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Abstract: Microbial fuel cells (MFCs) represent a novel technology for wastewater 

treatment with electricity production. Electricity generation with simultaneous nitrate 

reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) 

as the carbon source and nitrate (1 mM) as the final electron acceptor employed by 

Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased 

nitrate concentration and an increase in biomass were observed with a maximum current of 

0.4 mA obtained at an external resistance (Rext) of 1 KΩ without a platinum catalyst of air 

cathode. A decreased current with complete nitrate reduction, with further recovery of the 

current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate 

as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm2 

was achieved at an Rext of 220 Ω. Cyclic voltammograms (CV) showed direct electron 

transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) 

of 11% was mainly attributed to glucose fermentation. These results demonstrated that 

electricity generation is possible from wastewater containing nitrate, and this represents an 
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alternative technology for the cost-effective and environmentally benign treatment 

of wastewater. 

Keywords: microbial fuel cells; Bacillus subtilis; cyclic voltammograms; nitrate reduction; 

air cathode; glucose; fermentation; microbial growth; aerobic 

 

1. Introduction  

Energy generation from the treatment of wastewater is of great interest due to the worsening global 

energy crisis. Industrial and agricultural operations produce large amounts of wastewater, the treatment 

of which is costly. Wastewater from agricultural operations contains high levels of nutrients in the 

form of nitrates and phosphates, which can pollute groundwater and surface water through 

eutrophication [1]. Before being released into the environment, it is obligatory to treat wastewater to 

meet discharge regulations. Biological denitrification is a wastewater treatment process facilitated by 

microorganisms and is considered the most reliable and cost-effective nutrient removal process [2,3]. 

Electricity generation using microbial fuel cells (MFCs) with denitrification has drawn considerable 

attention in recent years as a new approach to wastewater treatment. In MFCs, bacteria at the anode 

consume organic matter through metabolism and generate electrons and hydrogen ions [4]. Electron 

migration from anode to cathode occurs through the external circuit, and protons migrate in the 

solution from anode to cathode to form water. Biological denitrification is the reduction reaction 

towards the cathode, which is represented by [5]: 

NO3
− + 6H+ + 5e− → ½N2 + 3H2O (1)

In this process, microorganisms at the cathode reduce nitrate by accepting the electrons released by 

substrate oxidation at the anode. Hence, this method of wastewater treatment and electricity generation 

in MFCs has received considerable attention in recent years due to the simultaneous removal of 

contaminants such as nitrogenous waste and energy generation. The cathode plays an important role in 

the consumption of electrons by reducing electron acceptors such as nitrate [6]. Recently, there has been 

an increased interest in replacing abiotic cathodes with biocathodes in which microorganisms enhance 

the reduction reaction. A graphite cathode, a biocathode and a platinum-coated cathode have been used 

for denitrification [7]. A study conducted by Clauwaert et al. with respect to bioelectrochemical 

system applied microbial biocathodes using bacteria as the biocatalyst and nutrient-rich synthetic 

wastewater with acetate (electron donor) and nitrate (electron acceptor) [3]. Recently, Sukkasem et al. 

also reported the effect of nitrate concentration on electricity generation in a single-chamber MFC with 

a platinum-coated air cathode [5]. In that study, nitrate and oxygen both were used as the electron 

acceptors, which might have resulted in the bacterial community sustaining a non-electricity 

generating process. In addition, the use of an air cathode in single-chamber MFCs could also lower the 

coulombic efficiency (CE), as oxygen diffusion through the cathode to the anode disturbs the 

anaerobic conditions of the MFC and also provides an alternative acceptor to the bacteria. In order for 

bacteria to produce a current, the cells must use the anode as an electron acceptor, and involve no other 
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electron acceptors such as oxygen. Therefore, microorganisms in an MFC are typically grown under 

completely anoxic conditions. 

Recently, a new concept of floating-type microbial fuel cell (FT-MFC) has been introduced for 

extracting energy from water bodies in which oxygen is almost depleted due to high levels of organics 

contamination. In FT-MFC, the anode is located in the organics-contaminated water phase and a part 

of the cathode is exposed to the atmosphere and it was demonstrated that it is possible to directly 

convert organics in the water phase to electricity using the FT-MFC [8]. The second system, applied to water 

bodies contaminated by organic waste, is a multiphase electrode MFC (multiphase MFC)—A 

combination of an FT-MFC and a sediment MFC. Using these MFC systems, when temporal or 

consistent organic pollution has occurred in water bodies, it is possible to harvest a current by utilizing 

the organic materials that coexist in water and sediment phases [9]. Another study has shown that the 

crossover of organic compounds (substrates and metabolites) from the anode compartment of an MFC 

to the cathode may produce electric current. Substrate crossover in membraneless MFC considerably 

decrease the electrode performance. But due to the formation of mixed potentials and the flow of 

internal currents, electricity can be generated [10]. 

Microorganisms with different physiologies, such as Escherichia coli, Geobacter sulferreducens, 

Enterobacter cloacae and Bacillus subtilis, have been shown to generate electricity in MFCs [11–13]. 

It has been reported that B. subtilis can grow anaerobically using either nitrate or nitrite as a terminal 

electron acceptor, but the use of B. subtilis as a pure culture with simultaneous nitrate reduction in 

MFCs has not yet been exploited [14]. 

Taking the above consideration into account, in this study, a single-chamber MFC was constructed 

without oxygen and platinum cathode; carbon cloth was used as the anode and cathode, and the effect 

of glucose and nitrate on electricity generation by B. subtilis in the single-chamber MFC was analyzed, 

as shown in Scheme 1. We demonstrated a bioelectrochemical system that utilizes glucose as the 

carbon source and nitrate as an electron acceptor for B. subtilis that could account for electricity 

generation and simultaneous nitrate reduction in a single-chambered MFC without air cathode. The CE 

and polarization curve were obtained and cyclic voltammetry was conducted to evaluate the 

performance of the MFC. 

Scheme 1. Schematic of the nitrate reduction process with Bacillus subtilis in a single 

chamber microbial fuel cell. 
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2.2. Effect of Nitrate Addition During Different Batch Cycles and Its Relationship with Current 

Generation and Nitrate Reduction 

In order to investigate the effect of nitrate in terms of enhancing the current generation from  

B. subtilis, experiments were conducted in two sets with two different growth conditions in different 

reactors. The first set of experiments (MFC1) included the addition of glucose after inoculation of  

B. subtilis (no nitrate); in the second set of experiments (MFC2), glucose and nitrate were both added 

after inoculation of B. subtilis. Figure 2A shows the profiles of the cycles of current generation by the 

MFC under the two different conditions. Figure 2B shows the cathode half-cell potential recorded for 

MFC2. The cathode half-cell potential of the reactor was measured by placing an Ag/AgCl reference 

electrode on the cathode side of the MFC. For the first set of experiments (no nitrate), B. subtilis was 

unable to metabolize the substrate glucose due to the absence of terminal electron acceptors. However, 

the generation of an ultra-low current (0.002 mA) might have been due to glucose fermentation, which 

generates sufficient ATP for growth using substrate-level phosphorylation [16–18]. In the second set 

of experiments, six cycles of current generation were carried out using glucose and nitrate as the 

electron donor and acceptor, respectively. Corresponding to the addition of glucose and nitrate in 

individual cycles, a maximum current of 0.4 mA was observed, and all cycles lasted for around the 

same duration. After reaching the maximum value, the current declined thereafter, presumably due to 

the physiological and metabolic variations of the microbial populations in the MFC (second set of 

experiments). The current began to increase and again reached a peak after the MFC was re-fed with  

1 mM glucose and 1 mM nitrate. Although the glucose concentration was not measured, whenever the 

nitrate concentration decreased, a sharp decrease in the current was also observed, which was followed 

by the addition of both nitrate and glucose. When the nitrate concentration started to decrease, the 

current was found to have reached its peak (around 0.5 mM nitrate was consumed—Data not shown), 

and subsequently declined until the end of the batch (around 0.05–0.1 mM nitrate remained—Data not 

shown). After the peak in the current, the slow declination might be attributed to the reduction of 

further intermediates that might be formed during nitrate reduction, which was slowly and steadily 

reduced by the bacteria, after which complete current diminution resulted. There was no current 

generation without bacteria, as verified by the control experiment. In the set of experiments in which 

only glucose was fed, the current output was quite low, owing to the lack of nitrate as an electron sink. 

This difference in current generation clearly indicates the significance of nitrate as a terminal electron 

acceptor for current generation in this study. We also conducted an experiment utilizing an air cathode 

for denitrification (data not shown). We observed that, in the presence of oxygen, B. subtilis was 

inefficient in reducing nitrate. Since oxygen has a higher potential for reduction relative to nitrate, if 

dissolved oxygen (through air cathode) is present, it will be reduced by the bacteria via aerobic 

respiration, resulting in the consumption of substrate and aerobic biomass growth without electricity 

generation. We presume that oxygen might have served as a dominant electron acceptor compared to 

nitrate in this system, which influenced the nitrate reduction in the air cathode MFC. A study 

conducted by Nakano et al. claims that there are two modes of anaerobic growth of B. subtilis: (a) by 

anaerobic respiration using nitrate as an electron acceptor and (b) by glucose fermentation [19]. 

Although B. subtilis has been reported to be a glucose fermentation strain, assumptions based on our 

experiments indicate that B. subtilis adopts both modes—Anaerobic growth with nitrate respiration and 
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a fermentative pathway for glucose breakdown. In addition, at the end of each batch cycle, plenty of 

gas bubbles were observed, which indicated the possibility of conversion of nitrate into dinitrogen gas (N2). 

In a similar study by Sukkasem et al., the effect of nitrate on the performance of a single chamber 

air cathode MFC was conducted. It was found that no electricity was produced when the cell was 

moved to an anaerobic glove box (where no oxygen was present). Whereas formation of gas bubbles, 

presumably due to the removal of nitrate in the form of dinitrogen gas, was also observed as an end 

product of the denitrification process [5]. These results differ from those presented by Sukkasem et al., 

who found no evidence for electricity production in an anaerobic glove box. We believe that in our 

study, nitrate as an electron acceptor may not be able to compete with oxygen, and due to the aerobic 

respiratory pathway, oxygen is the preferred electron acceptor for B. subtilis. The electricity generation 

resulting from the use of nitrate in a single-chamber MFC is a proof-of-concept demonstration of a 

technology that links MFCs with the denitrification process in wastewater treatment. 

Figure 2. (A) Current generation from the microbial fuel cell with a 1-KΩ Rext Blank 

(……), glucose-fed ( ), and glucose with nitrate-fed ( ); (B) Cathode half-cell 

potential recorded at the end of the experiment. 

 

 

2.3. Polarization Curve 
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resistance (Rext) is infinite, i.e., under open circuit conditions, no current flows and the open circuit 

voltage (OCV) is obtained. Contrary to this, when the Rext is zero, the short circuit current is obtained. 

The power performance curve can also be calculated from the polarization curve, which represents the 

relationship between power generation and a given current. Figure 3A,B shows the polarization curve 

as a function of current, potential and power density measured at a variable Rext (10–0.056 KΩ). At an 

infinite Rext, an OCV of 433 mV was obtained. Dominance of activation loss was observed from an 

initial steep decrease in the voltage from an OCV of 433 mV to 366 mV [20,21]. Voltage stabilization 

was comparatively rapid at the higher resistances studied. The subsequent slope of the voltage 

decreased from 0.17 mA to 0.5 mA and was almost linear, which might indicate the dominance of 

ohmic loss. The relatively lower drop in voltage and maximum current obtained at lower resistances 

reveals a lower potential drop and lower mass transfer losses at the electrode. The effective electron 

discharge observed at lower resistances is a probable reason for the further potential drop and slow 

stabilization of the voltage at lower resistances. Current generation with different Rext was measured 

once the maximum voltage was attained. The curve depicts a maximum power density of  

0.0019 mW/cm2 (0.44 mA) at the lower resistance (0.22 KΩ) studied. Current generation showed a 

decreasing trend with an increase in Rext, which is consistent with the literature, and indicated typical 

fuel cell behavior. At a higher Rext (10 KΩ), a relatively lower power density of 0.0006 mW/cm2 

(0.036 mA) was observed. The power produced by the system is limited due to the high internal 

resistance (Rint) of 0.86 KΩ. The high Rint obtained in our study is still a subject of investigation. 

However, oxidation of substrates by microbes was observed to be greater at lower resistances than at 

higher resistances, where microbes donated electrons to the anode as the electrons were discharged in a 

closed circuit. Figure 3B shows a sudden drop in the potential might at lower resistance might be due 

to substrate exhaustion because of which electrons are unable to reach at the cathode. Higher 

polarization/electron transport resistance and domination of other electrochemical losses (e.g. activation, 

ohmic and polarization) are other possible factors that could result in the sudden voltage drop. 

Figure 3. (A) Polarization curve with open circuit potential (OCP, ▲) and power density 

(●) measurements at variable external resistance (Rext) between 0.056 KΩ and 10 KΩ. The 

left axis shows the open circuit voltage OCV as a function of current and the right axis 

represents the resulting power density; (B) Polarization data for cathode half-cell. 
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Figure 3. Cont. 

 

2.4. Electrochemical Activity as a Result of Change in Electron Acceptor 

Cyclic voltammetry (CV) measures the redox reaction and catalytic processes occurring at the 

electrodes. In this study, to determine the electrochemical activity, voltammograms were recorded and 

analyzed from the two sets of experiments described in the section above (in the first set of experiments, 

inoculate B. subtilis and glucose were added (no nitrate); in the second set of experiments, inoculate  

B. subtilis and glucose and nitrate were added). Initially, voltammograms were obtained for the first set 

of experiments. Following bacterial inoculation and the addition of glucose, at time zero, no redox 

peak was observed, as can be seen in Figure 4 (1 − glucose + B. subtilis). The addition of nitrate 

resulted in electrochemical activity of B. subtilis, wherein two reduction peaks at about −0.1 V and 

−0.4 V (vs. Ag/AgCl) and two oxidation peaks at about 0.05 V and 0.25 V (vs. Ag/AgCl) were 

observed at time zero (Figure 4: 2 − glucose + nitrate + B. subtilis). This two-step change in the peak 

potential indicates the occurrence of a two-electron transfer mechanism, which reveals the presence of 

two redox species in the solution or at the surface of the anode that are reversibly oxidized or reduced 

during the CV tests, resulting in current generation [22,23]. This result also suggests that current 

generation by the MFC might depend on the electrochemical activity of the bacteria: the redox peaks 

with catalytic current were significantly higher in all potential regions when the medium contained 

glucose, nitrate (MFC2) and B. subtilis in comparison with the voltammograms obtained using only 

glucose and B. subtilis (MFC1). These electrochemically-active compounds could be responsible for 

the increase in current production following nitrate addition. 
  

0

0.3

0.6

0.9

1.2

1.5

1.8

0

100

200

300

400

0 0.05 0.1 0.15 0.2

P
o

w
er

 d
en

si
ty

 x
 1

0-3
(m

W
/c

m
2 )

C
at

h
o

d
e 

p
o

te
n

ti
al

 (
m

V
)

Current (mA)

B



Int. J. Mol. Sci. 2012, 13 

 

 

3941

Figure 4. Cyclic voltammograms (CV) for the first set (1 − Bacillus subtilis + 1 mM 

glucose) and second set (2 − Bacillus subtilis +1 mM glucose + 1 mM nitrate) of 

experiments after inoculation of Bacillus subtilis. 

 

2.5. Electrochemical Activity During Different Fed Batch Cycles and Electron Transfer Mechanisms  

In order to investigate the correlation between electrochemical activity at different batch cycles and 

associated electron transfer mechanisms, cyclic voltammograms were recorded and analyzed following 

the addition of glucose and nitrate in second, third and fourth batch cycles with the biofilm anode 

(Figure 5) and with a new anode (Figure 6). The shapes of the voltammograms showed no variance in 

the peak potential in different cycles, but different sizes were observed for the voltammogram obtained 

with the two-electron transfer mechanism showing two oxidation peaks (potentials of approximately 

−0.05 and 0.4 mV) and two reduction peaks (potentials of approximately 0.15 and −0.3 mV) (Figures 5 and 

6). This indicated that the electrochemical activities of the bacteria in the reactor and the biofilm 

bacteria were similar, and the redox components responsible for the electrochemical activity 

reappeared in each batch cycle. It can be inferred that the reactant, i.e., glucose, undergoes oxidation 

and produces another electrochemically-active species, with reconversion of the reduced species, i.e., 

nitrate, back into its oxidized state, as the intensity of the reduction peak is quite high, which can be 

attributed to reduced species formed by electrochemical reaction in the reaction vessel [22]. However, 

we assume that during the nitrate reduction process other possible intermediates such as NO, N2O, and 

NO2 (although not analyzed) were formed, but reaction with other species in the reaction vessel could 

destroy them. A higher reductive current was obtained as the batch cycle progressed from the second 

cycle to the third cycle due to the increase in OD. Alternatively, from the third cycle to the fourth cycle, 

the current was found to decrease, implying spatial obstruction caused by the biofilm resulting in 

diffusion limitation between the solution and the anode.  
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Figure 5. Cyclic voltammograms of the bacterial culture with a biofilm anode in batch 

cycles 2, 3 and 4. 

 

Figure 6. Cyclic voltammograms of the bacterial culture with a new anode in batch cycles 

2, 3 and 4.  

 

Overall from these results, it can also be concluded that the electrochemical activities of the bacteria 

in the reactor and the biofilm bacteria were similar. Hence, it is believed that the electrochemical 

activity generated in the presence of the new anode was governed by the excreted metabolites. 

However, our results also implied that, in addition to the excreted metabolites, a direct electron transfer 

mechanism was also possible due to the attached bacteria (biofilm) at the anode. We postulate that 

B. subtilis mediate the electrons transfer towards the anode, either by excreting metabolic compounds 

into the reactor solution or by membrane-driven electron transfer. It is well known that B. subtilis 

possesses membrane-bound nitrate reductases; however, we presume that, in addition to the excreted 

metabolites, an extracellular direct electron transfer mechanism also operates with components 

associated with the bacterial cell wall/membrane-bound nitrate reductases. These results were in 

concurrence with those of Rabaey et al. [22], and highlighted the possibility of extracellular electron 

transfer through the production of extracellular shuttles or mediators, i.e., metabolites, and 

components/enzymes associated with the bacterial cell membrane. 
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2.6. Performance of the MFC at the End of the Batch Test 

In the substrate depletion state, the voltammograms obtained showed very sharp oxidation peaks at 

potentials of 0.1 V and 0.2 V (vs. Ag/AgCl), as shown in Figure 7. This electrochemical activity shown 

by the bacterial cells is an indication of the presence of soluble redox-active compounds in the solution. 

Another possibility is that the activity may be due to the presence of mediators or metabolites that were 

stored in the cells, which maintained some storage power to utilize for their metabolic processes, even 

in the absence of a substrate [22]. 

Figure 7. Cyclic voltammograms of the bacterial culture with a biofilm anode at the end of 

the batch test. 

 

2.7. Coulombic Efficiency (CE) 

The overall performance of an MFC can be evaluated in many different ways. Principally, 

coulombic efficiency (CE) is used to compare the performances of MFCs in order to discuss the effect 

of the substrate used on electricity generation. However, several factors could contribute to the CE in 

MFCs, including oxygen diffusion through the cathode, an increase in the Rext, bacterial mediators [24] 

and biomass growth. The CE of the single-chamber MFC in the present study with a fixed Rext of 1 KΩ 

was 11%. However, we assume that methanogenesis and/or fermentation are the most likely 

competitive and alternative metabolic pathways for the microbes, which could lower the CE. In our 

experiment, the neutral pH of the M9 medium remained stable over the course of the experiment, 

negating the possibility of methanogenesis. However, fermentation should be considered as an 

important factor for a reduced CE. Hence, in the present study, for a single-chamber MFC, a CE of 11% 

was obtained under more versatile conditions without the use of mediators, oxygen diffusion, proton 

exchange membrane (PEM), or a platinum cathode as compared with previous studies. Although 

complete conversion of the substrate to electrons was not achieved, MFC generating electricity with 

simultaneous nitrate reduction was developed in this study. 
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3. Experimental Section  

3.1. Cultivation of Bacteria 

To prepare the inoculum, B. subtilis BBK006 (wild-type) was grown in 25 mL of M9 medium [13]. 

The composition of the M9 medium used as the electrolyte in the MFC was as given by Miller [25]. 

The medium was sterilized at 121 °C for 20 min without glucose, which was filter-sterilized (Millipore 

membrane PVDF, 0.22-µm filter unit; Millipore, Watford, UK) and added to the fuel cell reactor after 

inoculation of the bacteria. 

3.2. Microbial Fuel Cell Construction and Operation 

The membrane-free single-chamber MFC consisted of an anode and a cathode placed in a plastic 

(Plexiglas) cylindrical chamber of 4 cm in length and 3 cm in diameter (empty bed volume of 28 mL), 

as reported previously [24,26]. The cathode was tightly packed with a plexiglass stopper. The inside 

surface of the carbon cloth was loaded with 4 PTFE diffusion layers without a platinum catalyst to 

avoid spontaneous passage or diffusion of solution pass-out from inside the MFC, the layers were 

prepared as described by Cheng et al. [26]. The exposed surface area of the anode electrode was 

22.5 cm2 (dimension: 11.25 cm × 11.25 cm) and the diameter of the cathode was 3 cm. Titanium wire 

was used to connect the circuit, and the fuel cell was placed under constant load by connecting the 

cathode and anode to a Rext of 1 KΩ. All experiments were conducted at room temperature. Following 

bacteria inoculation, the addition of 1 mM of nitrate and 1 mM of glucose achieved bacteria growth as 

well as nitrate reduction.  

3.3. Biofilm Growth and Anaerobic Condition 

Plain carbon cloth was used as anode and cathode for the development of biofilm. They were 

completely suspended in the bioreactor solution. The MFC reactor was placed vertically and the 

cathode was inoculated under aseptic anaerobic microenvironment on the top of the reactor at the 

solution boundary as shown in Scheme 1. Experiments were conducted to allow biofilm growth by 

inoculating bacteria and substrate addition of glucose and nitrate. 

Anaerobic conditions in the reactor were maintained by the reduction or restriction of the amount of 

oxygen in the reactor. After inoculating bacteria into the MFC, bacteria were allowed to utilize oxygen 

present in the reactor solution as the terminal electron acceptor. During this period, ultra-low current 

was recorded. After the oxygen depletion (as measured by the dissolved oxygen concentration), current 

production almost dropped to zero, which implies an establishment of anaerobic conditions in the 

reactor. After which, we added glucose and nitrate for bacterial growth and energy production by the bacteria. 

3.4. Optical Density Measurement 

The bacteria were grown at optical density (OD600) of 1.55, and the final OD of the bacterial 

suspension in the reactor was determined spectrophotometrically. To measure OD from the MFC 

reactor, samples were taken from the vicinity of the electrode for accurate OD measurements. Hence, 

the OD values represent growth of planktonic bacteria in the MFC system.  
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3.5. Nitrate Measurement 

 

Nitrate was determined spectrophotometrically by the sulphanylamide and N-(1-naphthyl)-

ethylenediaminedihydrochloride method of Nicholas and Nason 1957 [27]. 

3.6. Data Acquisition and Electrochemical Technique 

The electrode circuit potential and real-time data were continuously monitored and recorded by a 

computer, the anode and cathode having been connected directly to a PicoLog recorder using 

PicoLog® v. 5.09.4 recorder software (Pico Technology Ltd., Cambridgeshire, UK) with an RS232 

interface connected to an ADC 20–21 A–D converter (Pico Technology). The circuit was permanently 

connected to a 1 kΩ Rext to obtain the anodic and cathodic potentials with respect to time, which were 

further used to obtain the current. To obtain the polarization curve, different Rext were used: 10, 8.2, 

6.8, 5.6, 4.7, 3.3, 2.2, 1, 0.56, and 0.22 kΩ. 

Calculations: Potential (V) was monitored in order to calculate the current (I), as I = V/R. Power was 

normalized based on the cross-sectional area (projected area = 22.5 cm2) of the anode to calculate the 

power density in mW/cm2, as P = I × V/22.5 cm2. CE was calculated as Ec = Cp/CTi100%, where Cp 

(C) is the total Coulombs, calculated by integrating the current over time, and CTi (C) is the theoretical 

amount of Coulombs that can be produced from glucose (i = g), calculated as  

CTi = FbiSiv/Mi 

where F is Faraday’s constant (96,485 C/mole of electrons), bi is the number of mol of electrons 

produced per mol of substrate (bg = 24 where, g represents glucose), Si is the substrate concentration 

in g/L, v (L) is the liquid volume, and Mi is the molecular weight of the substrate (Mg = 180) [24]. 

3.7. Cyclic Voltammetry 

Cyclic voltammetry was performed using a potentiostat (CHI 627C; CH instrument, Austin, TX, 

USA) connected to a personal computer (CHI627C Electrochemical Analyzer), with a scan rate of 

1 mVs−1 ranging from −450 to 600 mV. Voltammograms were recorded using a conventional  

three-electrode set-up consisting of a working electrode, a reference electrode (an Ag/AgCl electrode), 

and a counter electrode (platinum wire). The working electrode was the carbon cloth anode with 

attached bacteria (i.e., a biofilm anode) from the MFC reactor. For the purpose of voltammetry 

conducted without a biofilm anode, a new carbon cloth anode was employed as the working electrode 

(also with an electrode area of 22.5 cm2). The anode was washed with ethanol and deionized water 

prior to recording the voltammograms. In situ cyclic voltammetry was performed during different 

batch cycles to evaluate the electrochemical activity of the bacteria in progressive cycles. To investigate 

the possibility of any intermediate metabolic products being produced by the bacteria, voltammograms 

were obtained with and without a biofilm electrode.  

4. Conclusions  

Simultaneous denitrification and electricity generation was accomplished in a single-chambered 

MFC without air cathode, utilizing glucose as the substrate and nitrate as the terminal electron acceptor. 
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We found that in a MFC in which oxygen diffusion through the cathode was restricted, a measurable 

current resulted when the single-chamber MFC was purposely maintained under anaerobic conditions 

for nitrate reduction at the cathode. A carbon/PTFE electrode without a platinum catalyst was found to 

be very suitable for use as the anode, successfully harvesting electricity from the bacterial metabolism, 

although glucose fermentation lowered the CE to 11%. In this study, we also found that the 

electrochemical activity of the bacteria was due to dissolved metabolic components secreted in the 

solution, along with a membrane-bound reductase system. The use of MFC technology to generate 

electricity and simultaneously treat nutrient-rich wastewater was demonstrated to be a feasible and 

attractive alternative energy system to expensive wastewater treatment processes. A single-chambered 

MFC is performed without the need of air cathode in which MFCs could be easily connected in series 

or in parallel for to amplification of the current and voltage production. 
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