Special Issue

Management and Environmental Factor Contributions to Maize Yield

Message from the Guest Editors

Dear Colleagues,

Agricultural production must increase substantially to meet the increasing per capita demand for food, feed, fuel, and fiber of a rising human census. The amount of arable land is limited due to soil type, weather, and ecosystem considerations; therefore, it is necessary to increase yields on current fields. To obtain the greatest maize (*Zea mays* L.) yield, a farmer needs to nurture the crop as much as possible. Weather and nitrogen availability are well-known as two factors that normally have the greatest influence on maize yields and grain quality. Some management factors a producer may need to consider while growing a maize crop are mineral fertilization, genotype, plant population, and protection from insects and diseases. Additionally, there are numerous biological and chemical compounds that can stimulate plant growth, such as in-furrow mixes and foliar fungicides. Field management also plays a role in final grain yield, including crop rotation, tillage, soil pH and nutrient levels, weed control, and drainage.

This Special Issue will focus on weather and other maize crop management factors and their relative independent and/or interactive influence on maize growth and yield. We welcome novel research and reviews relating to improved crop management for the greatest maize yields.

Prof. Frederick E. Below
Ms. Juliann R. Seebauer
Guest Editors

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.
High visibility: Indexed in the Science Citation Index Expanded (SCIE) -Web of Science from Vol. 5 (2015); also indexed in Scopus, from Vol. 5, and other databases.
Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 27.5 days after submission; acceptance to publication is undertaken in 6.5 days (median values for papers published in this journal in first half of 2017).