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Abstract: The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich
ecological system types, and provides habitats or migration stations for wild birds, all of which
makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural
resources of YRD have brought huge challenges to the area, and frequent human activities and
natural disasters have damaged the ecological systems seriously, and certain ecological functions
have been threatened. Therefore, it is necessary to determine the status of the ecological environment
based on scientific methods, which can provide scientifically robust data for the managers or
stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the
spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from
underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions,
ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method
was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed
to obtain the result. The result showed that the spatial distribution of the EV grades was regular,
while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially
around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously
protective effect for the inner area, while the EV was higher in the area where no dikes were built.
This result also showed that the soil condition and groundwater status were highly related to the EV
spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had
exerted considerable pressure on the ecological environment.

Keywords: ecological vulnerability assessment; fuzzy analytical method; analytic hierarchy process;
fuzzy membership; yellow river delta

1. Introduction

Ecological vulnerability (EV), which was first brought into ecological theory as “Ecotone” by
Clements in the 1900s [1], was not taken seriously until “Silent Spring” was published in 1960s.
However, there is still no EV definition that is accepted by all scholars, who reference different theories
according to their research contents. By combining previous studies, we conclude that EV can be
described through such characteristics as weak ecological stability, weak anti-interference ability,
and low recovery capability when the ecosystem or subsystem is suffering external disturbances [2].
The assessment of EV can be designed to generate the degree an ecosystem is sensitive to losing its
functionality when exposed to environmental or anthropogenic pressures. A series of environmental
problems, such as global warming, glacial melt, flood, drought, and pollution, make the ecological
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environment extremely sensitive and cause the vulnerable areas to spread rapidly, seriously affecting
ecological sustainable development [3], which make EV assessment necessary.

EV studies’ development is in accompaniment with the improvements of different ecological
theories and scientific methods, which has become quantitative compared to early studies [4,5].
The research scales are also refined from countries or big river basins to one lake or one mine [6,7].
The research fields include forests, grasslands [8], coastal zones [9], agro-grazing ecotones, and others,
but for river deltas—which combine the characteristics of rivers, lands, and oceans—EV studies are
scarcer [10]. River deltas contain many ecosystem types, especially numerous wetlands, which offer
habitats to wild animals and increase biodiversity. Therefore, it is highly valuable to carry out EV
studies when deltas are threatened by human activities and natural hazards.

Various methods have been employed in EV assessments, including fuzzy analysis model [11],
principal component analysis (PCA) [12], gray relation method [13], and analytic hierarchy
process (AHP) [14]. However, any method has its drawbacks: the AHP is affected heavily by
artificial subjective factors, and the gray relation method is complicated in processing, while
useful information loss has yet to be solved in PCA. Another important aspect in EV assessment
is the selection of indicators [15], for which, scholars have set some models or frameworks,
including “pressure-state-response (PSR)” [16], “exposure-sensitivity-adaptability (ESA)” [17],
and “driving force-pressure-state-impact-response-management (DPSIRM)” [18]. Moreover, indicators
are increasingly comprehensive, as various socio-ecological problems emerge.

The Yellow River Delta (YRD), which is formed from the sediment carried by the Yellow River,
has abundant natural landscapes, and provides important biodiversity protection and ecological buffer
functions for inland. Nevertheless, abundant land and oil resources have brought human activities to
the region, which have exceeded the YRD’s capacity. Therefore, assessment of EV for the sustainable
development of YRD is required. Several scholars have completed relative studies in this area, such as
Wolters [19], who used questionnaires to assess the educational status, the income, and the occupation
types of rural residents and their responses to floods, droughts, and other natural disasters, and later
analyzed the vulnerability of the rural environment qualitatively. Other studies tended to use the AHP
to evaluate the EV of YRD, but the artificial subjective factor remained unsolved [20,21].

This study intended to combine the fuzzy analysis model and AHP to evaluate the EV of YRD
in a method called fuzzy analytic hierarchy process (FAHP). The triangular fuzzy number of fuzzy
set theory was brought into the pairwise comparison matrix of AHP, as it could better accommodate
the imprecision and ambiguity that occurred in criterial judgement process, and it also could reduce
the influence of the artificial subjective factors in comparison to the traditional AHP. On the contrary,
the clear indicator framework of AHP simplified the fuzzy analysis process. Additionally, the EV fuzzy
memberships of all indicators were generated as the basis of classification, which could avoid the strict
boundary in the numerical classification process.

The primary object of this study was to evaluate the EV of the YRD. Other objectives were (1) to
verify the feasibility of FAHP in the EV assessment of YRD, and (2) to analyze the spatial heterogeneity
according to the final spatial distribution of EV, and subsequently, provide scientific and effective
suggestions for the sustainable development of YRD.

2. Materials and Methods

2.1. Study Area

The Yellow River Delta (YRD) is located in the northeast of Shandong province, China with
coordinates between 37◦22′ N–38◦04′ N and 118◦14′ E–119◦05′ E, and a total area of approximately
5062.59 km2, surrounded by the Bo Sea in the north and east (Figure 1). The terrain is gentle, with the
highest elevation being approximately 12.50 m in the southwest, and the lowest, at approximately
0 m in the northeast. As a result of previous river migrations, various microtopography features are
interspersed in the area, including flat grounds, high lands, tidal flats, and depressions. The YRD has a
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temperate continental monsoon climate, and the rainy season is from June to September. However,
the annual mean evaporation is greater than the annual mean precipitation, which is approximately
1885.00 mm and 537.40 mm, respectively. The main soil type is gleyic solonchaks with high salinization
and a high sand proportion, resulting in low soil quality. The natural vegetation is largely consisting
of herbaceous plants, such as bulrush, tamarix, cogon, and suaeda. Two state reserves are located in
the north (Yi Qian Er nature reserve) and east (Yellow River estuary nature reserve) of the study area.
Human activity is frequent, which included farmland development, industry construction, and oil
resource exploration, and all of which has led to landscape fragmentation.
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2.2. Indicator System Establishment

Reasonable and scientifically evaluated indicators should be selected for the reliability of the
assessment process and its result, and they must address the main environmental problems of the area,
which can be summarized as follows:

• Ocean tides and storm surge intrusions have destroyed the coastal land environment directly.
• The concentrated rainfall results in frequent flooding, and the higher annual mean evaporation

limits the vegetation growth.
• The shallow groundwater and the high groundwater mineralization make the soil naturally saline.

In addition, the farming and farmland abandonment because of production drawdown have
resulted in more serious secondary soil salinity.

• Except for the two natural reserves, human activities have influenced the natural landscape
heavily, leading to natural wetlands loss, vegetation coverage decrease, and net primary
productivity decline.

• The use of fertilizers and pesticides and industrial pollutant discharge have added the EV of the
study area.
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Based on the above problems, this study selected 21 assessment indicators from groundwater
status, soil condition, land use, landform, vegetation coverage, meteorological conditions, ocean
influence, and social economy. All indicators were listed as Table 1:

Table 1. Two levels of indicators selected for ecological vulnerability (EV).

First-Level Indicator Second-Level Indicator First-Level Indicator Second-Level Indicator

Groundwater status
Groundwater level

Land use

Land reclamation rate
Groundwater mineralization Human interference index

Soil condition

Soil type Land cover
Soil texture Canals density
Soil quality Vegetation NDVI
Soil salinity

Socio-economic
Population density

Ocean influences
Distance to coastline Roads density
Coastal erosion index GDP density

Meteorological
Conditions

Annual average rainfall
Landform

Elevation
≥10 ◦C accumulated temperature Microtopography features

aridity index

2.3. Data Collection and Processing

Groundwater status: The annual average groundwater level and groundwater mineralization of
16 wells previously set in the study area were collected. The two indicators were proven to be related
to the soil salinity and land degradation [22], which was conducive to EV. The spatial distribution over
the study area of the two indicators was generated by ordinary kriging model.

Ocean influences: The direct performances of ocean tides and storm surge intrusions were
coastline change. Therefore, 13 coastlines from 1984 to 2014 were generated from Landsat TM images
based on the mean high water model [23]. The two adjacent coastlines were overlapped to obtain the
spatial changes over the coast, and the change frequency at every location was regarded as the coastal
erosion index. The distance to coastline of inland locations could represent the probability of being
eroded by seawater, as most coastlines were soft sediments. It was calculated according to the coastline
in 2014 using Euclidean distance model.

Meteorological conditions: 13 meteorological monitoring sites in and around the study area were
selected for the meteorological data collection, and the annual average daily temperature and annual
average daily rainfall of the 13 sites were retrieved from the China Meteorological Data Service Center
(http://data.cma.cn/), as they were important for the vegetation growth. Next, the annual average
≥10 ◦C accumulated temperature (AT) and the annual average rainfall were generated, and used to
calculate the aridity index (K) using the following equation [24]:

K = (0.16× AT)/AR.

AR represents the annual average rainfall at temperature ≥10 ◦C. The spatial distributions of the
meteorological indicators were generated using ordinary kriging model based on the 13 sites.

Socio-economic data: This type of data was accessed in numerical and tabular form from the
2015 yearbook of China, 2015 yearbook of Shandong Province and 2015 yearbook of Dongying
city. The population density and the Gross Domestic Product (GDP) density were calculated
based on the statistical data of population and gross domestic product and administrative
area. The spatial distributions of the population density and the GDP density over the whole
study area were generated using a model created by Liao Shunbao [25] that refers to the
“population-residence-influence” framework.

Vegetation: The normalized difference vegetation index (NDVI), derived from the Landsat 8
OLI image acquired on 30 September 2014, was used to generate the vegetation status based on the
followed equation:

NDVI = (NIR− R)/(NIR + R)

http://data.cma.cn/
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NIR and R represented the near-infrared band and red band of the image, respectively.
The soil salinity, soil quality, and land-use status in 2014 were based on the study results of Wu

Chunsheng [26–28]. The elevation, microtopography features (including depressions, flat grounds,
tidal flats, and high lands), soil types, and soil textures were provided by the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn/).

Other data sets, including the land reclamation rate, the human interference index, the road and
canal densities, were all generated from the land-use data set, and the unit of road and canal densities
was km/km2.

All data sets were projected to WGS84-based Transverse Mercator orthographic projection
coordinate system, and were resampled to a 30 m × 30 m spatial resolution, and the final maps
had the same resolution as the data sets.

2.4. Methodology

2.4.1. Fuzzy Logic Model

Fuzzy membership values are regarded as the probability of one indicator belonging to some
grades instead of some fixed numbers [29]. The common fuzzy membership function is bell-shaped:

MFxi = [1/(1 + ((xi − b)/d)2)]

where 0 < MFxi ≤ 1; MFxi is the fuzzy membership value of indicator i; xi is the value of i; and d is the
transition width of i, which is set as the indicator value difference when the membership values are 0.5
and 1. Index b is the indicator value when the membership value is 1 [30,31].

Setting suitable ranges of indicators according to the study object is necessary in the model.
The membership value can be gained through functions when the indicator value is among the
range; otherwise, the membership value is 0 or 1. The suitable ranges of indicators are determined
through consulting previous study results, documentations or standard specifications, and this
process is important and difficult. In addition, the quantitative and qualitative indicators should
be discriminatory because of the lack of numbers in qualitative indicators.

Through consulting the literature, previous study results [32–34] that relate to Yellow River Delta
and professional books [35], the suitable ranges, and index b and d of quantitative indicators could be
set as Table 2, meanwhile, the membership values of qualitative indicators would be listed directly
(Tables 3 and 4).

Table 2. Parameter values in the fuzzy membership function.

Indicators Suitable Range Trends b d

Ground water level/m 1–3 Negative 1 1
Groundwater mineralization/g/l 2–30 Positive 30 20

Soil quality 0.3–0.7 Negative 0.3 0.2
Soil salinity/% 0.1–0.6 Positive 0.6 0.2

Distance to coastline/km 2–30 Negative 2 23
Coastal erosion index 0–0.83 Positive 0.83 0.33
Land reclamation rate 0.03–0.5 Positive 0.5 0.2

Human interference index 0.5–1 Positive 1 0.2
Canals density/km/km2 1–5 Negative 1 2

NDVI 0.1–0.6 Negative 0.1 0.35
Population density/population/km2 100–1500 Positive 1500 1000

Roads density/km/km2 0.2–1.5 Positive 1.5 0.9
GDP density/10 k yuan/km2 50–2500 Positive 2500 2000
Annual average rainfall/mm 400–1000 Negative 400 300

≥10 ◦C accumulated temperature/◦C 4300–4600 Negative 4300 200
Aridity index 1.0–1.7 Positive 1.7 0.35

Elevation 4.0–8.0 Negative 8.0 2

http://www.resdc.cn/
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Table 3. Membership values of different land-use types.

Land-Use Type Membership Land-Use Type Membership

River 0 Canal 0.7
Forest 0.1 Inland tidal flat 0.7

Farmland 0.2 Dike 0.7
Garden plot 0.2 Mine zone 0.8

Pond 0.3 Port 0.8
Reservoir 0.3 Saline land 0.9
Grassland 0.4 Saltpan 0.9

Traffic land 0.4 Aquaculture 0.9
Residence 0.4 Coastal tidal flat 1
Marshland 0.6

Table 4. Membership values of different soil characteristic and microtopography.

Soil Texture Membership Soil Type Membership Microtopography Membership

Water 0 Water 0 Water 0
Medium loam 0.2 Moisture soil 0.3 High lands 0.2

Light loam 0.5 Damp soil 0.6 Flat 0.4
Weight loam 0.5 Coastal saline soil 0.9 Flood land 0.6

Clay 0.6 Depressions 0.8
Sandy loam 0.7 Tidal flats 1

2.4.2. Fuzzy Analytic Hierarchy Process

The FAHP has been used in previous EV studies. For example, Liu analyzed the spatial-temporal
change of the EV in the Sanjiangyuan Region from 1990 to 2010 based on the FAHP [36]. The uses of
FAHP in different studies were distinguishing, especially in pairwise comparison matrix and weight
calculation processes [37]. This study attempted to use the fuzzy trigonometric function to assign the
pairwise comparison values to decrease the error during matrix establishment.

First, the AHP pairwise comparison matrix was established, and the values 1 to 9 were assigned
as Table 5 [38]. The values were modified in accordance with the advice of experts from hydrology,
climatology, soil science, and ecology, and the matrix passed the consistency test [39,40]. Then, the
values were replaced with the abscissa values of the fuzzy trigonometric function suggested by
Kahraman [41].

Table 5. Importance values setting of pairwise comparison for fuzzy analytic hierarchy process (FAHP).

Linguistic Scales of
Importance AHP Number Scale Triangular Fuzzy

Scale
Reciprocal Triangular

Fuzzy Numbers

Just equal 1 (1,1,1) (1,1,1)
Equally important 1 (1/2,1,3/2) (2/3,1,2)

Weakly more important 3 (1,3/2,2) (1/2,2/3,1)
Strongly more important 5 (3/2,2,5/2) (2/5,1/2,2/3)

Very strongly more important 7 (2,5/2,3) (1/3,2/5,1/2)
Absolutely more important 9 (5/2,3,7/2) (2/7,1/3,2/5)

Second, the weights were generated through the following processes. The importance value of
indicator i compared to indicator j could be assumed as (lij, mij, uij) [42], where l, m, u, were the abscissa
values of the fuzzy trigonometric function. Conversely, the importance value of indicator j compared
to indicator i could be set as (1/uij, 1/mij, 1/lij) (Table 5). The fuzzy cumulative extension value of i
(Mgi ), which represented the importance of indicator i compared to all indicators, was calculated using
the equation
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Mgi = (li1 + li2 + · · ·+ lin, mi1 + mi2 + · · ·+ min, ui1 + ui2 + · · ·+ uin) =

(
n

∑
α=1

liα,
n

∑
α=1

miα,
n

∑
α=1

uiα

)

Then, the fuzzy cumulative extension value of pairwise comparison matrix could be gained:

n

∑
i=1

n

∑
α=1

Mg =

(
n

∑
i=1

n

∑
α=1

liα,
n

∑
i=1

n

∑
α=1

miα,
n

∑
i=1

n

∑
α=1

uiα

)

Also, the fuzzy synthetic extension value of i (Si), which represented the synthetic importance
proportion of indicator i in the matrix, could be calculated from the equation

Si = Mgi ×
[

n

∑
i=1

n

∑
α=1

Mg

]−1

= (li, mi, ui)

where n was the indicator number. For Si and Sj, their comparison value could be expressed as

V
(
Si ≥ Sj

)
= hgt

(
Si ∩ Sj

)
= µSi (a) =


1, mi ≥ mj
0, lj ≥ ui
lj−ui

(mi−ui)−(mj−lj)
, others

The di
′ and w′ were the transitional value and matrix:

di
′ = min(V(Si ≥ Sk)), i 6= k, k = 1, 2, · · · nw′ =

(
d1
′, d2

′, · · · , dn
′)T

The weight matrix w was generated by standardizing w′:

w = (d1, d2, · · · , dn)
T

In these calculation processes, comparison matrix standardization was necessary, while the
phenomenon V(Si ≥ Sk) = 0 might appear frequently, which would make the result unreasonable.

The pairwise comparison matrix of two level indicators was created following the processes of
FAHP (Table 5). Moreover, the final weights calculated following the equations above were listed
in Table 6, in which the relative weight replaces the weight of second-level indicator in the relative
first-level indicator, while the synthesis weight replaces the weight of second-level indicator in all
second-level indicators.

The indicator weight expressed its contribution to the EV. The soil condition was extremely
important to the ecological security and stability according to its high weight 0.31. Inversely, the gentle
landform over the study area had a relatively small effect on the spatial distribution of the EV relatively,
as shown in Table 6.
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Table 6. Weights of all indicators for EV.

First-Level Indicator Weight Second-Level Indicator Relative Weight Synthesis Weight

Groundwater status 0.19
Groundwater level 0.50 0.095

Groundwater mineralization 0.50 0.095

Soil condition 0.31

Soil type 0.09 0.0279
Soil texture 0.07 0.0217
Soil quality 0.40 0.124
Soil salinity 0.44 0.1364

Ocean influences 0.05
Distance to coastline 0.22 0.011
Coastal erosion index 0.78 0.039

Meteorological
conditions

0.04
Annual average rainfall 0.57 0.0228
≥10 ◦C accumulated

temperature 0.30 0.012

Aridity index 0.13 0.0052

Land-use status 0.23

Land reclamation rate 0.06 0.0138
Human interference index 0.50 0.115

Land cover 0.17 0.0391
Canals density 0.27 0.0621

Vegetation 0.12 NDVI 1.00 0.12

Socio-economic 0.04
Population density 0.50 0.02

Roads density 0.19 0.0076
GDP density 0.31 0.0124

Landform 0.02
Elevation 0.68 0.0136

Microtopography features 0.32 0.0064

2.4.3. EV Assessment

The weighted sum model was used in the final evaluation:

EVI =
n

∑
i=1

Ai × wi

where EVI is the vulnerability value, wi is the weight of indicator i, and Ai is the membership value of
indicator i. In addition, the natural break point method was utilized to rank the comprehensive grades
of the EV, as it is based on the principle of minimizing the sum of the variances at each level to select
the grading breakpoints, and the breakpoint itself is a good boundary for classification.

3. Results

The synthetically fuzzy membership values of EV and its grades in YRD generated through the
weighted sum model were shown in Figure 2, and the statistic of each grade was listed in Table 7.

Table 7. Numerical statistics of the different EV grades.

EV Grade Membership Range Area/km2 Proportion/%

Non 0.16–0.32 464.17 9.19
Slight 0.32–0.41 820.40 16.23
Mild 0.41–0.50 901.42 17.84

Moderate 0.50–0.59 801.42 15.86
Severe 0.59–0.67 1113.25 22.03

Extreme 0.67–0.78 952.82 18.85
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Figure 2 and Table 7 showed that the closer to the coastline, the higher the EV was, especially
around the Yellow River estuary and northwestern coast of the study area. The EV was lowest
around the crossing of Yellow and Diao rivers. The comprehensive spatial distribution of the EV was
reasonable, and the statistic was credible compared with other similar studies.

Severe grade was the most widely type with area 1113.25 km2, which was 22.03% of the total study
area, and mainly distributed in the north coast. Next was the extreme grade with area 952.85 km2,
and it was nearer to coastline than the others were, except for the coastal area of Yi Qianer nature
reserve. The moderate, mild, slight, and non-vulnerable grades distributed from the periphery to
inland successively, and the non-vulnerable grade had the smallest area 464.17 km2.

The overlay of dominant land-use types and EV was generated as Table 6 showed that the land-use
status had a high contributory degree to EV with a high weight, which was slightly lower than the soil
condition. The statistics were listed in Table 8:

Table 8. Area of main land-use types distributed in each EV grade (unit: km2).

Types Grades Non Slight Mild Moderate Severe Extreme Total

Grassland 10.28 23.07 45.03 48.47 37.28 3.46 167.59
Inland tidal flat 3.92 6.61 5.32 2.38 5.72 11.08 35.03

Farmland 327.23 405.06 226.98 104.66 46.42 4.06 1114.40
Coastal tidal flat - - 0.00 0.74 117.91 359.50 478.15

Saline land 26.97 116.86 189.54 188.38 290.10 102.41 914.26
Garden plot 8.26 10.00 2.71 0.34 0.01 - 21.33

Forest 21.05 34.25 32.90 30.07 48.29 24.24 190.80
Total 397.71 595.85 502.49 375.04 545.73 504.75 2921.57
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Table 8 showed that the farmland had the largest area, which mainly distributed in slight grade,
while a small portion of the farmland also distributed in extreme and severe grades. Compared to
the farmland, the saline land distributed equally in each grade except for the non-vulnerable, and the
severe grade had the largest area with 290.10 km2. Almost the entire coastal beach belonged to the
extreme grade, and the grassland and forest distributed equally in all the grades.

From the indicator weights shown in Table 6, we could conclude that the soil condition affected
the evaluation results deeply, among which, the soil salinity and the soil quality were most influential,
because their weights were higher. In contrast to the research results of Wu Chunsheng [28] regarding
the soil quality assessment of the YRD (Figure 3), the spatial distributions of soil salinity and soil
quality were similar with the EV, and the Pearson’s correlation coefficient between the soil quality and
EV was −0.55. The YRD usually had a high EV value where the soil quality was poor, such as at the
mouth of the Yellow River and the northwest and southeast of the study area. Conversely, the soil
quality was rich where the Yellow and Diao rivers meet, but this area was not vulnerable.
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Other indicators that were germane to EV included the land-use status and groundwater status.
The human interference index was weighted largely in the land-use status, resulting from heavy
farmland development and artificial wetland construction.

Figure 4 showed that the groundwater level had similar spatial distribution characteristics to EV,
and the Pearson’s correlation coefficient was −0.74. Furthermore, the high degree of mineralization
in groundwater was in favor of topsoil salinization. In particular, when the groundwater level
was shallower, the salinization was heavier. The low vegetation cover resulted in low net primary
productivity, causing the ecological environment difficult to recover when it was destroyed by
external disturbances.

Additionally, the EV along the coastline was obviously different as shown in Figure 2, and based
on the field survey, we could affirm that the dikes were very helpful for ecological environment
protection. From the north of the Gudong oilfield to the west of the Diao River estuary, different types
of dikes were constructed, which prevented intrusions of ocean tides and storm surges effectively,
ensured vegetation growth and enhanced the ecological environment’s stability.
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4. Discussion

According to the results above, we found that the spatial distribution of EV was coincided with
previous assumption and actual natural conditions, which indicated that the FAHP and fuzzy logic
model were applicable for EV assessment in YRD. Compared to other similar study results [20,43–45],
the methods decreased anthropogenic influences as the fuzzy trigonometric function processes were
more objective, while the weights in other studies were all manually specified. The use of the
membership function was not only helpful for the quantitative evaluation, but also made the grading
more flexible, which finally resulted in a more detailed analysis and successive spatial distribution.

The soil condition, groundwater, and land-use status were main influencing factors of EV,
according to the study results. Therefore, how to improve these factors was the main goal to reduce the
vulnerability of ecological environment. However, the spatial distribution map of the main land use
(Figure 4.) and the statistics provided by the overlay between the main land-use types and EV (Table 8)
showed that a fraction of farmland was developed in high EV areas, which was not good for the
maintenance and protection of ecological environment. This type of farmland was usually abandoned
as its soil quality was low, which would result in secondary salinization. Additionally, the construction
of aquacultures and saltpans destroyed the original evolutionary direction of the natural environment,
increasing the degree of the region’s vulnerability. Based on this situation, it is necessary to reduce
or eliminate artificial disturbances on land with high ecological vulnerability, or to de-salt existing
cultivated land, such as designing some salt drains and gutters. Constructing dikes was beneficial
to improve groundwater status in the study area, which in turn could weaken the vulnerability of
the ecological environment in most areas, but it was not suitable for the Yellow River estuary because
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of the habitat protection, which needed the interaction between ocean and inland, and decreasing
the anthropogenic influence should be the best treatment. Therefore, considering different treatment
methods according to different coastline types was beneficial to ecological environment protection.

Previous studies using the FAHP were different in selection of pairwise comparison method and
weight calculation model, but these methods have not been compared, and the fitness of different
models should be explored in follow-up studies. Additionally, this study was only based on the data
in the year 2014, making the analysis monotonous and limiting the argument. For a deeper analysis of
the ecological environment characteristics, spatial dynamic changes in EV should be determined based
on multiphase data; however, the lack of preliminary data before 2014 made it impossible to do so.
Therefore, future research will depend on the continuity of later data, and the applicability of selected
indicators must be given sufficient attention.

5. Conclusions

This study completed the EV assessment of YRD based on the FAHP and fuzzy logic models, and
results demonstrated that the combination of the two models was useful for the assessment. The spatial
distribution of all vulnerability grades was regular. Vulnerability decreased from the coastline to
inland, and the ecological environment was especially vulnerable around the estuary of Yellow River
and the northwest and southeast of YRD. However, the ecological environment condition was excellent
where the Yellow and Diao rivers meet. Generally, the spatial distribution pattern of EV was reasonable.
As a special indicator in YRD, the soil salinity was heavily weighted; obviously, it affected the regional
ecosystem stability severely. The soil quality, as represented by soil fertilizer, was affected the ecological
environment more heavily, and the Pearson’s correlation coefficient was −0.55 between the soil quality
and EV. The groundwater level affected soil salinity directly, and further affected the ecological
environment indirectly with a Pearson’s correlation coefficient −0.74. Additionally, human activities,
such as farming, the construction of aquacultures and saltpans, and oil exploration, brought adverse
effects to the ecological environment in YRD; however, the construction of dikes along the coastline
was beneficial for the ecological environment stability. For further analysis of the spatial distribution of
EV and advice regarding its ecological environment protection, the dynamic change of EV was needed
in further studies.
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