Figure S1. Heat-Shock does not Induce Changes in the Molecular State of Ypt1p^{G80D}. Mutant ypt1-<i>G80D</i> cells were grown in YPD medium (1 × 10⁸ cells/ml) and incubated at 27°C or 45°C for 45 min. Subsequently, total cytosolic extracts of the cells were subjected to SEC analysis. The upper panel shows traces of the resolved protein peaks in the SEC analysis (upper image), and the lower panel shows immunoblot detection of Ypt1p^{G80D} in the corresponding fractions after SDS-PAGE. A 2.5 mg aliquot of total protein was applied to the SEC column, and 30 µl of each fraction was subjected to SDS-PAGE. Ypt1p^{G80D} was detected with a polyclonal anti-Ypt1p antibody.
Figure S2. Ypt1p has Molecular Chaperone Activity, but Ypt1p^{G80D} does not. For the chaperone activity assay, light scattering was monitored at 340 nm over a 15 min incubation period. (C) Solutions of 1 µM CS alone (○-) or with 8.35 µM GST (●-), Ypt1p (▲-), or Ypt1p^{G80D} (■-) in 50 mM HEPES (pH 8.0) were incubated in a spectrophotometer cell at 43°C. Shown are representative data out of at least three independent experiments.
Figure S3. Experimental Workflow for the LC/MS Analysis Performed to Identify Putative Targets of Ypt1p Chaperone Activity.
<table>
<thead>
<tr>
<th>Rank</th>
<th>Accession</th>
<th>% Coverage</th>
<th>PSMs</th>
<th>Peptide</th>
<th>MW (kDa)</th>
<th>Protein name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EFZ0429</td>
<td>49.06</td>
<td>10</td>
<td>1</td>
<td>18.9</td>
<td>YPT1p</td>
<td>Heat-shock protein 70 family, ATG-binding</td>
</tr>
<tr>
<td>2</td>
<td>EFZ0557</td>
<td>61.08</td>
<td>17</td>
<td>16</td>
<td>54.8</td>
<td>ATP synthase subunit (beta)</td>
<td>ATPase activity, subunit chain family, ATP synthase-coupled proton translocase</td>
</tr>
<tr>
<td>3</td>
<td>PI0411T</td>
<td>53.33</td>
<td>19</td>
<td>10</td>
<td>32.3</td>
<td>HSP90 family, Hsp90-ATPase family, Hsp90-containing complex, molecular chaperone process</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EKB468</td>
<td>60.05</td>
<td>18</td>
<td>10</td>
<td>30.4</td>
<td>Pmr1p</td>
<td>Ypt7p GTPase-activating protein</td>
</tr>
<tr>
<td>5</td>
<td>EFZ0407</td>
<td>27.03</td>
<td>16</td>
<td>12</td>
<td>84.5</td>
<td>Drp1p</td>
<td>GTPase, dynamin binding</td>
</tr>
<tr>
<td>6</td>
<td>EFZ0497</td>
<td>38.95</td>
<td>14</td>
<td>8</td>
<td>50.8</td>
<td>Glucose-6-phosphate isomerase</td>
<td>G6P, Glucose-6-phosphate isomerase, glycogen metabolism</td>
</tr>
<tr>
<td>7</td>
<td>EFZ0416</td>
<td>23.15</td>
<td>12</td>
<td>8</td>
<td>67.1</td>
<td>Snklp</td>
<td>Heat-shock protein 70 family, ATG-binding</td>
</tr>
<tr>
<td>8</td>
<td>EFZ0425</td>
<td>29.8</td>
<td>6</td>
<td>6</td>
<td>27.5</td>
<td>Hsp70</td>
<td>Hsp70, molecular chaperone</td>
</tr>
<tr>
<td>9</td>
<td>EFZ0409</td>
<td>19.03</td>
<td>7</td>
<td>6</td>
<td>42.7</td>
<td>Orp1p</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>AGC010</td>
<td>39.57</td>
<td>6</td>
<td>3</td>
<td>42.2</td>
<td>Ade2p</td>
<td>Reversible transfer of the terminal phosphate group between ATP and AMP</td>
</tr>
<tr>
<td>11</td>
<td>AGC021</td>
<td>18.45</td>
<td>5</td>
<td>4</td>
<td>38.6</td>
<td>Aftp1p</td>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td>12</td>
<td>EFZ0408</td>
<td>13.72</td>
<td>5</td>
<td>4</td>
<td>30.2</td>
<td>Vsp20p-like protein</td>
<td>Glucosaminoglycan, phosphoethanolamine, carbonic anhydrase (ATP) activity</td>
</tr>
<tr>
<td>13</td>
<td>EFZ0404</td>
<td>11.20</td>
<td>5</td>
<td>4</td>
<td>37.4</td>
<td>Mrp1p</td>
<td>Cellular amino acid metabolism process, pyridine nucleotide binding</td>
</tr>
<tr>
<td>14</td>
<td>EFZ0401</td>
<td>18.4</td>
<td>4</td>
<td>3</td>
<td>53.7</td>
<td>6-phosphoglucoisomerase</td>
<td>6-phosphoglucoisomerase, phosphoglucomutase, glucose-6-phosphate, phosphatase, binding</td>
</tr>
<tr>
<td>15</td>
<td>EFZ0402</td>
<td>3.16</td>
<td>3</td>
<td>2</td>
<td>11.3</td>
<td>HSP70p</td>
<td>Hsp70, molecular chaperone</td>
</tr>
<tr>
<td>16</td>
<td>EFZ0403</td>
<td>36.07</td>
<td>3</td>
<td>3</td>
<td>24.3</td>
<td>Carboproteinase Y inhibitor</td>
<td>Carboproteinase activity</td>
</tr>
<tr>
<td>17</td>
<td>EFZ0406</td>
<td>22.09</td>
<td>2</td>
<td>2</td>
<td>29.9</td>
<td>Pmr1p</td>
<td>Ypt7p GTPase-activating protein</td>
</tr>
<tr>
<td>18</td>
<td>EFZ0408</td>
<td>12.8</td>
<td>2</td>
<td>2</td>
<td>29.1</td>
<td>Snklp</td>
<td>Snklp, ATP-binding</td>
</tr>
<tr>
<td>19</td>
<td>EFZ0415</td>
<td>27.9</td>
<td>2</td>
<td>2</td>
<td>22.5</td>
<td>Tumor suppressor</td>
<td>Tumor suppressor</td>
</tr>
<tr>
<td>20</td>
<td>EFZ0414</td>
<td>9.56</td>
<td>2</td>
<td>2</td>
<td>42.1</td>
<td>VSP20p-like protein</td>
<td>VSP20p, molecular chaperone, binding</td>
</tr>
<tr>
<td>21</td>
<td>EFZ0425</td>
<td>10.14</td>
<td>2</td>
<td>2</td>
<td>28.0</td>
<td>Translocase</td>
<td>Translocase, transport, translocation, degradation</td>
</tr>
<tr>
<td>22</td>
<td>EFZ0414</td>
<td>4.87</td>
<td>2</td>
<td>2</td>
<td>64.1</td>
<td>Sip1p</td>
<td>Sip1p, vacuolar ATPase, ATP-binding</td>
</tr>
<tr>
<td>23</td>
<td>EFZ0415</td>
<td>27.9</td>
<td>2</td>
<td>2</td>
<td>29.9</td>
<td>Pmr1p</td>
<td>Ypt7p GTPase-activating protein</td>
</tr>
<tr>
<td>24</td>
<td>EFZ0414</td>
<td>18.18</td>
<td>2</td>
<td>2</td>
<td>30.7</td>
<td>Ubc4p (ubiquitin-activating enzyme)</td>
<td>Ubc4p, ubiquitin-activating enzyme, ubiquitin-protein ligase, cdc34p, ubiquitin-protein ligase, cdc34p</td>
</tr>
<tr>
<td>25</td>
<td>AGC022</td>
<td>1.82</td>
<td>1</td>
<td>1</td>
<td>54.5</td>
<td>Phosphatase</td>
<td>Phosphatase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>26</td>
<td>EFZ0415</td>
<td>16.04</td>
<td>1</td>
<td>1</td>
<td>17.0</td>
<td>VSP20p-like protein</td>
<td>VSP20p, molecular chaperone, binding, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>27</td>
<td>EFZ0415</td>
<td>7.72</td>
<td>1</td>
<td>1</td>
<td>12.7</td>
<td>Yop1p</td>
<td>Yop1p, ATP-binding, molecular chaperone, binding</td>
</tr>
<tr>
<td>28</td>
<td>EFZ0414</td>
<td>10.00</td>
<td>1</td>
<td>1</td>
<td>12.5</td>
<td>Cyclin-dependent kinase complex subunit 7</td>
<td>Cyclin-dependent kinase complex subunit 7, proteasomal subunit, cyclin-dependent kinase</td>
</tr>
<tr>
<td>29</td>
<td>EFZ0410</td>
<td>9.67</td>
<td>1</td>
<td>1</td>
<td>8.6</td>
<td>Phlp1p</td>
<td>Phlp1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>30</td>
<td>AGC025</td>
<td>2.43</td>
<td>1</td>
<td>1</td>
<td>122.5</td>
<td>MIP123 (lysophosphatidyl ethanolamine)</td>
<td>MIP123, lysophosphatidyl ethanolamine, catalytic activity</td>
</tr>
<tr>
<td>31</td>
<td>AGC024</td>
<td>1.60</td>
<td>1</td>
<td>1</td>
<td>172.8</td>
<td>MIP123 (lysophosphatidyl ethanolamine)</td>
<td>MIP123, lysophosphatidyl ethanolamine, catalytic activity</td>
</tr>
<tr>
<td>32</td>
<td>AGC020</td>
<td>1.26</td>
<td>1</td>
<td>1</td>
<td>162.9</td>
<td>Phosphatase</td>
<td>Phosphatase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>33</td>
<td>AGC020</td>
<td>2.48</td>
<td>1</td>
<td>1</td>
<td>45.0</td>
<td>Dof1p (conserved protein)</td>
<td>Dof1p, conserved protein, catalytic activity</td>
</tr>
<tr>
<td>34</td>
<td>AGC020</td>
<td>3.88</td>
<td>1</td>
<td>1</td>
<td>45.0</td>
<td>Dof1p (conserved protein)</td>
<td>Dof1p, conserved protein, catalytic activity</td>
</tr>
<tr>
<td>35</td>
<td>AGC020</td>
<td>4.32</td>
<td>1</td>
<td>1</td>
<td>41.7</td>
<td>Dissolved-hydrocarbons, non-dissolved</td>
<td>Dissolved-hydrocarbons, non-dissolved, catalytic activity</td>
</tr>
<tr>
<td>36</td>
<td>AGC020</td>
<td>11.7</td>
<td>1</td>
<td>1</td>
<td>21.1</td>
<td>VSP20p-like protein</td>
<td>VSP20p, molecular chaperone, binding, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>37</td>
<td>AGC020</td>
<td>7.71</td>
<td>1</td>
<td>1</td>
<td>45.3</td>
<td>VGP124p-like protein</td>
<td>VGP124p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>38</td>
<td>AGC020</td>
<td>2.53</td>
<td>1</td>
<td>1</td>
<td>45.2</td>
<td>VSP20p-like protein</td>
<td>VSP20p, molecular chaperone, binding, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>39</td>
<td>AGC020</td>
<td>1.69</td>
<td>1</td>
<td>1</td>
<td>150.0</td>
<td>VPS14p-like protein</td>
<td>VPS14p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>40</td>
<td>AGC020</td>
<td>5.03</td>
<td>1</td>
<td>1</td>
<td>27.7</td>
<td>Phlp1p</td>
<td>Phlp1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>41</td>
<td>AGC020</td>
<td>8.56</td>
<td>1</td>
<td>1</td>
<td>33.7</td>
<td>Bdp1p</td>
<td>Bdp1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>42</td>
<td>AGC020</td>
<td>27.9</td>
<td>1</td>
<td>1</td>
<td>24.0</td>
<td>Exo1p</td>
<td>Exo1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>43</td>
<td>AGC025</td>
<td>7.41</td>
<td>1</td>
<td>1</td>
<td>24.0</td>
<td>Vtp1p</td>
<td>Vtp1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>44</td>
<td>AGC020</td>
<td>14.8</td>
<td>1</td>
<td>1</td>
<td>30.5</td>
<td>Eng2p</td>
<td>Eng2p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>45</td>
<td>AGC020</td>
<td>3.21</td>
<td>1</td>
<td>1</td>
<td>72.6</td>
<td>Ptp1p</td>
<td>Ptp1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>46</td>
<td>AGC020</td>
<td>4.51</td>
<td>1</td>
<td>1</td>
<td>72.6</td>
<td>Cyo1p</td>
<td>Cyo1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>47</td>
<td>AGC020</td>
<td>6.15</td>
<td>1</td>
<td>1</td>
<td>61.0</td>
<td>Hxp1p</td>
<td>Hxp1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
<tr>
<td>48</td>
<td>AGC020</td>
<td>20.26</td>
<td>1</td>
<td>1</td>
<td>8.9</td>
<td>Sip1p</td>
<td>Sip1p, vacuolar ATPase, ATP-binding, catalytic activity</td>
</tr>
</tbody>
</table>

PSM, peptide-spectrum match. MW, molecular weight.