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Abstract: Probability forecasts of the Swiss franc/euro (CHF/EUR) exchange rate are generated
before, surrounding and after the placement of a floor on the CHF/EUR by the Swiss National
Bank (SNB). The goal is to determine whether the exchange rate floor has a positive, negative or
insignificant effect on the calibration of the probability forecasts from three time-series models:
a vector autoregression (VAR) model, a VAR model augmented with the LiNGAM causal learning
algorithm, and a univariate autoregressive model built on the independent components (ICs) of an
independent component analysis (ICA). Score metric rankings of forecasts and plots of calibration
functions are used in an attempt to identify the preferred time-series model based on forecast
performance. The study not only finds evidence that the floor on the CHF/EUR has a negative impact
on the forecasting performance of all three time-series models but also that the policy change by the
SNB altered the causal structure underlying the six major currencies.

Keywords: probability forecasting; calibration; evaluating forecasts; causality; exchange rates; vector
autoregression models

1. Introduction

On 6 September 2011, the Swiss National Bank (SNB) began intervening in the Swiss franc/euro
(CHF/EUR) exchange rate market to prohibit the franc from appreciating beyond 1.20 francs per euro,
and it continued this intervention throughout 2012 [1,2]. The objective of this study is to assess the
impact of this currency intervention on the probability forecasts of the CHF/EUR from three time-series
models: a vector autoregression (VAR) model, a VAR model augmented with the LiNGAM causal
learning algorithm, and a univariate autoregressive model built on the independent components (ICs)
of an independent component analysis (ICA). One-step-ahead forecasts of the CHF/EUR probability
distribution are generated from each time-series model and are based on a series of intraday data for
six exchange rates (all versus the Swiss franc). The forecasted probability distributions are tested for
calibration and ranked with two different scoring techniques in periods of time before, surrounding,
after and long after the beginning of the CHF/EUR exchange rate intervention.

In contrast to other literature on exchange rate forecasting that examines point forecasts of
exchange rates, this study follows the example set by [3] and evaluates forecasted probability
distributions. A brief summary of the most relevant literature concerning the exchange rate forecasting
performance of multivariate time-series models is as follows. Reference [4] determines that the
forecasting accuracy of restricted VAR models is better than that of unrestricted VAR models for
forecasting the US dollar/yen, US dollar/Canadian dollar and US dollar/Deutsche Mark monthly
exchange rates. Reference [5] uses VAR, Bayesian VAR and vector error correction (VEC) models to
forecast the Australian Dollar/United States Dollar monthly exchange rate and concludes that the VEC
exhibits superior forecasting performance. Reference [6] uses a VAR, restricted VAR, Bayesian VAR,
VEC and Bayesian VEC to forecast five Central and Eastern European monthly exchange rates and
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concludes that none of the models outperform the others for three-month forecasts and that the
Bayesian models tend to perform better than the others for five-month forecasts. Reference [7]
forecasts the monthly exchange rates of 33 exchange rates against the US dollar using a large Bayesian
VAR model; the results indicate that the Bayesian VAR model forecasts better than a random walk
model for most of the currencies.

There are many other techniques used to forecast exchange rates in addition to VAR and
VEC models. For instance, Reference [8] surveys the literature on exchange rate forecasting
and reports that factor-based models and time-varying parameter models outperform a variety
of other models, but the results are sensitive to the chosen sample periods and time horizons.
Machine learning algorithms are also popular for forecasting foreign exchange. Reference [9] uses
artificial neural network, k-nearest neighbor, decision tree, and naïve Bayesian classifier learning
algorithms to predict the USD/GBP daily exchange rate. All algorithms had a similar performance
and there was a high degree of correlation between their predictions. Reference [10] compared the
performance of several machine learning algorithms including multi-layer perceptron, support vector
regression, and gamma classifier to the performance of more traditional time-series models including
autoregressive, autoregressive moving-average, and autoregressive integrated moving-average models.
Results were mixed and depended upon which exchange rate (MXN/USD, JPY/USD, or USD/GBP)
was being forecasted. Other studies such as [11] and [12] have focused on forecasting exchange rates
using various artificial neural network models.

2. Materials and Methods

2.1. Probabilistic Forecasting

Let xt = (x1t, . . . , xmt) be the observed values of an m× 1 vector time series Xt at time period t.
Suppose that at any time n, the forecaster knows values xt, t = 1, . . . , n and must issue a set of
probability distributions Pn+1 for the next observation Xn+1. A prequential forecasting system (PFS) is
a rule which associates a choice of Pn+1 with each value of n and with any possible set of outcomes
xt, t = 1, . . . , n [13]. A PFS is so named because it is the combination of probability forecasting and
sequential prediction; this concept is also known as “probabilistic forecasting” or “density forecasting”.

Reference [13] suggests that the adequacy of a PFS as a probabilistic explanation of the data
should depend only on the sequence of forecasts that the PFS in fact made; this is called the
prequential principle. In practice, the prequential principle is implemented by using the calibration
criterion to judge whether or not a PFS issues adequate probabilities. For a PFS to be well calibrated
according to the calibration criterion, the PFS must assign a probability to each event that matches that
event’s ex post relative frequency.

Formal testing of calibration relies on the probability integral transform as shown in [13] and
summarized as follows. For a continuous random variable Xi,t+1 (i.e., the one period forecast for
time series i), let Ui,t+1 = Fi,t+1(Xi,t+1) be the continuous distribution function of Pi,t+1. Under Pi,t+1
the Ui,t+1 are independent uniform U[0, 1] random variables so that Pi,t+1 is considered to be well
calibrated if the observed sequence of fractiles ui,t+1 = Fi,t+1(xi,t+1) “looks like” a random sample
from U[0, 1]. In other words, the PFS is well calibrated if the observed sequence ui,t+1 = Fi,t+1(xi,t+1)

has cumulative distribution function G(ui,t+1) = ui,t+1.
The cumulative distribution function G(Ui,t+1) for Ui,t+1 is estimated by arranging the observed

sequence ui,t+1 = Fi,t+1(xi,t+1), t = 1, . . . , N in order of ascending value ui,t+1(1), . . . , ui,t+1(N)

and calculating
Ĝ[ui,t+1(j)] = j/N, j = 1, . . . , N. (1)

Calibration performance can be shown graphically as a plot of the PFS’s observed fractiles
(ui,t+1’s) on the x-axis against the estimated cumulative distribution function Ĝ(Ui,t+1) on the y-axis.
This calibration plot will be approximately a 45-degree line for a well-calibrated PFS.
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In practice, a chi-squared goodness-of-fit test can be performed to test a PFS for calibration. This test
uses the sequence of observed fractiles (ui,t+1’s) from the sequence of probability forecasts Pi,t+1. Under
the null hypothesis that the forecasts are well calibrated, the distribution of a sequence of N observed
fractiles is a uniform distribution on the interval [0, 1], whereas the alternative hypothesis is that the
distribution of observed fractiles is not uniform. If the interval [0, 1] is divided into J nonoverlapping
subintervals of length L (where 0 ≤ L ≤ 1), the goodness-of-fit statistic is calculated as

X2 =
J

∑
j=1

(
aj − LjN

)2/LjN (2)

where aj is the actual number of observed fractiles in interval j and Lj is the length of interval j [3].
The goodness-of-fit statistic is compared to the chi-squared distribution with J − 1 degrees of freedom.
This test and all other chi-squared goodness-of-fit tests share a common form which is a sum of terms
containing the square of a difference between an observed count and an expected count divided by the
expected count

∑(observed− expected)2/expected. (3)

For more information on the goodness-of-fit test see [14].

2.2. Scoring Forecasts

In addition to calibration plots and calibration tests, prequential forecasting systems can be
evaluated by metrics such as the mean-squared error (MSE) criterion or the probability score (Brier
1950) [15]. The MSE criterion is most often used to evaluate point forecasts, but it can also be used
to evaluate predictive distributions [3]. The MSE is calculated for probability forecasts by using the
expected value of the forecast distribution. Let Pi,n+1, n = 1, . . . , K be a sequence of probability
forecasts for the ith element Xi,n+1 of the random time-series vector Xn+1 and Mi,n+1 be the expected
value of the distribution Pi,n+1. The MSE of the forecasts for Xi,n+1 is calculated as follows

MSE =
1
K

K

∑
n=1

(xi,n+1 −Mi,n+1)
2 (4)

where xi,n+1 is the observed value of Xi,n+1. The sequence of forecasts with the smallest MSE is
preferred; a PFS P is chosen over an alternative PFS Q if the PFS P has the smallest MSE.

In contrast to the MSE, the probability score evaluates the entire forecasted probability distribution
(Brier 1950) [15]. On any occasion n + 1, suppose that there are R possible outcomes for Xi,n+1 with
probabilities f j

n+1, j = 1, . . . , R so that

R

∑
j=1

f j
n+1 = 1, n = 1, . . . , K (5)

The probability score is defined as

PS =
1
K

R

∑
j=1

K

∑
n=1

(
f j
n+1 − Ej

n+1

)2
(6)

where Ej
n+1 takes the value 1 if outcome j occurred and 0 otherwise. The usage of the probability score

is similar to that of the MSE; the sequence of forecasts with the smallest probability score is preferred.
A PFS P is chosen over an alternative PFS Q if the PFS P has the smallest probability score.
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2.3. Independent Component Analysis

In basic independent component analysis, there are n observed variables x1, . . . , xn that are linear
combinations of underlying statistically mutually independent source variables s1, . . . , sn

xi = ai1s1 + ai2s2 + . . . + ainsn f or all i = 1, . . . , n, (7)

which in vector-matrix form is written as
x = As (8)

where A is the unknown mixing coefficient matrix and s is a vector of unobserved independent
components. The observed variables x are used to estimate both A and s. Both x and s can be assumed
to have zero mean; if this is not true, then the preprocessing step

x = xo − E(xo) (9)

will center the original observed variables xo if they are not already centered. The independent
components will then also have zero mean since

E(s) = A−1E(x). (10)

Basic ICA model estimation relies on the following assumptions [16]

1. The independent components are assumed to be statistically independent, but this does not need
to be exactly true in application.

2. The mixing matrix A is assumed to be square and invertible for the sake of convenience
and simplicity.

3. The independent components must have non-Gaussian distributions.

Many ICA models differ from the basic ICA model and have their own assumptions. For
additional details see [16].

The independent components s are not only uncorrelated, but they are also as statistically
independent as possible. Because achieving this requires more information than a correlation
matrix can provide, the estimation of independent components uses higher-order moments or
other information such as the autocovariance structure for time-series variables in addition to
correlation information.

The observed random variables x can be linearly transformed into uncorrelated variables that
have unit variances via a process called whitening. The whitened vector z is computed as

z = Vx (11)

where the decorrelating matrix V is
V = D−1/2ET (12)

In the above equation, E = (e1 . . . en) is the matrix whose columns are the unit-norm eigenvectors
of the covariance matrix Cx = E

{
xxT} and D = diag(d1 . . . dn) is the diagonal matrix of the eigenvalues

of Cx. Basic ICA estimation requires the higher-order moments of non-Gaussian distributions because
there are an infinite number of matrices V that can create decorrelated components.

2.4. ICA Time Series

If the independent components are time series, as opposed to independent random variables in
the basic ICA model, then the ICA model takes the following form [16]

x(t) = As(t), t = 1, . . . , T (13)
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where t is the time index. Since time-series variables have more structure than independent random
variables, the time-series autocovariances may be used for estimation instead of the higher-order
information that is required in the basic ICA model.

The AMUSE algorithm provides one method to estimate the time-series ICA model [16].
This algorithm requires the time-lagged covariance matrix in place of the higher-order moments
used in the basic ICA model. The time-lagged covariance matrix is computed as

Cx
τ = E

{
x(t)x(t− τ)T

}
(14)

where τ is a lag constant, τ = 1, 2, 3, . . .. This matrix contains the autocovariances of each signal and
the covariances between signals.

The algorithm is based on the fact that the instantaneous and lagged covariances of s(t) are zero
due to independence. Hence, the time-lagged covariance matrix is used to find a matrix B so that all of
the instantaneous and lagged covariances of

y(t) = Bx(t) (15)

are equal to zero.
The AMUSE algorithm assumes that all of the ICs have autocovariances different from zero and

different from each other. This assumption replaces the assumption of the basic ICA model that the
independent components must have non-Gaussian distributions.

The AMUSE algorithm uses whitened, zero mean data z(t) as input and generates the separating
matrix W as output so that

Wz(t) = s(t) (16)

Wz(t− τ) = s(t− τ). (17)

The time-lagged covariance matrix is modified to be symmetric by the following computation

Cz
τ =

1
2

[
Cz

τ + (Cz
τ)

T
]

(18)

so that an eigenvalue decomposition on this new symmetric matrix is well defined. The steps of the
AMUSE algorithm are as follows [16]:

1. Center and whiten the observed data x(t) to obtain z(t).
2. Compute the eigenvalue decomposition of the symmetric, time-lagged covariance matrix

(Equation (18)) for some time lag τ.
3. The rows of the estimated separating matrix Ŵ are given by the eigenvectors.
4. The estimated separating matrix for the unwhitened data x is B̂ = ŴV in which V is defined in

Equation (12).

Time-series models are typically built using observed returns, which are represented in vector
form by the notation

R(t) =

 R1(t)
...

RN(t)

, t ∈ 1, . . . , T (19)

where Ri(t) is the return on a particular asset i ∈ 1, . . . , N at time t ∈ 1, . . . , T. In the
following discussion, the vector of observed time-series variables is the vector of observed returns,
i.e., x(t) = R(t). A prequential forecasting system can be created with the independent components
by building on the forecasting method described in [17]. The following procedure is used to create a
prequential forecasting system for a set of observed returns
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1. Compute the independent components using the estimated separating matrix

s(t) = B̂R(t), t = 1, . . . , T (20)

2. Model each independent component with an autoregressive (AR) model

si(t) = c +
k

∑
τ=1

ϕτsi(t− τ) + εi(t), i ∈ 1, . . . , N (21)

where c is a constant, k is the number of time-delays (lags) of the autoregression, ϕτ are coefficients,
and εi(t) is the innovation process.

3. Compute the estimates of the innovation process as follows

εi(t) = si(t)− c−
k

∑
τ=1

ϕτsi(t− τ), i ∈ 1, . . . , N (22)

and estimate the probability distributions of the innovations with a method such as kernel
density estimation. For an overview of kernel density estimation see [18].

4. Obtain samples from the estimated probability distributions of the innovations with a sampling
technique such as Latin hypercube sampling. A stratified sampling technique such as Latin
hypercube sampling is generally more accurate when there are low-probability outcomes, which is
likely to be the case in this application [19].

5. Use the samples of the innovations in conjunction with historical data and parameter estimates to
compute the estimated probability distribution for the one-step-ahead independent components
using Equation (21).

6. Finally, transform the samples of the estimated probability distributions of the independent
components into estimated probability distributions of the original variables

x(t) = Âs(t), t = 1, . . . , T. (23)

2.5. LiNGAM Algorithm

The LiNGAM algorithm assumes that the observed variables can be arranged in a causal order
so that the data generating process can be represented by a directed acyclic graph (DAG), that the
value assigned to each variable is a linear function of values assigned to variables positioned earlier
in the causal order, that there are no latent common causes, and that the disturbance terms are
mutually independent with non-Gaussian distributions and non-zero variances [20]. The non-Gaussian
assumption is important because this allows LiNGAM to estimate the full causal model with no
undetermined parameters.

LiNGAM assumes that the observed variables are linear functions of the disturbance variables.
When the mean is subtracted from each variable, this is expressed as

x = Bx + e. (24)

Solving for x, this becomes
x = Ae (25)

where A = (I− B)−1. Equation (24) in addition to the assumption that the disturbance terms are
independent and have non-Gaussian distributions is the independent component analysis model.
The ICA model has two indeterminacies that must be resolved before a graphical model can be
constructed: neither the order nor the scaling of the independent components is defined. LiNGAM
resolves both of these issues by permuting and normalizing the ICA output (i.e., the mixing matrix)
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to obtain a matrix B containing the DAG connection strengths. The graphical representation of this
matrix is the causal DAG model.

Because LiNGAM uses the non-Gaussian information contained in the disturbance terms,
its output is just one DAG instead of the class of equivalent DAGs found by most causal learning
algorithms. As noted earlier, this output includes parameter estimates for the linear model.
The LiNGAM procedure is implemented both in MATLAB (version 7.7) provided by [20] and in the
TETRAD IV software package (version 4.3.10) provided by [21]. In the application below, the MATLAB
code is used to produce coefficient estimates, and TETRAD IV is used to produce DAG illustrations.

2.6. VAR Models

A vector autoregression (VAR) built using a time series of return observations (Equation (19)) is
written as

R(t) =
k

∑
τ=1

MτR(t− τ) + n(t) (26)

where k is the number of time-delays (lags) of the autoregression, Mτ are n× n matrices of coefficients,
and n(t) is the innovation process.

To find an estimate n̂(t) of the innovation process, estimate the vector autoregressive model using
any least squares method and compute the estimate of the innovation process as

n̂(t) = R(t)−
k

∑
τ=1

M̂τR(t− τ). (27)

In the application below, the VAR model is used as a one-step-ahead prequential forecasting
system by using a multivariate normal distribution as the distribution of the innovations n̂(t).
Estimates of the expected value vector and covariance matrix of n̂(t) are used as parameters of
the multivariate normal distribution. The multivariate normal distribution of the innovations is used
in Equation (26) with historical data and parameter estimates to create a probability distribution for
the one-step-ahead return vector R(t).

2.7. Dynamic Directed Graph Discovery (VAR-LiNGAM)

LiNGAM can be combined with the VAR model in a specific way so that the VAR model becomes
fully identified as described in [22]; in the following text, this combined model is called VAR-LiNGAM.
The VAR-LiNGAM model is a combination of an autoregressive model with time-delays and a
structural equation model, which does not consider the time-series structure in data. The autoregressive
portion of VAR-LiNGAM is

R(t) =
k

∑
τ=1

BτR(t− τ) + e(t) (28)

where k is the number of time-delays (lags) of the autoregression, Bτ are n× n matrices of coefficients,
and e(t) is the innovation process. The structural equation portion of VAR-LiNGAM is

R = BR + e (29)

where e is a vector of disturbances and the diagonal of B is defined to be zero.
The complete VAR-LiNGAM model is the combination of Equations (28) and (29)

R(t) =
k

∑
τ=0

BτR(t− τ) + e(t) (30)

where k is the number of time-delays (lags) of the autoregression, Bτ are the n× n matrices containing
the causal effects between returns R(t− τ) with time lag τ = 0, . . . , k, and e(t) are random
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disturbances. The Bτ matrices for τ > 0 correspond to effects from the past to the present, while B0

corresponds to instantaneous effects. The VAR-LiNGAM model is based on three assumptions:

1. e(t) are mutually independent and temporally uncorrelated, both with each other and over time.
2. e(t) are non-Gaussian.
3. The matrix B0 corresponds to an acyclic graph.

The model is estimated in two stages. First, estimate a traditional vector autoregressive model
and compute the residuals of the model as described above. Then perform a LiNGAM analysis on the
estimate of the innovation process to obtain an estimate of the matrix B0, which is the solution to the
instantaneous causal model

n̂(t) = B0n̂(t) + e(t). (31)

Finally, use B0 to compute Bτ for τ > 0

B̂τ =
(
I− B̂0

)
M̂τ for τ > 0 (32)

where M̂τ are estimated coefficient matrices of the VAR model in Equation (26).
The VAR-LiNGAM model becomes a prequential forecasting system for the one-step-ahead return

vector R(t) with the following procedure. Compute an estimate of the independent components ê(t)
from the estimates of the innovations n̂(t)

ê(t) = (I− B0)n̂(t). (33)

Because there is essentially no stochastic dependence between the independent components, the
probability distributions of the individual independent components can be estimated with a univariate
estimation method such as kernel density estimation.

Next, obtain samples from the estimated probability distributions of the individual independent
components with a sampling technique such as Latin hypercube sampling. Transform the samples of
the independent components into samples of the innovations

n̂(t) = (I− B0)
−1ê(t). (34)

Finally, samples of the innovations in conjunction with historical data and parameter estimates
are used to compute the estimated probability distribution for the one-step-ahead return vector R(t)
using Equation (26).

2.8. Application

In the remainder of the paper, probability forecasts of the CHF/EUR exchange rate are generated
from the three time-series models. Forecast calibration is evaluated with calibration plots and
goodness-of-fit calibration tests. The mean-squared error and the probability score metrics are then
used to compare the forecasting accuracy of the models. The code used for forecast generation,
calibration, and scoring metrics was programmed and executed with MATLAB [23].

2.9. Description of the Data

Data is obtained from the Sierra Chart historical data service using Sierra Chart software
(version 842) [24]. Both spot and futures data are available from the data service, and virtually
identical model estimation and forecast evaluation results are obtained regardless of which is used.
The results presented later in the paper are all reported using futures data. The rationale for presenting
these results is that the futures data originates from a globally accessible exchange whereas the Sierra
Chart spot data which consists of transactions between a small forex dealer and its clients.

The data consists of futures contracts that are traded on the CME Group exchange for the
Australian dollar (AUD), Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP),
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Japanese yen (JPY) and the Swiss franc (CHF). These currencies are chosen because they had the largest
market turnover rates in 2010 according to the Triennial Central Bank Survey [25].

Sierra Chart software is used to join each currency’s future contracts into a single continuous time
series for the corresponding currency; for instance, all futures contracts for the AUD (June 2010, ...,
July 2012) were joined in sequence to form a single continuous time series for the AUD. The original
data has one-minute periodicity and is aggregated across time into fifteen-minute intervals so that
the resulting data used in this analysis has fifteen-minute periodicity. A fifteen-minute periodicity is
used because it is large enough to give the currencies plenty of time to respond to each other and small
enough to provide the LiNGAM algorithm with a sufficient number of observations.

The exchange rates for the six currencies are converted to direct quotations where the domestic
currency is the CHF so that the data used for the analysis consists of observations of the AUD, CAD,
EUR, GBP, JPY and USD quoted as CHF/X where X is one of the stated currencies.

Missing data is replaced by the most recent observation in each currency series. Log returns are
then computed by taking the natural logarithm and first-differencing the exchange rates (in that order).
All log returns in all time periods are stationary based on Dickey–Fuller tests.

2.10. Brief History of the Swiss Franc

During the second and third quarter of 2011, the SNB became worried that the appreciation of
the franc against the euro was hurting the Swiss economy and increasing the risk of deflation. In
August, the SNB drove interest rates to nearly zero and flooded the market with liquidity in an attempt
to mitigate the franc’s appreciation, but neither of these actions were completely effective. Finally,
the franc’s appreciation was halted in September when the SNB placed a floor on the CHF/EUR
exchange rate. The sequence of SNB actions were as follows [1]:

• 3 August 2011: the SNB lowered the upper limit of its target range for the three-month Libor to
0–0.25 percent (from 0 to 0.75 percent).

• 10 August 2011: the SNB announced additional measures to increase liquidity and reduce the
appreciation of the franc. These included pumping more liquidity into the Swiss money market
and conducting foreign exchange swap transactions (a policy last used in late 2008).

• 11 August 2011: an SNB official said that a temporary peg to the euro was possible.
• 6 September 2011: the SNB announced that it was establishing a floor on the CHF/EUR exchange

rate (ceiling on the EUR/CHF exchange rate). The franc would not be allowed to appreciate
beyond 1.20 francs per euro.

2.11. Model Estimation

To analyze forecasts surrounding the establishment of the floor on the CHF/EUR exchange rate,
the futures contract time-series data is segmented into four two-month data sets. These four forecast
data sets have corresponding estimation data sets on which estimates of the econometric models
are made. Note that it is the forecast data sets (not the estimation data sets) that are arranged around
the 11 August 2011 intervention announcement, while the matching estimation data sets simply
contain data in the prior six months. The names and descriptions of these four forecast datasets are
as follows. In the before data set, the CHF/EUR exchange rate is unencumbered. The surrounding
data set begins on 11 August 2011 when an SNB official announced that a temporary peg was possible;
the SNB formally established a floor on the CHF/EUR exchange rate near the middle of this data set on
6 September 2011. The after data set begins after the floor has been in effect for just more than a month.
The long after data set begins six months after the exchange rate floor has been in place. The exact
dates of the forecast data sets and the dates of their accompanying estimation data sets are shown
in Table 1. Expected values of the currency log returns in each forecast data set are shown in Table A1,
and correlation matrices of the currency log returns in the estimation and forecast data sets are shown
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in Tables A2 and A3. The estimation results for each of the models on all the estimation data sets are
reported in Tables A4–A7.

Table 1. The table shows the data set starting and ending dates.

Data Set Starting Date Ending Date

Estimation Data Sets

before 11 December 2010 10 June 2011
surrounding 11 February 2011 10 August 2011

after 11 April 2011 10 October 2011
long after 7 September 2011 6 March 2012

Forecast Data Sets

before 11 June 2011 10 August 2011
surrounding 11 August 2011 10 October 2011

after 11 October 2011 10 December 2011
long after 7 March 2012 6 May 2012

Model estimation is performed using SAS software, Version 9.2 [26]. The lag lengths for the
estimated VAR models are chosen by using the Hannan–Quinn information criterion and the Schwarz’s
Bayesian criterion [27]. For VAR models in all estimation data sets, both the Hannan–Quinn information
criterion and the Schwarz’s Bayesian criterion are best (most negative) for lag 1. The VAR model
estimates of the autoregressive matrices M1 for the estimation data sets are shown in Table A4.

Each VAR-LiNGAM model is built on an estimated VAR model by applying the LiNGAM
structural learning algorithm to the VAR model’s estimated innovation processes. As evidence that the
VAR-LiNGAM non-Gaussian assumption holds on every estimation data set, a Kolmogorov–Smirnov
test performed on each currency’s corresponding independent factor confirms that the null hypothesis
of normality is rejected with p-value less than 0.01 for each factor. The VAR-LiNGAM model estimates
of the autoregressive matrices M1 correspond to those of the VAR model and are shown in Table A4.
The VAR-LiNGAM model estimates of the causal effect matrices B0 are shown in Table A5.

Independent component analysis is performed on the currency time series and the independent
components are modeled with univariate autoregressive processes. The separating matrices B found
by the AMUSE algorithm are shown in Table A6. Independent components are computed using the
separating matrices as described in Equation (20). A Kolmogorov–Smirnov test is performed on each
independent component to verify the ICA model’s non-Gaussian assumption; the test’s null hypothesis
of normality is rejected with p-value less than 0.01 for each independent component.

The lag lengths for the estimated AR models are chosen by using Schwarz’s Bayesian criterion.
For the AR models in all estimation data sets, Schwarz’s Bayesian criterion is best (most negative)
for lag 1. Thus, the independent components are modeled with AR(1) processes whose parameter
estimates are shown in Table A7.

3. Results

3.1. Forecast Generation

A multivariate normal distribution is used to model the one-step-ahead probability distribution of
the VAR model innovation process. Latin hypercube samples from the multivariate normal distribution
in conjunction with the VAR model parameter estimates and historical data are used to compute
one-step-ahead probability distributions for the exchange rate returns.

An estimate of the independent factor process of the VAR-LiNGAM model is obtained from
its estimated innovation process. Kernel density estimation with a normal probability window is
used to estimate the probability distributions of the VAR-LiNGAM independent factor processes.
Latin hypercube samples from the independent factor process distributions are transformed into
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one-step-ahead distributions of the VAR-LiNGAM innovation processes. The innovation process
distribution samples plus the VAR-LiNGAM model parameter estimates and historical data are used
to compute one-step-ahead probability distributions for the exchange rate returns.

Kernel density estimation with a normal probability window is used to estimate the probability
distribution of each AR innovation process. Latin hypercube samples from the innovation process
distributions plus the AR model estimates and historical data are used to compute one-step-ahead
probability distributions for the independent components. The forecasted probability distributions of
the independent components are transformed into forecasted probability distributions of the exchange
rate returns as described in Equation (23).

Sample one-step-ahead cumulative predictive distributions in each of the forecast data sets for
the VAR-LiNGAM model are shown in Figure 1. These sample predictive cdfs are similar to those
generated by the VAR and AR models.Forecasting 2018, 1, x FOR PEER REVIEW  11 of 23 
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Figure 1. Sample Cumulative Predictive Distributions. The plots show the sample one-step-ahead
cumulative predictive distributions generated by the VAR-LiNGAM model in the before (a),
surrounding (b), after (c) and long after (d) forecast data sets.

3.2. Forecast Evaluation

The only forecasts considered here are those for the CHF/EUR exchange rate; the forecasts of
other currencies are not evaluated. For the computation of calibration functions, the fractile of each
outcome is determined by comparing the outcome to the estimated cumulative predictive distribution.
These fractiles are used in conjunction with the estimated cumulative predictive distributions to
compute the calibration functions. The calibration functions are both plotted and used to compute
goodness-of-fit test statistics.

Calibration plots of the CHF/EUR for the before, surrounding, after and long after forecast data
sets are in Figures 2 and 4–6. The calibration plots for the AR, VAR and VAR-LiNGAM models in
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a particular forecast data set in addition to a 45-degree line for reference are shown in each figure.
Underconfidence in probability assessments is indicated where the calibration function maps above
the 45-degree line, while overconfidence in assessments is indicated where the calibration function
maps below the 45-degree line.Forecasting 2018, 1, x FOR PEER REVIEW  12 of 23 
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Figure 2. CHF/EUR Calibration Functions in the Before Forecast Data Set. The plots show calibration
functions for the CHF/EUR exchange rate that are generated by forecasts from the AR (a), VAR (b) and
VAR-LiNGAM (c) models in the before forecast data set (11 June 2011–10 August 2011). A model is
well calibrated if it maps onto the 45-degree reference line.
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Figure 4. CHF/EUR Calibration Functions in the Surrounding Forecast Data Set. The plots show
calibration functions for the CHF/EUR exchange rate that are generated by forecasts from the AR (a),
VAR (b) and VAR-LiNGAM (c) models in the surrounding data set (11 August 2011–10 October 2011).
A model is well calibrated if it maps onto the 45-degree reference line.
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Figure 4. CHF/EUR Calibration Functions in the After Forecast Data Set. The plots show calibration 
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Figure 5. CHF/EUR Calibration Functions in the After Forecast Data Set. The plots show calibration
functions for the CHF/EUR exchange rate that are generated by forecasts from the AR (a), VAR (b) and
VAR-LiNGAM (c) models in the after data set (11 October 2011–10 December 2011). A model is well
calibrated if it maps onto the 45-degree reference line.
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Figure 6. CHF/EUR Calibration Functions in the Long after Forecast Data Set. The plots show
calibration functions for the CHF/EUR exchange rate that are generated by forecasts from the AR (a),
VAR (b) and VAR-LiNGAM (c) models in the long after data set (7 March 2012–6 May 2012). A model
is well calibrated if it maps onto the 45-degree reference line.

For the before forecast data set, each model exhibits underconfidence on the lower end of the
calibration function and overconfidence on the upper end. For the surrounding forecast data set,
the AR and VAR models exhibit overconfidence on the lower end of the calibration function and
underconfidence on the upper end; the extreme ends of both of these calibration functions show the
opposite behavior. The calibration function for the VAR-LiNGAM model on the surrounding data
set displays the opposite behavior of the AR and VAR models with underconfidence on the lower
end and overconfidence on the upper end. For the after and long after data sets, the calibration
functions for all models exhibit a large degree of overconfidence on the lower end and a large degree
of underconfidence on the upper end.

Overall, the calibration plots show that all models are better calibrated (i.e., map closer to the
45-degree line) in the before and surrounding data sets than in the after and long after data sets.
Forecasts are less calibrated after the placement of the floor on the CHF/EUR exchange rate; it appears
that the Swiss National Bank’s market intervention had a negative effect on the calibration of the
time-series models in the longer run.

Chi-squared goodness-of-fit tests are performed to test each time-series model for calibration
during each forecast data set. The null hypothesis that the forecasts are well calibrated is rejected
with a p-value near zero in every data set for every time-series model; no time-series model forecasts
are well calibrated in any of the time periods under consideration. Some of the calibration functions
appear to map closely to the 45-degree reference line, such as in Figure 2a,b. Nevertheless, none of
the calibration functions shown in any of Figures 2 and 4–6 reflect forecasts that are well calibrated
according to the goodness-of-fit test.
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In some of Figures 2 and 4–6, the calibration problems appear to be in the tails of the distributions,
such as in Figure 2a,b. Generating forecasts with distributions estimated via kernel density estimation
with a normal probability window might be the source of this bad tail behavior. In the calibration plots
that show bad tail behavior, the miscalibration of each tail is in the opposite direction; for example,
in Figure 2b, the calibration function shows underconfidence on the low end and overconfidence on
the upper end. If the normal probability widow was to blame for this poor tail performance, it would
likely produce tails that were too heavy or too light at both ends of the distribution. For instance,
if kernel density estimation with a normal probability window produced a distribution with tails that
were too light to reflect the distribution of returns, then the corresponding calibration function would
show underconfidence at both ends of the plot. Additionally, since other figures show that the problem
with calibration is more in the central part of the distribution than in the tails, such as Figure 4a,b, it is
unlikely that the normal probability window is the culprit for bad calibration.

In addition to the calibration tests, the mean-squared error (MSE) and the probability score metrics
are used to rank the probability forecasting systems. The mean-squared errors of each model’s forecasts
are reported in Table 2, and the probability scores of each model’s forecasts are reported in Table 3.
The VAR and VAR-LiNGAM models both have the same MSE on each data set because they are both
driven by the innovations of the VAR model (see Equation (26)).

Table 2. The table shows the mean-squared errors of the CHF/EUR forecasts from the AR, VAR and
VAR-LiNGAM models on each forecast data set.

Data Set AR VAR &
VAR-LiNGAM

before 1.614 × 10−6 1.610 × 10−6

surrounding 2.982 × 10−6 2.983 × 10−6

after 3.409 × 10−7 3.415 × 10−7

long after 2.873 × 10−8 2.722 × 10−8

Table 3. The table shows the probability scores of the CHF/EUR forecasts from the AR, VAR and
VAR-LiNGAM models on each forecast data set.

Data Set AR VAR VAR-LiNGAM

before 0.99876 0.99860 0.99914
surrounding 0.99820 0.99803 0.99877

after 0.99715 0.99713 0.99776
long after 0.99700 0.99697 0.99696

The MSE results indicate that no model consistently outperforms the others. The VAR and
VAR-LiNGAM models perform the best in the before and long after data sets, while the AR model
performs the best in the surrounding and after data sets. This may indicate that all models have
roughly the same forecasting performance or that the VAR and VAR-LiNGAM models perform better
in periods isolated from structural change.

In contrast, the probability score rankings show that the VAR model outperforms the other models
in all but the long after data set in which the VAR-LiNGAM’s performance is slightly better. Because
the simple VAR model outperforms the other models that are built using independent components,
the probability score results indicate that there is no gain in forecasting performance when using
independent components. Additionally, the probability score ranks the AR forecasts higher than the
VAR-LiNGAM forecasts in all periods but the last; this may indicate that in some cases the multivariate
VAR-LiNGAM model provides no advantage over the univariate AR model.

The VAR and VAR-LiNGAM models generate better forecasts in the long after period according
to the MSE and the probability score. This is some indication that the VAR-LiNGAM model performs
better than the AR model after market intervention has been in effect for some period of time.
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3.3. Change in the Causal Structure

The results from the LiNGAM algorithm show that there is evidence that the causal relationships
among the exchange rates changed after the intervention by the Swiss National Bank. Table A5 reports
the causal effect matrices for the different estimation data sets. These matrices show the causal effects
from currencies listed in the columns to the currencies listed in the rows. For example, the first
row of Table A5a shows that the AUD exchange rate is positively affected by the CAD, EUR, GBP
and USD and negatively affected by the JPY. The causal effects contained in these matrices can be
represented graphically by directed acyclic graphs. The causal structure of the currencies before the
SNB intervention is shown in Figure 7a and the structure after the intervention is shown in Figure 7b.
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estimation data sets. These correspond to the before and long after B0 matrices in Table A5.

Figure 7 shows that several causal relationships reversed direction following the SNB intervention:

• CAD→ AUD changed to AUD→ CAD
• GBP→ AUD changed to AUD→ GBP
• JPY→ AUD changed to AUD→ JPY
• USD→ AUD changed to AUD→ USD
• CAD→ JPY changed to JPY→ CAD

and the EUR→ USD relationship changed sign from negative to positive. These graphs show
that the policy change by the SNB altered the causal structure underlying the six major currencies.
This result adds supporting evidence to the Lucas critique [28], wherein Lucas hypothesized that a
policy change could change the structure of an econometric model.

It is difficult to say why this causal change occurred. One possible explanation is that the Swiss
franc is a safe haven currency and a funding currency for currency carry trades [29], so the changes
could be due to a change in the risk of the Swiss franc that affects its usefulness in either of these roles.
A typical carry trade in 2011–2012 would have invested in the Australian dollar (a high-yielding
currency) and been funded by the Swiss franc (a low-yielding currency) [29]. Thus, the changing
causal relationships with the Australian dollar could be due to a change in the risk characteristics of
the carry trade when the SNB imposed its floor on the CHF/EUR.
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4. Discussion

This study assesses the impact of the Swiss National Bank’s manipulation of the CHF/EUR
exchange rate on the probability forecasts from a VAR model, a VAR model augmented with the
LiNGAM causal learning algorithm, and a univariate AR model built on the independent components
of an independent component analysis. Forecasts are divided among data sets that represent
periods of time before, surrounding, after and long after the beginning of the CHF/EUR exchange
rate manipulation.

Calibration plots are shown for the forecasted probability distributions of CHF/EUR returns on
all data sets. None of the forecasted probability distributions appear to be calibrated based on the
calibration plots, and calibration tests confirm this. The calibration plots show that all models are better
calibrated in the periods before and surrounding the beginning of the exchange rate manipulation
than in the two periods after the floor on the CHF/EUR was established. This implies that the SNB‘s
intervention in the CHF/EUR market had a negative impact on the forecasting performance of the
time-series models.

The mean-squared error (MSE) and the probability score metrics are used to rank the probability
forecasting systems. When comparing models within each data set, the MSE finds that the VAR and
VAR-LiNGAM models generate better forecasts in the before and long after data sets, while the AR
model generates better forecasts in the surrounding and after data sets. These results may indicate that
all models have roughly the same forecasting performance or that the VAR and VAR-LiNGAM models
perform better in periods isolated from structural change.

The probability score finds that the VAR model outperforms the other models in all data sets
except the long after dataset in which the VAR-LiNGAM’s performance is slightly better. The relatively
good performance of the VAR model, which does not take independent components into account,
may indicate that there is no improvement in forecasting performance when independent components
are used to generate forecasts. Additionally, the probability score ranks the AR forecasts higher
than the VAR-LiNGAM forecasts in all periods but the last; this may indicate that in many cases the
univariate independent component AR model provides as good or better forecasts than the multivariate
VAR-LiNGAM model.

In addition to the forecasting results, this study finds evidence that the policy change by the SNB
altered the causal structure underlying the six major currencies. Six causal pathways reversed direction
after the policy change and one causal relationship changed from negative to positive.

The findings of this study raise some interesting questions. In particular, why was the causal
structure of the foreign exchange market affected by the SNB policy change? Does central bank
intervention in a currency market always have a negative impact on the forecasting performance of
time-series models? Does the VAR model often generate forecasts that are as good as those from
models that use independent components? Under what circumstances does the univariate independent
component AR model generate better forecasts than the multivariate VAR-LiNGAM model? These are
questions for future studies.
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Appendix A

Table A1. These are the expected values of the currency log returns R(t) in the estimation data sets
(a) and the forecast data sets (b) for the Australian dollar (AUD), Canadian dollar (CAD), euro (EUR),
Great Britain pound sterling (GBP), Japanese yen (JPY) and United States dollar (USD).

(a)

Currency Before Surrounding After Long After

AUD −7.152 × 10−6 −2.378 × 10−5 −5.459 × 10−6 5.858 × 10−6

CAD −1.028 × 10−5 −2.471 × 10−5 −6.673 × 10−6 4.508 × 10−6

EUR −6.023 × 10−6 −2.153 × 10−5 −5.508 × 10−6 −1.065 × 10−7

GBP −1.068 × 10−5 −2.472 × 10−5 −4.399 × 10−6 4.276 × 10−6

JPY −9.118 × 10−6 −1.776 × 10−5 8.366 × 10−6 2.120 × 10−6

USD −1.288 × 10−5 −2.483 × 10−5 −5.025 × 10−7 5.555 × 10−6

(b)

Currency Before Surrounding After Long After

AUD −4.603 × 10−5 5.066 × 10−5 1.343 × 10−5 −9.477 × 10−6

CAD −4.201 × 10−5 4.705 × 10−5 8.368 × 10−6 2.832 × 10−6

EUR −4.136 × 10−5 4.640 × 10−5 1.111 × 10−6 −9.271 × 10−7

GBP −4.005 × 10−5 4.833 × 10−5 6.015 × 10−6 8.458 × 10−6

JPY −2.687 × 10−5 5.640 × 10−5 2.508 × 10−6 4.670 × 10−6

USD −3.853 × 10−5 5.600 × 10−5 5.585 × 10−6 2.018 × 10−6

Table A2. These are the correlation matrices of the currency log returns R(t) in the before (a),
surrounding (b), after (c) and long after (d) estimation data sets for the Australian dollar (AUD),
Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), Japanese yen (JPY) and the
United States dollar (USD). All correlation coefficients are significant at the 1% level.

(a)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.7318 1
EUR 0.6535 0.6884 1
GBP 0.7111 0.6556 0.6912 1
JPY 0.3254 0.3778 0.4206 0.3048 1
USD 0.6028 0.7422 0.7064 0.5462 0.579 1

(b)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.8088 1
EUR 0.7424 0.7743 1
GBP 0.803 0.7709 0.7906 1
JPY 0.394 0.4566 0.4919 0.4045 1
USD 0.6763 0.7857 0.7773 0.6582 0.6402 1

(c)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.7694 1
EUR 0.6688 0.7051 1
GBP 0.7479 0.719 0.7377 1
JPY 0.3096 0.4065 0.4874 0.3919 1
USD 0.5546 0.6979 0.712 0.5854 0.716 1

(d)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.653 1
EUR 0.4602 0.6071 1
GBP 0.6006 0.5822 0.5788 1
JPY 0.2484 0.4713 0.5867 0.3457 1
USD 0.2671 0.5791 0.7013 0.3954 0.8105 1
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Table A3. These are the correlation matrices of the currency log returns R(t) in the before (a),
surrounding (b), after (c) and long after (d) forecast data sets for the Australian dollar (AUD), Canadian
dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), Japanese yen (JPY) and United States
Dollar (USD). All correlation coefficients are significant at the 1% level.

(a)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.8686 1
EUR 0.8189 0.8404 1
GBP 0.8594 0.8413 0.8655 1
JPY 0.6167 0.6538 0.6858 0.6103 1
USD 0.7516 0.8323 0.8405 0.7465 0.7853 1

(b)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.8486 1
EUR 0.7679 0.8303 1
GBP 0.8453 0.8442 0.8557 1
JPY 0.6019 0.7241 0.7934 0.6958 1
USD 0.655 0.8035 0.8515 0.7455 0.9084 1

(c)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.7838 1
EUR 0.6975 0.7473 1
GBP 0.7794 0.7467 0.7659 1
JPY 0.4476 0.5301 0.595 0.4846 1
USD 0.5800 0.7386 0.7633 0.614 0.7363 1

(d)

AUD CAD EUR GBP JPY USD

AUD 1
CAD 0.5529 1
EUR 0.2728 0.2749 1
GBP 0.3455 0.5053 0.3129 1
JPY 0.0913 0.2498 0.0960 0.3650 1
USD 0.2992 0.6501 0.2456 0.6297 0.6073 1

Table A4. These are the VAR and VAR-LiNGAM model estimates of the autoregressive matrices M1

in the before (a), surrounding (b), after (c) and long after (d) estimation data sets for the Australian
dollar (AUD), Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), Japanese yen
(JPY), and the United States dollar (USD). An M1 matrix contains the estimates from a standard vector
autoregressive model and reflects the autoregressive effects from the lag 1 period on the lag 0 period.

(a)

AUD CAD EUR GBP JPY USD

AUD −0.028 0.060 −0.047 0.023 0.001 −0.050
CAD 0.021 −0.014 −0.036 0.015 −0.042 0.026
EUR 0.028 0.009 −0.064 0.026 −0.044 0.001
GBP 0.009 0.008 −0.025 0.000 −0.032 −0.010
JPY 0.016 −0.026 −0.026 0.043 −0.072 −0.009
USD 0.001 0.010 −0.037 0.027 −0.025 −0.018

(b)

AUD CAD EUR GBP JPY USD

AUD −0.015 0.111 −0.066 −0.031 −0.012 0.012
CAD 0.036 0.028 −0.047 −0.038 −0.056 0.069
EUR 0.030 0.061 −0.084 −0.016 −0.046 0.023
GBP 0.021 0.052 −0.033 −0.061 −0.040 0.033
JPY 0.024 0.028 −0.028 0.017 −0.084 0.018
USD 0.023 0.035 −0.057 0.004 −0.038 0.013
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Table A4. Cont.

(c)

AUD CAD EUR GBP JPY USD

AUD 0.005 0.090 −0.068 −0.028 −0.010 0.002
CAD 0.045 0.004 −0.041 −0.044 −0.054 0.078
EUR 0.035 0.036 −0.079 −0.017 −0.023 0.027
GBP 0.030 0.028 −0.023 −0.075 −0.028 0.051
JPY 0.021 0.014 −0.003 0.001 −0.058 0.030
USD 0.024 0.006 −0.030 −0.002 −0.032 0.032

(d)

AUD CAD EUR GBP JPY USD

AUD −0.050 0.064 −0.101 −0.008 0.029 −0.047
CAD 0.037 −0.041 −0.103 −0.033 −0.002 0.025
EUR 0.004 0.005 −0.149 0.004 0.005 0.000
GBP 0.002 0.017 −0.116 −0.050 −0.008 0.020
JPY 0.005 0.017 −0.134 −0.018 0.017 −0.009
USD −0.005 0.013 −0.112 −0.023 −0.016 0.023

Table A5. These are the VAR-LiNGAM model estimates of the causal effect matrices B0 in the before
(a), surrounding (b), after (c) and long after (d) estimation data sets for the Australian dollar (AUD),
Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), Japanese Yen (JPY) and United
States Dollar (USD). A B0 matrix contains the causal effects within the lag 0 period.

(a)

AUD CAD EUR GBP JPY USD

AUD 0.000 0.218 0.327 0.087 −0.090 0.432
CAD 0.000 0.000 0.111 0.064 0.000 0.610
EUR 0.000 0.000 0.000 0.000 0.000 0.000
GBP 0.000 0.000 0.314 0.000 0.000 0.493
JPY 0.000 −0.101 0.027 0.053 0.000 0.861
USD 0.000 0.000 −1.397 0.000 0.000 0.000

(b)

AUD CAD EUR GBP JPY USD

AUD 0.000 0.285 0.373 0.096 −0.084 0.381
CAD 0.000 0.000 0.209 0.090 0.000 0.580
EUR 0.000 0.000 0.000 0.000 0.000 0.000
GBP 0.000 0.000 0.339 0.000 0.000 0.535
JPY 0.000 −0.115 0.018 0.050 0.000 0.917
USD 0.000 0.000 −1.285 0.000 0.000 0.000

(c)

AUD CAD EUR GBP JPY USD

AUD 0.000 0.000 0.390 0.000 0.000 0.000
CAD 0.243 0.000 0.209 0.082 −0.063 0.535
EUR 0.000 0.000 0.000 0.000 0.000 0.000
GBP 0.063 0.000 0.370 0.000 0.000 0.522
JPY −0.024 0.000 0.058 0.064 0.000 0.866
USD −0.405 0.000 1.604 0.000 0.000 0.000

(d)

AUD CAD EUR GBP JPY USD

AUD 0.000 0.000 0.446 0.000 0.000 0.000
CAD 0.256 0.000 0.220 0.057 −0.020 0.476
EUR 0.000 0.000 0.000 0.000 0.000 0.000
GBP 0.081 0.000 0.369 0.000 0.000 0.485
JPY 0.002 0.000 0.064 0.050 0.000 0.864
USD −0.422 0.000 1.678 0.000 0.000 0.000
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Table A6. These are the independent component analysis estimates of the separating matrices B in
the before (a), surrounding (b), after (c) and long after (d) estimation data sets. A separating matrix
facilitates the computation of the independent components from the original series of returns.

(a)

AUD CAD EUR GBP JPY USD

AUD 1041.500 −975.250 −799.850 192.680 −1058.700 763.400
CAD 835.720 −1312.800 686.570 −517.450 418.740 1065.300
EUR 305.090 264.360 −1718.700 1449.600 403.100 −359.300
GBP −748.980 −660.030 931.700 1437.400 −462.980 −53.321
JPY 813.100 558.800 260.040 216.830 246.000 −1831.200
USD −338.380 1108.200 238.330 −428.490 −722.210 796.750

(b)

AUD CAD EUR GBP JPY USD

AUD −1056.600 866.120 419.950 −105.300 995.360 −540.200
CAD −261.170 1219.800 −1543.200 1237.900 −114.950 −1134.300
EUR −0.382 759.010 −36.187 −1803.300 −143.010 498.620
GBP −1134.700 663.180 1131.100 1.400 −933.740 258.420
JPY 384.990 464.420 620.990 −178.290 429.420 −1955.600
USD 431.480 927.850 −388.920 −380.770 8.164 146.330

(c)

AUD CAD EUR GBP JPY USD

AUD −841.820 1196.200 −857.140 1270.100 667.790 −1341.300
CAD 171.540 −575.170 −23.868 1574.200 −821.910 −186.330
EUR −1066.100 786.610 1535.100 −637.470 −131.120 −202.190
GBP −206.140 922.530 −551.850 −173.550 −1187.200 666.690
JPY −377.760 −364.880 −185.320 58.571 −505.290 1772.500
USD 708.380 741.860 −633.710 −357.350 171.970 −143.690

(d)

AUD CAD EUR GBP JPY USD

AUD 160.910 44.985 −2068.500 −138.080 −59.670 60.764
CAD 1550.900 −1872.500 −104.360 −232.590 −224.620 945.420
EUR 163.100 −60.696 −1500.400 2116.700 −31.328 −489.860
GBP −699.070 −1096.900 975.310 843.040 380.600 −703.930
JPY −222.460 −341.220 −157.180 −550.090 600.320 955.210
USD 350.780 246.930 −331.350 −40.946 1642.000 −1799.500

Table A7. These are the AR model parameter estimates.

Currency Lag(1) Parameter Constant

Before Estimation Data Set

AUD −0.100 0.006
CAD −0.061 −0.009
EUR −0.033 −0.009
GBP −0.014 −0.004
JPY −0.001 0.006
USD 0.013 −0.009

Surrounding Estimation Data Set

AUD −0.090 −0.008
CAD −0.066 0.010
EUR −0.049 0.018
GBP −0.030 −0.004
JPY −0.007 0.011
USD 0.036 −0.018

After Estimation Data Set

AUD −0.074 0.002
CAD −0.062 −0.011
EUR −0.047 −0.006
GBP −0.018 −0.012
JPY 0.007 0.000
USD 0.023 −0.002
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Table A7. Cont.

Long After Estimation Data Set

AUD −0.136 0.001
CAD −0.098 0.005
EUR −0.044 0.007
GBP −0.012 −0.009
JPY 0.003 0.001
USD 0.038 −0.003
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