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Abstract: Protein hydroxylation is one type of post-translational modifications (PTMs) playing critical
roles in human diseases. It is known that protein sequence contains many uncharacterized residues
of proline and lysine. The question that needs to be answered is: which residue can be hydroxylated,
and which one cannot. The answer will not only help understand the mechanism of hydroxylation
but can also benefit the development of new drugs. In this paper, we proposed a novel approach for
predicting hydroxylation using a hybrid deep learning model integrating the convolutional neural
network (CNN) and long short-term memory network (LSTM). We employed a pseudo amino acid
composition (PseAAC) method to construct valid benchmark datasets based on a sliding window
strategy and used the position-specific scoring matrix (PSSM) to represent samples as inputs to the
deep learning model. In addition, we compared our method with popular predictors including CNN,
iHyd-PseAAC, and iHyd-PseCp. The results for 5-fold cross-validations all demonstrated that our
method significantly outperforms the other methods in prediction accuracy.

Keywords: protein post-translational modification (PTM); hydroxylation sites; convolutional neural
network (CNN); long short-term memory network (LSTM); iHyd-PseAAC; iHyd-PseCp

1. Introduction

As a type of post-translational modification, hydroxylation converts a CH group into a COH
group in a protein [1]. Protein hydroxylation usually happens in proline and lysine residues,
which are called hydroxyproline and hydroxylysine, respectively. Hydroxyproline plays critical
roles in collagen stabilization [2] and the development of a few cancers, such as stomach cancer [3]
and lung cancer [4], while hydroxylysine contributes to fibrillogenesis, cross-linking, and matrix
mineralization [5]. Consequently, predicting hydroxyproline and hydroxylysine sites in proteins may
provide useful information for both biomedical research and drug development.

Nowadays, mass spectrometry is the most commonly used experiment in identifying
hydroxylation residues [1,6], which is known to be time and labor intensive. With the development of
high-throughput sequencing techniques, more and more protein sequences have been sequenced and
stored, which presents an unprecedented opportunity as well as a big challenge for computational
methods to predict hydroxylation residues in proteins. As a result, there are a few attempts in
predicting hydroxylation residues using machine learning-based methods. For example, in 2009,
Yang et al. [7] classified collagen hydroxyproline sites by developing two support vector machines
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with the identity kernel function and bio-kernel function respectively. In 2010, Hu et al. predicted
hydroxyproline and hydroxylysine sites using a novel protein sequence-based method [8]. To predict
carbamylated lysine sites, Huang et al. [9] presented a two-stage feature selection, followed by a
one-class k-nearest neighbor classification method. In addition, Xu et al. [10] proposed a predictor
called iHyd-PseAAC to predict protein hydroxylation sites. Qiu et al. [11] presented an ensemble
classifier by integrating the random forest algorithm and other classifiers fusing different pseudo
components. However, despite the improvement in the field, the prediction accuracy is still far from
satisfactory. Deep learning-based methods have been proven to be effective in many bioinformatics
problems, which might be a promising direction for further research in the area.

In this study, we develop a new predictor for identifying hydroxyproline and hydroxylysine
in proteins by a hybrid deep learning model convolutional neural network (CNN) [12,13] and long
short-term memory network (LSTM), one of the recurrent neural networks (RNNs) [13,14]. CNN uses
the convolution layer to capture higher-level abstraction features of amino acid, and the recurrent layer
of LSTM captures long-term dependencies between amino acids to improve the predictor quality.

2. Results and Discussions

In our experiments, we used a scalable deep learning framework MXNET on CPU to implement
our CNN+LSTM and CNN models, and our framework is illustrated in Figure 1. MXNET is a flexible
and efficient library for deep learning. In order to test the performance of predicting hydroxylation
predictor, CNN+LSTM compared with other classification algorithms, that is, CNN, iHyd-PseAAC [10],
and iHyd-PseCp [11] implement on R programming language.
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CNN+LSTM, CNN, iHyd-PseCp, and iHyd-PseAAC on Dataset 1. Clearly, CNN+LSTM 
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Figure 1. Architecture of CNN+LSTM for predicting phosphorylation sites. CNN: convolutional neural
network; LSTM: long short-term memory network. Gray squares represent the layers of CNN; Green
squares represent the first layers of LSTM; Blue squares represent the hidden layers of LSTM; Yellow
squares represent the output layers of LSTM.

There are three kinds of cross-validation methods: the n-fold cross-validation, the jackknife
cross-validation, and the independent data test [15]. Among the three tests, the jackknife test has been
widely used in bioinformatics because it could produce a unique outcome [16–20]. However, it is
time- and source-consuming. Thus, in this paper, we used the 5-fold cross-validation to evaluate the
proposed models.

We summarized in Table 1 the sensitivity (Sn), specificity (Sp), accuracy (Acc), and the Matthews
correlation coefficient (Mcc) of the 5-fold cross-validation for 4 methods including CNN+LSTM, CNN,
iHyd-PseCp, and iHyd-PseAAC on Dataset 1. Clearly, CNN+LSTM outperformed other methods in
almost all criteria. The reason is that deep learning models with convolution layer capture regulatory
motifs, while the recurrent layer captures long-term dependencies among the motifs, which improves
predicting performance. Among all the predictors, the performance of iHyd-PseAAC is the worst,
while CNN and iHyd-PseCp have comparative results. In iHyd-PseCp, the authors adopted the
Random Forest algorithm. In addition, we summarized comparison results of the 4 methods on
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Dataset 2, Dataset 3, Dataset 4, Dataset 5, and Dataset 6 in Tables 2–6 respectively. As can be seen,
the results are quite similar to that of Dataset 1.

Table 1. A comparison of predictors for identifying hydroxyproline sites on Dataset 1.

Method Sn Sp Acc Mcc

CNN+LSTM 94.52 97.43 90.68 0.91
CNN 87.49 90.43 94.16 0.86

iHyd-PseCp 86.23 90.16 93.48 0.85
iHyd-PseAAC 79.58 78.42 79.69 0.60

Sn: sensitivity; Sp: specificity; Acc: accuracy; Mcc: Matthews correlation coefficient.

Table 2. A comparison of predictors for identifying hydroxylysine sites on Dataset 2.

Method Sn Sp Acc Mcc

CNN+LSTM 97.30 99.84 93.27 0.94
CNN 90.43 91.38 90.59 0.90

iHyd-PseCp 90.84 93.23 90.63 0.89
iHyd-PseAAC 86.72 82.53 85.09 0.68

Table 3. A comparison of predictors for identifying hydroxyproline sites on Dataset 3.

Method Sn Sp Acc Mcc

CNN+LSTM 92.24 95.72 89.15 0.90
CNN 83.27 86.93 83.60 0.84

iHyd-PseCp 88.62 89.42 85.64 0.85
iHyd-PseAAC 73.54 86.71 75.32 0.68

Table 4. A comparison of predictors for identifying hydroxylysine sites on Dataset 4.

Method Sn Sp Acc Mcc

CNN+LSTM 98.84 97.66 96.91 0.97
CNN 89.15 88.75 84.76 0.85

iHyd-PseCp 92.05 91.82 90.53 0.89
iHyd-PseAAC 85.21 84.90 80.38 0.71

Table 5. A comparison of predictors for identifying hydroxyproline sites on Dataset 5.

Method Sn Sp Acc Mcc

CNN+LSTM 92.06 98.39 96.55 0.91
CNN 87.47 99.38 97.29 0.90

iHyd-PseCp 86.35 99.12 96.58 0.89
iHyd-PseAAC 80.66 80.54 80.57 0.51

Table 6. A comparison of predictors for identifying hydroxylysine sites on Dataset 6.

Method Sn Sp Acc Mcc

CNN+LSTM 94.75 98.53 97.19 0.89
CNN 89.94 99.27 97.57 0.88

iHyd-PseCp 78.77 99.80 97.08 0.86
iHyd-PseAAC 87.85 83.01 83.56 0.50

In addition, we plotted in Figure 2 the average receiver operating characteristic curve (ROC)
and precision-recall (PR) curves of the 4 tested methods for the peptide samples of the center residue
being proline and lysine on Dataset 1. We also calculated the area under ROC curve (AUC) for
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each method respectively, which yields AUCCNN+LSTM = 0.96, AUCCNN = 0.83, AUCiHyd-PseCp = 0.81,
and AUCiHyd-PseAAC = 0.70. Our method achieves the highest AUC 0.96, suggesting that it is better than
other methods in prediction accuracy. Similarly, we also plotted the average ROC and precision-recall
(PR) curves on datasets 2–6 in Figures 3–7 respectively. Specifically, the AUC values in Figure 3 are
AUCCNN+LSTM = 0.98, AUCCNN = 0.91, AUCiHyd-PseCp = 0.89, and AUCiHyd-PseAAC = 0.86, respectively.
The AUC values in Figure 4 are AUCCNN+LSTM = 0.93, AUCCNN = 0.85, AUCiHyd-PseCp = 0.86,
and AUCiHyd-PseAAC = 0.84, respectively. The AUC values in Figure 5 are AUCCNN+LSTM = 0.99,
AUCCNN = 0.91, AUCiHyd-PseCp = 0.96, and AUCiHyd-PseAAC = 0.89, respectively. In Figure 6,
AUCCNN+LSTM = 0.96, AUCCNN = 0.84, AUCiHyd-PseCp = 0.83, and AUCiHyd-PseAAC = 0.80. In Figure 7,
AUCCNN+LSTM = 0.97, AUCCNN = 0.85, AUCiHyd-PseCp = 0.84, and AUCiHyd-PseAAC = 0.81. CNN+LSTM
achieved remarkably greater AUCs than other methods in all datasets, further demonstrating the
excellent performance of our model.
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Finally, we computed the p-value assessing the significance of the difference between two AUCs
(http://vassarstats.net/roc_comp.html). For Figure 2, except for CNN and iHyd-PseCp (with p-value
0.18309), all p-values between AUCs of other methods are less than 0.000001. The results indicate that
our method is significantly better than the compared methods. Similar results were observed for all
datasets. For example, in Figure 3 the p-values between CNN+LSTM and CNN, between CNN+LSTM
and iHyd-PseCp, and between CNN+LSTM and iHyd-PseAAC are 0.001161, 0.000099, and 0.000002,
respectively. The corresponding values for Figure 4 are 0.000007, 0.000058, <0.000001, respectively.
In summary, CNN+LSTM is significantly better than CNN, iHyd-PseCp, and iHyd-PseAAC in
predicting AUCs across all 6 datasets.

3. Methods

3.1. Benchmark Dataset

The benchmark dataset consists of 164 hydroxyproline proteins and 33 hydroxylysine proteins,
which were also used by Xu et al. [10] and Qiu et al. [11]. Because the length of proteins is different and
the position of the hydroxylation sites is not the same, peptide sample presentation [21–23] proposed
by Chou were adopted to obtain the same length of samples. A peptide sample α can be expressed as
following:

Qϕ(α) = R−ϕR−(ϕ−1) · · · R−2R−1 α R+1R+2 · · · R+(ϕ−1)R+ϕ (1)

where the symbol α denotes the single amino acid code P or K, the subscript ϕ is an integer,
R−ϕ represents the ϕ-th downstream amino acid residue from the center, and R+ϕ represents the ϕ-th
upstream amino acid residue. Peptides Q can be further classified as:

Qϕ(α)ε

{
Q+

ϕ (α), i f its center is a hydroxylation site
Q−

ϕ (α), otherwise
(2)

When ϕ = 6, each of the samples extracted from proteins for this study is a 2ϕ + 1 = 13 tuple
peptide. If the upstream or downstream residues in a peptide sample were 3 ≤ ϕ ≤ 6, the lacking
residues were filled with the dummy code @. Figure 8 illustrated the process of formulating the
positive and negative peptide samples.

http://vassarstats.net/roc_comp.html
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To test the performance of the deep learning classifier proposed in the manuscript, we used
the following six datasets to train and test the model shown in Table 7. The first four datasets
were downloaded from iHyd-PseAAC [10] (http://app.aporc.org/ihyd-pseaac/), and the length
of each sample is 13 (ϕ = 6). The last two datasets were downloaded from iHyd-PseCp [11] (http:
//www.jci-bioinfo.cn/iHyd-PseCp), and the length of each sample is 21 (ϕ = 10).

From Table 7, we can see that the number of positive and negative samples is not imbalanced.
The number of negative samples is far greater than that of the positive samples. A predictor can
easily overfit the data to achieve higher accuracy because most samples belong to the negative
class. To address this problem, we used the bootstrapping method proposed by Yan et al. [24],
which is described as follows: First, we split the imbalanced training data into negative and positive
samples. Let n be the number of negative samples, and p be the number of positive samples. For each
bootstrapping iteration, we selected the same number of positive and negative samples (Sp), then train
the prediction model on the balanced data. In order to use all the negative samples, we divided the n
negative samples into N bins such that each bin has Sp (N = [n/Sp]). Finally, we generate one training
predictor through N number of bootstrap iterations. The details about the method and parameters
setting can be obtained from reference [24].

Table 7. Positive and negative peptide samples of proline and lysine site.

Samples
Window Size = 13 Window Size = 21

α = Proline α = Lysine α = Proline α = Lysine α = Proline α = Lysine

Positive samples 636 107 306 44 851 142
Negative samples 2699 836 1035 528 3505 980

Total samples 3335 943 1341 572 4356 1122

3.2. Feature Extraction

A statistical method for predicting the hydroxylation sites of peptides in proteins is necessary.
According to [21], the general form of PseAAC (pseudo amino acid composition) for a protein or
peptide, Q, can be formulated as:

Q =
[
Ψ1 Ψ2 · · · Ψµ · · · ΨΩ

]T (3)

where Ω is the vector’s dimension and it is an integer, T is the transpose operator. In Equation (3),
Ω value and each component must be able to extract the essential feature from peptide samples,
so position-specific scoring matrix (PSSM) is adopted, which is shown in Equation (4).

http://app.aporc.org/ihyd-pseaac/
http://www.jci-bioinfo.cn/iHyd-PseCp
http://www.jci-bioinfo.cn/iHyd-PseCp
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Q(0)
PSSM =



m(0)
1,1 m(0)

1,2 · · · m(0)
1,20

m(0)
2,1 m(0)

2,2 · · · m(0)
2,20

...
...

...
...

m(0)
L,1 m(0)

L,2 · · · m(0)
L,20


(4)

where subscript L is the length of a peptide sample, L = 13 or L = 21. Subscript values 1, 2 · · · , 20
represent the 20 amino acid types based on the alphabetical order. m(0)

i,j denotes the original score of
amino acid residue in the i-th (i = 1, 2, · · · , L) sequential position that is changed to amino acid
type (j = 1, 2, · · · , 20) in the process of evolution. All the values in PSSM can be generated by using
PSI-BLAST [25] according to the following steps. Step 1: Select the UniProtKB/Swiss-Prot databases.
Step 2: Enter the peptide samples. Step 3: Set the E-value cut-off is 0.001. Then you can submit to
obtain the PSSM. Finally, using standard sigmoid function can make every element in (4) within the
range of [0, 1], which is shown in Equation (5).

Q(0)
PSSM =



m(0)
1,1 m(0)

1,2 · · · m(0)
1,20

m(0)
2,1 m(0)

2,2 · · · m(0)
2,20

...
...

...
...

m(0)
L,1 m(0)

L,2 · · · m(0)
L,20


(5)

where
m(1)

1,j =
1

1 + e−m(0)
i,j

(6)

3.3. A Hybrid Deep Learning Model

A convolutional neural network (CNN) is a deep learning model, which core layer is convolution
layer. The convolution layer consists of a set of filters. Each filter is convolved across dimensions
of input data, producing a multidimensional feature map. The CNN will learn filters that activate
when they see some specific type of feature at some spatial position in input. The key architectural
characteristics are local connectivity and shared weights.

Another deep learning model is recurrent neural network (RNN). Unlike feed forward neural
networks, RNNs can use their internal state (memory) to process sequences of inputs. The architecture
of convolutional and recurrent deep learning neural network for predicting hydroxylation sites is
shown in Figure 2. The first layer is the input layer, which takes the PSSM matrix of each sample as
inputs. The second layer is the convolution layer, which contains 320/1024 kernels. Its window size
is 26/30 and step size is 1. Specifically, the convolution layer exacts and learns the input features.
The pooling layer keeps the main features and reduces the number of parameters and the calculation
of the next layer. Its window size is 13/15 and step size is 13/15. The bi-directional long short term
memory layer contains 320/512 forward and 320/512 backward LSTM neurons, which can capture
previous and future features. The fully connected layer consists of 925 neurons, which acts as classifier
by using the sigmoid function and outputting the probability of classes. The last layer is the output
layer, which outputs the final labels.

In addition, the regularization parameters are set as follows: the dropout proportion of outputs
are randomly set to 0; the dropout proportion of Layer 2, Layer 3 and all other layers are 20%, 50% and
0%, respectively.
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3.4. A Set of Four Metrics for Measuring Prediction Quality

This study measures prediction quality using the Chou set of four metrics [21–23] to predict
signal peptides. They are sensitivity (Sn), specificity (Sp), accuracy (Acc), and the Matthews correlation
coefficient (Mcc), respectively.

Sn = 1 −
N+
−

N+

Sp = 1 −
N−
+

N−

Acc = 1 −
N+
− + N−

+

N+ + N−

Mcc =
1 −

(
N+
−+N−

+
N++N−

)
√(

1 + N−
+−N+

−
N+

)(
1 + N+

−−N−
+

N−

)
(7)

where N+ is the number of the positive samples and N− is the number of the negative samples, N+
− is

the number of positive samples incorrectly predicted as negative samples and N−
+ is the number of

negative samples incorrectly predicted as positive samples.

3.5. Receiver Operating Characteristics (ROC) and Precision-Recall (PR) Curve to Evaluate the Classification
Quality

To evaluate the performance of the predictor, we not only used the above four metrics, but also
used graphical approach. Receiver operating characteristic curve (ROC) [26] and precision-recall curve
(PR) are utilized to show all the results from intuitive comparison.

For a binary classification, if a sample is positive and it is predicted positive sample, then it is true
positive (TP), if a sample is negative and it is predicted positive sample, then it is false positive (FP),
if a sample is negative and it is predicted negative sample, then it is true negative (TN), if a sample is
positive and it is predicted negative sample, then it is false negative (FN). ROC curve can be plotted by
the true positive rate (TPR) against the false positive rate (FPR) and PR curve can be plotted by the
precision against the recall at various threshold settings. The area under the ROC curve is called AUC.
The greater the AUC value, the better the predictor will be.

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)

precision = TP/(TP + FP)

recall = TP/(TP + FN)

(8)

4. Conclusions

In this study, we have proposed a hybrid deep learning model CNN+LSTM for predicting
hydroxylation sites. The comparison with other popular methods including iHid-PseACC and
IHyd-PseCp demonstrates that our method is superior in prediction accuracy. However, our model has
a few limitations. Firstly, just like other deep leaning models, the proposed model is slower than other
classification methods, such as random forest, the support vector machine and the k-nearest neighbor
method. The structure complexity of the model and the time complexity of the forward–backward
algorithm and gradient descent algorithm at least contribute partially to the inefficiency of our
algorithm in the training step. Secondly, our model has a lot of parameters, such as the number
of layers, the number of kernels, the number of neurons in each layer, the weight of each neuron,
and so on. Tuning the optimal parameters is time-consuming and error-prone.
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In the future, to improve the efficiency of the new prediction method, a userfriendly and publicly
accessible web server is often established [27–31]. Hence, we will also make efforts to provide a
web server for the proposed method in our future studies that will be useful to the vast majority of
experimental scientists. In addition, we will improve the architectures of the deep learning model and
seek the optimal parameters.
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