000 m3 MioJPY MioJPY Ton-CO2 ton 1000 m3 

Food item 
Avg. 205,021 233,342 1359 3498 5579 237,625 154,392 199,638 42,185 3495 
Max. 470,664 786,036 4328 9978 19,309 791,426 564,672 592,150 235,320 17,487 
Min. 36,904 9176 46 411 360 13,603 19,017 19,469 3716 7 

Textile 
product 

Avg. 490,145 214,797 4146 15,716 76,315 226,570 405,796 2,394,267 40,691 74,013 
Max. 1,247,209 541,061 8475 31,000 184,000 566,259 1,642,901 21,900,000 135,000 180,000 
Min. 139,819 76,921 754 2455 4434 85,838 31,186 131,198 3086 164 

Pulp and 
paper 

Avg. 810,760 221,605 16,944 92,812 503,800 233,191 242,133 4,207,292 258,115 430,892 
Max. 1,265,110 633,641 29,807 150,000 933,000 653,979 523,675 6,680,000 762,000 881,000 
Min. 18,179 17,640 126 169 41 20,570 3454 8180 332 40 

Chemical 
Avg. 512,382 233,267 9596 22711 90,941 249,435 464,877 1,759,738 55,321 75,040 
Max. 2,015,977 887,848 41,861 127,842 1,430,000 900,723 3,392,037 9,144,000 422,200 1,036,000 
Min. 27,600 3526 97 121 107 18,625 16,652 6123 1026 6 

Pharmaceutic
al product 

Avg. 741,641 260,881 1464 2112 8161 307,950 1,527,972 112,259 8575 7321 
Max. 2,728,528 682,766 4931 4874 47,072 796,512 4,738,751 266,490 24,506 47,050 
Min. 114,803 68,833 245 236 240 76,288 137,482 12,839 367 97 

Gum product 
Avg. 778,401 333,622 5083 6983 7800 412,491 1,219,445 423,810 20,747 5909 
Max. 2,011,618 801,291 13,887 17,673 21,722 1,006,602 3,414,216 1,001,939 40,163 18,627 
Min. 72,414 37,278 247 581 888 39,623 41,585 32,998 2961 598 

Glass, soil and 
stone product 

Avg. 419,618 277,026 2133 4306 2003 295,670 664,165 326,124 39,005 1651 
Max. 498,118 378,922 2995 7838 3182 398,595 840,191 707,687 57,400 2234 
Min. 336,726 158,345 1527 2366 1356 166,999 506,520 116,376 15,004 863 

Iron and steel 
Avg. 428,218 295,331 8155 15,933 13,836 307,727 314,304 837,498 342,558 10,024 
Max. 739,112 474,274 16,283 23,844 23,020 500,203 791,328 107,1000 886,000 22,490 
Min. 207,352 156,259 3342 12 4467 160,304 80,739 607,000 17,000 430 

Non–ferrous 
metal and 

metal product 

Avg. 865,761 511,186 3131 18,786 113,993 519,984 657,411 2,438,153 53,778 90,400 
Max. 1,252,174 930,390 5386 41,800 421,611 928,976 1,250,456 8,190,000 159,556 415,889 
Min. 415,388 2206 2080 4532 5862 8777 143,453 218,000 10,795 138 

Machinery 
Avg. 848,830 459,703 6448 4252 2414 491,945 775,660 210,223 50,113 1592 
Max. 3,476,067 1,917,326 26,635 15,451 9783 2,039,361 2,296,273 967,765 193,894 8250 
Min. 158,965 67,041 166 227 102 72,314 87,960 11,974 2098 67 

Electrical 
equipment 

Avg. 1,168,621 919,934 9179 16,302 7229 938,519 1,054,424 585,699 59,236 5116 
Max. 4,935,233 4,014,278 50,969 480,000 45,130 4,084,606 5,122,318 3,240,000 458,715 32,317 
Min. 16,867 26,900 43 62 38 27,204 3846 3217 88 23 
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Transportation 
equipment and 

precision 
instrument 

Avg. 2,289,824 1,780,898 66,319 7925 3397 1,935,532 3,440,212 340,846 76,310 2815 
Max. 16,100,209 10,183,696 390,100 35,644 12,248 11,585,822 28,653,072 1,570,000 299,000 12,946 

Min. 50,905 5550 179 766 265 12,911 15,103 40,176 411 5 

Other 
products 

Avg. 551,684 348,077 3347 7390 5174 349,020 298,981 346,844 32,340 2830 
Max. 1,429,806 1,002,568 9838 21,275 15,300 1,001,026 818,161 999,000 51,300 11,800 
Min. 58,852 12,622 116 606 227 14,140 29,158 32,639 17,472 8 

All 
Avg. 870,005 569,704 12,758 15,035 46,014 603,631 983,674 963,046 63,571 38,398 
Max. 16,100,209 10,183,696 390,100 480,000 1,430,000 11,585,822 28,653,072 21,900,000 886,000 1,036,000 
Min. 16,867 2206 43 12 38 8777 3454 3217 88 5 
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Table 2. Unified efficiency measures on pharmaceutical product industry. 

Pharmaceutical product 

Year Company Name UEN UEM UEM(DC) 
Dual variables 

DC 
Revenues 

Market 
capitalization 

2013 Kyowa Kirin 0.985 0.967 0.756 0.133 −0.080 Strong 
2014 Kyowa Kirin 0.981 0.965 0.759 0.133 −0.080 Strong 
2015 Kyowa Kirin 0.984 0.964 0.792 0.138 −0.084 Strong 
2013 Takeda 1.000 1.000 0.933 0.751 −0.081 Strong 
2014 Takeda 1.000 1.000 1.000 0.751 −0.081 Strong 
2015 Takeda 1.000 1.000 0.973 1.567 −0.129 Strong 
2013 Astellas 1.000 0.989 0.847 0.268 −0.088 Strong 
2014 Astellas 1.000 0.988 1.000 0.268 −0.088 Strong 
2015 Astellas 0.997 0.985 0.955 1.933 −0.131 Strong 
2013 Shionogi & Co., LTD. 0.994 0.981 0.735 0.133 −0.080 Strong 
2014 Shionogi & Co., LTD. 0.997 0.985 0.798 0.138 −0.084 Strong 
2015 Shionogi & Co., LTD. 1.000 0.990 0.830 0.150 −0.092 Strong 

2013 
Mitsubishi Tanabe 

Pharma 
1.000 1.000 0.721 0.133 −0.080 Strong 

2014 
Mitsubishi Tanabe 

Pharma 
0.995 0.988 0.749 0.133 −0.080 Strong 

2015 
Mitsubishi Tanabe 

Pharma 
1.000 0.991 0.741 0.133 −0.080 Strong 

2013 
Nippon Shinyaku 

Co., LTD. 
0.999 0.996 0.910 0.276 0.460 No 

2014 Nippon Shinyaku 
Co., LTD. 

1.000 1.000 0.844 2.901 0.313 No 

2015 
Nippon Shinyaku 

Co., LTD. 
0.999 0.998 0.843 2.901 0.313 No 

2013 
Ono Pharmaceutical 

Co., LTD. 
1.000 1.000 0.790 0.268 −0.088 Strong 

2014 
Ono Pharmaceutical 

Co., LTD. 
0.997 1.000 0.877 2.178 −0.133 Strong 

2015 
Ono Pharmaceutical 

Co., LTD. 
1.000 1.000 1.000 2.178 −0.133 Strong 

2013 Santen 0.999 0.988 0.775 0.276 0.460 No 
2014 Santen 1.000 0.991 0.760 0.133 −0.080 Strong 
2015 Santen 0.999 0.991 0.755 0.133 −0.080 Strong 
2013 Tsumura & Co.  0.996 0.978 0.882 0.276 0.460 No 
2014 Tsumura & Co.  0.994 0.962 0.866 0.276 0.460 No 
2015 Tsumura & Co.  0.994 0.962 0.874 0.276 0.460 No 

Statistics 

Avg. 0.997 0.987 0.843    

S.D. 0.005 0.013 0.089    

Max. 1.000 1.000 1.000    

Min. 0.981 0.962 0.721    

DC stands for desirable congestion. Model (3) calculates a degree of UEN depicted in Stage I (A). 
Model (5) computes the magnitude of UEM depicted in Stage I (B). After incorporating the by-product 
assumption, Model (11) computes the degree of UEM(DC) as depicted in Stage III and Model (12) 
identifies the type of DC by applying Equation (15). 
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Table 3. Unified efficiencies on machinery industry. 

Machinery 

Year Company Name UEN UEM UEM(DC) 
Dual variables 

DC 
Revenues Market 

capitalization 
2013 Komatsu 0.988 0.947 0.768 0.133 -0.080 Strong 
2014 Komatsu 0.987 0.943 0.778 0.202 -0.085 Strong 
2015 Komatsu 0.986 0.949 0.766 0.268 -0.088 Strong 

2013 
Sumitomo Heavy 

Industries, Ltd. 
0.989 0.973 0.865 2.901 0.313 No 

2014 
Sumitomo Heavy 

Industries, Ltd. 
0.991 0.977 0.761 2.519 0.114 No 

2015 
Sumitomo Heavy 

Industries, Ltd. 
0.989 0.974 0.826 2.901 0.313 No 

2013 Komori 1.000 0.993 0.933 0.276 0.460 No 
2014 Komori 0.998 0.995 0.927 0.276 0.460 No 
2015 Komori 0.998 0.992 0.934 0.276 0.460 No 
2013 Daifuku 0.998 0.994 0.881 2.385 0.336 No 
2014 Daifuku 0.998 0.993 0.866 2.385 0.336 No 
2015 Daifuku 0.998 0.995 0.823 0.276 0.460 No 
2013 NSK 0.977 0.849 0.708 0.268 -0.088 Strong 
2014 NSK 0.978 0.851 0.743 0.905 -0.094 Strong 
2015 NSK 0.961 0.719 0.745 1.853 -0.045 Strong 
2013 NTN 0.984 0.909 0.793 0.276 0.460 No 
2014 NTN 0.984 0.912 0.733 2.901 0.313 No 
2015 NTN 0.983 0.897 0.798 2.901 0.313 No 
2013 JTEKT 0.990 0.924 0.655 0.268 -0.088 Strong 
2014 JTEKT 0.989 0.916 0.666 0.546 -0.091 Strong 
2015 JTEKT 0.989 0.916 0.657 0.905 -0.094 Strong 
2013 Makita 1.000 0.999 0.767 0.202 -0.085 Strong 
2014 Makita 1.000 0.999 0.769 0.202 -0.085 Strong 
2015 Makita 1.000 1.000 0.782 0.931 -0.093 Strong 

2013 
Mitsubishi 

Heavy Industries 
1.000 0.868 0.795 0.196 0.072 No 

2014 
Mitsubishi 

Heavy Industries 
0.972 0.834 0.965 0.277 0.054 No 

2015 
Mitsubishi 

Heavy Industries 
0.977 0.877 1.000 0.277 0.054 No 

Statistics 

Avg. 0.989 0.933 0.804    

S.D. 0.010 0.068 0.092    

Max. 1.000 1.000 1.000    

Min. 0.961 0.719 0.655    

See notes of Table 2. 

For illustration, in the two tables, all three efficiency measures on average include UEN = 0.997 
for the pharmaceutical product and UEN = 0.989 for the machinery, UEM = 0.987 for the 
pharmaceutical product and UEM = 0.933 for the machinery, and UEM(DC) = 0.843 for the 
pharmaceutical product and UEM(DC) = 0.804 for the machinery. The pharmaceutical product 
industry is higher than the machinery industry on average in the three unified efficiencies. The lower 
averages of the machinery industry are partly because of these large standard deviations, compared 
to the pharmaceutical industry. For example, these standard deviations of UEN are 0.005 for the 
pharmaceutical product and 0.010 for the machinery. 

Another finding is that UEM(DC) is generally lower than the other two efficiency measures. This 
is because Model (11) needs to assess not only unified efficiency but also a potential of green 
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technology enhancement. Along with the high averages in the three efficiency measures, the 
pharmaceutical companies exhibit a high percentage of strong DC, compared to the machinery 
industry. This indicates that machinery companies have a high potential to handle pollution 
problems by enhancing their production amounts. 

Table 4 is the extension of Tables 2 and 3 that summarize industry averages of the three efficiency 
measures. Table 4 indicates two implications concerning the first and second research concerns. One 
of them is that most industrial sectors have their high UEN measures. Those industries include the 
food item (UEN = 0.996), the pharmaceutical product (UEN = 0.997), the gum product (UEN = 0.997), 
the glass, soil and stone product (UEN = 0.990), the electrical equipment (UEN = 0.993), the 
transportation equipment and precision instrument (UEN = 0.994), and the other products (UEN = 
0.991) on average. The standard deviations of those industrial sectors are relatively small. In contrast, 
the average UEM measures are generally lower than those of UEN. An exception is the pulp and 
paper industry, whose average UEN is 0.847, while average UEM is 0.923. The pulp and paper 
industry used to be an environmentally lagged industry. Their recent corporate efforts have changed 
the status of environmental protection. 

Table 4. Unified efficiency averages of Japanese industrial sectors. 

Industries Statistics UEN UEM UEM(DC) Industries Statistics UEN UEM UEM(DC) 

Food item 
Avg. 0.996 0.935 0.880 Iron and 

steel 
Avg. 0.950 0.714 0.875 

S.D. 0.005 0.080 0.091 S.D. 0.047 0.200 0.112 

Textile 
product 

Avg. 0.963 0.928 0.906 Non–
ferrous 

metal and  
metal 

product 

Avg. 0.966 0.921 0.818 

S.D. 0.039 0.089 0.074 S.D. 0.050 0.096 0.103 

Pulp and 
paper 

Avg. 0.847 0.923 0.999 
Machinery 

Avg. 0.989 0.933 0.804 
S.D. 0.125 0.108 0.002 S.D. 0.010 0.068 0.092 

Chemical 
Avg. 0.966 0.935 0.886 Electrical 

equipment 
Avg. 0.993 0.939 0.866 

S.D. 0.054 0.097 0.099 S.D. 0.013 0.098 0.115 

Pharmace
utical 

product 

Avg. 0.997 0.987 0.843 Transport
ation 

equipment  
and 

precision 
instrumen

t 

Avg. 0.994 0.968 0.836 

S.D. 0.005 0.013 0.089 S.D. 0.012 0.057 0.137 

Gum 
product 

Avg. 0.997 0.958 0.866 Other 
products 

Avg. 0.991 0.968 0.877 
S.D. 0.003 0.018 0.081 S.D. 0.010 0.024 0.153 

Glass, soil 
and stone 
product 

Avg. 0.990 0.934 0.741 
All 

Avg. 0.980 0.938 0.864 

S.D. 0.006 0.031 0.031 S.D. 0.045 0.095 0.109 

Ave. indicates average and S.D. stands for standard deviation. DC stands for desirable congestion. 

The other finding is that among the industrial sectors with high UEN, only the pharmaceutical 
product industry has exhibited higher UEM with 0.987 on average. It is followed by the 
transportation equipment and precision instrument as well as the other products with 0.968 in UEM. 
These measures indicate that companies with high UEN cannot always produce high UEM. The 
UEM(DC) also exhibits high average (0.999) in the pulp and paper as well as that (0.906) in the textile 
product, although the two industrial sectors do not exhibit high attainment in both UEN and UEM. 
This indicates, particularly for the pulp and paper sector, that companies of the sector put more 
weight on their environmental efficiencies than operational ones. The industry of glass, soil and stone 
products exhibits low average with 0.741 in UEM(DC). The industry has a large space for efficiency 
improvement by introducing green technology. The iron and steel sector exhibits low UEM(DC) = 
0.714, revealing a high potential to improve its pollution prevention by investing in green technology. 
Currently, this industry produces high CO2 emissions among the manufacturing sectors. 
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The UEN outperforms the UEM in these degrees. This implies the implication that firms have 
first attempted to improve the sustainability by attaining their economic successes. To mitigate 
industrial pollution, they accumulate capital from their profits and invest it in green technology so 
that they can satisfy the minimum standard required by the government. It is indeed important that 
firms need to satisfy the environmental standard. However, it is difficult for them to follow the 
regulation guideline without economic sufficiency. The relatively low degree of UEM(DC) implies 
the current potential level for green technology innovation in Japanese manufacturing firms. 

6.3. Statistical Test 

Table 5 summarizes the rank sum test [25] on the three models i.e., UEN, UEM, UEM(DC). The 
null hypotheses are related to the third research concern and summarized as follows: 

(a) Ho: There is no difference among Japanese industrial sectors in their UEN measures; 
(b) Ho: There is no difference among them in their UEM measures; and 
(c) Ho: There is no difference among them in their UEM(DC) measures. 

Table 5. Kruskal–Wallis rank sum test. 

 Hypothesis 1 Hypothesis 2 Hypothesis 3 
chi-squared 

with ties 
72.31*** 43.51*** 42.522*** 

p-value 0.0001 0.0001 0.0001 
(a) First Ho: there is no difference among Japanese industrial sectors in their UEN measures. Model 
(3) is used to compute UEN to examine the hypothesis. Second Ho: there is no difference among them 
in UEM. Model (5) measures UEM to examine the hypothesis. Third Ho: there is no difference among 
them in UEM(DC). Model (11) calculates UEM(DC) to examine the hypothesis. (b) Holland and Wolfe 
[25] described the Kruskal–Wallis rank sum test. Sueyoshi and Aoki [26] described how to conduct 
the rank sum test for DEA. 

The first and second hypotheses originate from [7]. The last examines the influence of DC and 
the by-product assumption. As indicated by Table 5, the rank sum test rejects the three hypotheses at 
the 1% significance by the chi-squared distribution. This indicates that there is a significant difference 
among Japanese industrial sectors in their unified efficiencies. Historically, the nation was often 
referred to as “Japan Inc.” because the government carefully regulated and coordinated corporate 
operations. Such a government and business relationship has been admired and respected by the 
other industrial nations. However, Table 5 indicates that the strong relationship may not exist among 
different industrial sectors because firms are now facing fierce competition in a global market. 

6.4. Desirable Congestion (DC) 

Table 6 documents the percentage on a possible occurrence of DC, measured by Model (12) and 
the rule (15). The table indicates that 41% of firms have a potential of efficiency improvement by 
employing green technology for pollution prevention and the others (59%) do not have such a 
capability. Among them, a high percentage of strong DC is observed in the industrial sectors such as 
pharmaceutical products (74%), glass, soil and stone products (100%), and non-ferrous metal and 
metal products (67%). These sectors exhibit relatively low UEM (DC) in such a manner that these 
measures are 0.843, 0.741, and 0.818, respectively. Thus, investment in green technology in these 
industries becomes effective in reducing B. 
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Table 6. Type of desirable congestion. 

Industries 
Occurrence of Desirable Congestion 

Strong Weak No 

Food item 6 (20%) 0 (0%) 24 (80%) 

Textile product 3 (20%) 0 (0%) 12 (80%) 

Pulp and paper 2 (22%) 0 (0%) 7 (78%) 

Chemical 25 (33%) 0 (0%) 50 (67%) 

Pharmaceutical 
product 

20 (74%) 0 (0%) 7 (26%) 

Gum product 3 (33%) 0 (0%) 6 (67%) 

Glass, soil and 
stone product 

6 (100%) 0 (0%) 0 (0%) 

Iron and steel 3 (33%) 0 (0%) 6 (67%) 

Non–ferrous 
metal and metal 

product 
8 (67%) 0 (0%) 4 (33%) 

Machinery 12 (44%) 0 (0%) 15 (56%) 

Electrical 
equipment 

36 (52%) 0 (0%) 33 (48%) 

Transportation 
equipment and 

precision 
instrument 

12 (36%) 0 (0%) 21 (64%) 

Other products 0 (0%) 0 (0%) 9 (100%) 

All 136 (41%) 0 (0%) 194 (59%) 

Desirable congestion implies an occurrence of green technology innovation. Using Model (12), we 
classify the type of congestion by Equation (15). 

7. Concluding Comments 

This study discussed how to enhance the sustainability of Japanese manufacturing firms by 
investing in green technology and other pollution prevention efforts (e.g., waste reduction) in their 
operations. The concept of sustainability is not clearly defined and, therefore, not analytically 
explored by previous studies. We have challenged the research task by DEA. 

As the first step in our methodological development, this research separated outputs into two 
categories: desirable and undesirable. Second, we discussed how to unify them to compute their UEN 
and UEM scores. Finally, this research extended them for the development of a new measure, or 
UEM(DC), under both the existence of DC and the by-product assumption. The assumption provided 
us with a new formulation for DEA-based environmental assessment. 

To describe the applicability, we investigated the performance of Japanese 13 industrial sectors. 
The application obtained the following five implications: First, their UEM(DC) measures were 
generally lower than their magnitudes of UEN and UEM because the former needed to consider a 
potential for green technology innovation, recycling activities and other efforts for pollution 
prevention. Japanese companies with low UEM(DC) need to enhance green technology and other 
activities for environmental protection. Second, several sectors maintained their high UEN measures. 
Meanwhile, their standard deviations were relatively smaller than the magnitude of UEM and that 
of UEM(DC). In other words, most industries now face different environmental surroundings. An 
exception was the pulp and paper industry. The industry used to be lagging in environmental 
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protection, but its recent effort changed the current status on environmental protection. Third, among 
the industrial sectors with high UEN measures, only the pharmaceutical product sector exhibited 
high UEM with 0.987 on average. Transportation equipment and precision instrument were the 
second with 0.968 in UEM. The companies with high UEN may not necessarily lead to high UEM. 
This reveals a difficulty in balancing between operational and environmental efficiencies. Fourth, 
UEM(DC) exhibited high averages in the pulp and paper as well as the textile products, although 
they did not exhibit high achievement in both UEN and UEM. On the other hand, glass, soil and stone 
products presented low average with 0.741 in UEM(DC). The industrial sector has a large space for 
sustainability improvement by implementing green technology investment. Finally, a high 
percentage of strong DC was observed in pharmaceutical products (74%), glass, soil and stone 
products (100%), and ferrous and non-ferrous metal products (67%). These industries exhibited 
relatively low in UEM (DC) in the manner that they were 0.843, 0.741, and 0.818, respectively. 
Investment in green technology and/or pollution prevention in these industries becomes effective in 
reducing B. The results on UEM(DC) indicate that firms in different sectors produce different results 
in green management even if they are strictly regulated by the Japanese government. 

This research has four drawbacks, all of which need to explored in future. First, we have 
discussed how to compute a degree of sustainability under DC. However, this study does not discuss 
corporate implications derived from scale benefits such as RTS and DTS. These scale measures 
provide us with a strategic direction (e.g., increasing, decreasing and constant) by a scale change on 
inputs [27]. Second, we need to consider an efficiency change due to a time shift by a “Malmquist” 
index. The index examines a frontier shift among multiple periods. The shift indicates technology 
advancement and/or managerial improvement during the observed periods [28]. Third, the proposed 
approach is useful in measuring the performance of other types of manufacturing and service 
industries. Finally, this research needs a methodological comparison. That is, different methodology 
may produce empirical results which cannot be found in this research. This type of empirical issue is 
referred to as “a methodical bias” [29]. See also [30], which discussed the methodological problems 
that exist in many empirical studies. 

In conclusion, it is hoped that this article may contribute to DEA environmental assessment 
applied to Japanese industrial sectors. 

Nomenclature 

Abbreviations  

CO2 The index of time Carbon Dioxide  

DC Desirable Congestion 

DEA Data Envelopment Analysis 

DMU Decision Making Unit 

DTS Damages to Scale 

EF Efficiency Frontier 

GHG Greenhouse Gas 

M Managerial 

MRT Marginal Rate of Transformation 

N Natural 

NR Non-Radial 

RAM Range Adjusted Measure 

ROA Return on Assets 

ROE Return on Equity 

PoPS Pollution Possibility Set 
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PrPS Production Possibility Set 

Pr&PoPS Production and Pollution Possibility Set 

RS Reference Set 

RTS Returns to Scale 

UC Undesirable Congestion 

UEN Unified Efficiency under Natural Disposability 

UEM Unified Efficiency under Managerial Disposability 

UEM(DC) Unfired Efficiency under Managerial Disposability and Desirable Congestion 

URS Unrestricted 

CSR Corporate Social Responsibility 

Variables  

x
id  an unknown slack variable of the i-th input 

bd f
 

an unknown slack variable of the f-th undesirable output 

λ an unknown column vector of intensity (or structural) variables 

xRi
 

a data range related to the i-th input  

gRr
 

a data range related to the r-th desirable output 

bR f
 

a data range related to the f-th undesirable output 

vi
 

a dual variable of the i-th input 

ur a dual variable of the r-th desirable output 

wf
 

a dual variable of the f-th undesirable output, 

σ
 

a dual variable to indicate the intercept of a supporting hyperplane on a production 

and pollution possibility set 

ε
 

a prescribed small number to control the magnitude of unified efficiency (e.g., ε = 

0.1, 1 and 2). We use ε = 1 for this study. Thus, the number is not a non-

Archimedean small number. 

References 

1. Desvaux, G.; Woetzel, J.; Kuwabara, T.; Chui, M.; Fjeldsted, A.; Guzman-Herrera, S. The Future of Japan: 
Reigniting Productivity and Growth; McKinsey & Company: New York, NY, USA, 2015. 

2. Nissay Asset Management. Labor Productivity of Japanese Manufacturing Industries is the Lowest: Market 
Report; Nissay Asset Management Report, Tokyo, Japan, 2018. 

3. Saito, J. How productive is the Japanese manufacturing sector? Japan Center Econ. Res. 2015, 3, 1–3. 
4. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Operat. 

Res. 1978, 6, 429–444. 
5. Glover, F.; Sueyoshi, T. Contributions of Professor William W. Cooper in operations research and 

management science. Eur. J. Operat. Res. 2009, 197, 1–16. 
6. Sueyoshi, T.; Goto, M. Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis; 

John Wiley & Sons: London, UK, 2018; pp. 1–699. 



Energies 2019, 12, 1785 22 of 23 

 

7. Sueyoshi, T.; Goto, M. Measurement of a linkage among environmental, operational and financial 
performance in Japanese manufacturing firms: A use of data envelopment analysis with strong 
complementary slackness condition. Eur. J. Operat. Res. 2010, 207, 1742–1753. 

8. Sueyoshi, T.; Goto, M. DEA radial measurement for environmental assessment: A comparative study 
between Japanese chemical and pharmaceutical firms. Appl. Energy 2014, 115, 502–513. 

9. Sueyoshi, T.; Goto, M. Resource utilization for sustainability enhancement in Japanese industries. Appl. 
Energy 2018, 228, 2308–2320. 

10. Honma, S.; Hu, J.L. Total-factor energy efficiency of regions in Japan. Energy Policy 2008, 36, 821–833. 
11. Sueyoshi, T.; Goto, M.; Omi, Y. Corporate governance and firm performance: Evidence from Japanese 

manufacturing industries after the lost decade. Eur. J. Operat. Res. 2010, 203, 724–736. 
12. Oggioni, G.; Riccardi, R.; Toninelli, R. Eco-efficiency of the world cement industry: A data envelopment 

analysis. Econ. Literat. 2011, 39, 2842–2854. 
13. Wen, H.C.; Huang, J.H.; Cheng, Y.L. What Japanese semiconductor enterprises can learn from the asset-

light model for sustainability competitive advantage. Asian Bus. Manag. 2012, 11, 615–649. 
14. Goto, M.; Inoue, T.; Sueyoshi, T. Structural reform of Japanese electric power industry: Separation between 

generation and transmission & distribution. Energy Policy 2013, 56, 186–200. 
15. Sotome, R.; Takahashi, M. Does the Japanese employment system harm productivity performance? A 

perspective from DEA-based productivity and sustainable HRM. Asian Pac. J. Bus. 2014, 6, 225–246. 
16. Honma, S.; Hu, J.L. Industry-level total-factor energy efficiency in developed countries: A Japan-centered 

analysis. Appl. Energy 2014, 119, 67–78. 
17. Sueyoshi, T.; Yuan, Y.; Goto, M. A literature study for DEA applied to energy and environment. Energy 

Econ. 2017, 62, 104–124. 
18. Cooper, W.W.; Gu, B.; Li, S. Note: Alternative treatments of congestion in DEA-a response to the Cherchye, 

Kuosmanen and Post critique. Eur. J. Operat. Res. 2001, 132, 81–87. 
19. Sueyoshi, T.; Yuan, Y. Social sustainability measured by intermediate approach for DEA environmental 

assessment: Chinese regional planning for economic development and pollution prevention. Energy Econ. 
2017, 66, 154–166. 

20. Koopmans, T.C. Analysis of production as an efficient combination of activities. In Activity Analysis of 
Production and Allocation; Koopmans, T.C. ed.; Wiley: New York, NY, USA, 1951. 

21. Sueyoshi, T.; Yuan, Y. Comparison among U.S. industrial sectors by DEA environmental assessment: 
Equipped with analytical capability to handle zero or negative in production factors. Energy Econ. 2015, 52, 
69–86. 

22. Aida, K.; Cooper, W.W.; Pastor, J.T.; Sueyoshi, T. Evaluating water supply services in Japan with RAM: A 
range-adjusted measure of inefficiency. OMEGA 1998, 26, 207–232. 

23. Sueyoshi. T.; Sekitani, K. An occurrence of multiple projections in DEA-based measurement of technical 
efficiency: Theoretical comparison among DEA models from desirable properties. Eur. J. Operat. Res. 2009, 
196, 764–794. 

24. Sueyoshi, T.; Yuan, Y. Marginal rate of transformation and rate of substitution measured by DEA 
environmental assessment: Comparison among European and North American nations. Energy Econ. 2016, 
56, 270–287. 

25. Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons, Inc.: New York, NY, USA, 
1999. 

26. Sueyoshi, T.; Aoki, S. A use of a nonparametric statistic for DEA frontier shift: The Kruskal and Wallis rank 
test. OMEGA 2001, 29, 1–18. 

27. Sueyoshi, T.; Goto, M. Intermediate approach for sustainability enhancement and scale related measures 
in environmental assessment. Eur. J. Operat. Res. 2019, 276, 744–756. 

28. Sueyoshi, T.; Goto, M.; Wang, D. Index measurement on frontier shift for sustainability enhancement by 
Chinese provinces. Energy Econ. 2017, 67, 554–571. 

 
 
 
 



Energies 2019, 12, 1785 23 of 23 

 

29. Charnes, A.; Cooper, W.W.; Sueyoshi, T. A goal programming/constrained regression review of the Bell 
System breakup. Manag. Sci. 1988, 34, 1–26. 

30. Sueyoshi. T.; Yuan, Y.; Li, A.; Wang, D. Methodological comparison among radial, non-radial and 
intermediate approaches for DEA environmental assessment. Energy Econ. 2017, 67, 439–453. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


