Grassland dynamics and the driving factors based on net primary productivity in Qinghai province, China

Xiaoxu Wei1,2, Changzhen Yan1,∗ and Wei Wei3

1 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; weixiaoxu@lzb.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Geographic and Environmental Science, Northwest Normal University, Lanzhou 730070, China; weiweigis2006@126.com

∗ Correspondence: yancz@lzb.ac.cn

Eight equations

1 Equations and parameters on CASA model

\[APAR(x,t) = PAR(x,t) \times FPAR(x,t) \] \hfill (1)

\[\varepsilon(x,t) = T_x(x,t) \times W_x(x,t) \times \varepsilon_{max} \] \hfill (2)

where \(PAR(x,t) \) stands for the total solar radiation of pixel \(x \) in \(t \) time (MJ m\(^{-2}\)); \(FPAR \) represents the fraction of absorbed \(PAR \) of pixel \(x \) in \(t \) time; \(T_x \) and \(W_x \) stand for the effects from the temperature stress and the moisture stress, respectively; \(\varepsilon_{max} \) is the maximum LUE, which is set as 0.115~0.326 across different grassland types (gC/MJ) [1].

\(PAR \) was calculated using the following formula[2]:

\[PAR = \frac{1}{50} \times (D_0 + D_1 L + D_2 E + D_3 V) (a + b S) \] \hfill (3)

where \(D_0, D_1, D_2, D_3, a \) and \(b \) stand for constants; \(L \) represents the latitude; \(E \) represents elevation (m); \(V \) is the monthly vapor pressure (pa); and \(S \) stands for the proportion of sunshine duration (\%).

\(FPAR \) can be calculated as follows [3]:

\[FPAR = a \times NDVI + b \] \hfill (4)

where \(a = 1.1638 \) and \(b = -0.1426 \) are empirical parameters.

\(T_x \) is calculated as follows:

\[T_x(x,t) = T_1(x,t) \times T_2(x,t) \] \hfill (5)

\[T_1(x,t) = 0.8 + 0.2 \times T_{opt}(x) - 0.0005 \times \left(T_{opt}(x) \right)^2 \] \hfill (6)

\[T_2(x,t) = \frac{1.184}{1 + \exp \left(0.2 \times T_{opt}(x) - 10 - T(x,t) \right)} \times \frac{1}{1 + \exp \left(0.3 \times \left[- T_{opt}(x) - 10 - T(x,t) \right] \right)} \] \hfill (7)

\(T_{opt} \) is the monthly air temperature as the AGB comes up to the peak; \(T_1(x,t) \) and \(T_2(x,t) \) are the temperature stress coefficients, which reflect the reduction in light-use efficiency caused by a temperature factor (Potter et al., 1993).

\(W_x(x,t) \) stands for monthly water deficit [4], which is determined based on the monthly values of actual evapotranspiration \(E(x,t) \) and potential evapotranspiration \(E_p(x,t) \), indicating that the reduction in light-use efficiency caused by a moisture factor.
\[W_p(x,t) = 0.5 + 0.5 \frac{E(x,t)}{E_p(x,t)} \]

(8)

where \(E(x,t) \) (mm) and \(E_p(x,t) \) (mm) are calculated according to the model of regional actual evapotranspiration and the approach of complementary relationship between actual evapotranspiration and potential evapotranspiration [5,6].

References

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).