Supplementary Information

Figure S1. Ball and stick representation with partial atomic labeling scheme, selected bond distances (Å) and bond valence summations (BVS) for the two independent POMs in \(\text{NH}_4\text{Mo}_6(\text{AlePy}_2\text{Mo})_2 \).

\[
\begin{align*}
\text{Mo1} & \quad \text{O1} \quad 1.715(7) & \quad \text{Mo5} & \quad \text{O12} \quad 1.690(13) & \quad \text{Mo10} & \quad \text{O48} \quad 2.348(10) \\
\text{Mo1} & \quad \text{O3} \quad 1.924(8) & \quad \text{Mo6} & \quad \text{O23} \quad 2.138(13) & \quad \Sigma(\text{Mo1}) = 4.5
\end{align*}
\]

\[
\begin{align*}
\text{Mo2} & \quad \text{O7} \quad 1.700(7) & \quad \Sigma(\text{Mo2}) = 4.8
\end{align*}
\]

\[
\begin{align*}
\text{Mo3} & \quad \text{O11} \quad 1.704(14) & \quad \Sigma(\text{Mo3}) = 6.0
\end{align*}
\]

\[
\begin{align*}
\text{Mo4} & \quad \text{O17} \quad 1.723(13) & \quad \Sigma(\text{Mo4}) = 5.9
\end{align*}
\]

\[
\begin{align*}
\text{Mo5} & \quad \text{O19} \quad 1.704(14) & \quad \Sigma(\text{Mo5}) = 6.1
\end{align*}
\]

\[
\begin{align*}
\text{Mo6} & \quad \text{O25} \quad 1.764(15) & \quad \Sigma(\text{Mo6}) = 6.0
\end{align*}
\]
Figure S2. Representation of the crystal packing in (a) \(\text{NaMo}_6(\text{Ale}-4\text{Py})_2 \) and (b) \(\text{NaKMo}_6(\text{Ale}-4\text{Py})_2 \); blue octahedra: Mo\(^{VI}\)O\(_6\), pink tetrahedra: PO\(_4\), orange spheres: O, black spheres: C, green spheres: N, cyan spheres: Na, plum spheres: K; hydrogen atoms have been omitted for clarity.

Table S1. Geometry of hydrogen-bonding interactions in \(\text{NaMo}_6(\text{Ale}-4\text{Py})_2 \) and \(\text{NaKMo}_6(\text{Ale}-4\text{Py})_2 \) for which N⋯O < 3.1 Å, associated to Figure 4.

<table>
<thead>
<tr>
<th>N-H⋯O</th>
<th>H⋯O (Å)</th>
<th>N⋯O (Å)</th>
<th>N-H⋯O (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5-H5B⋯O5W</td>
<td>1.800</td>
<td>2.765</td>
<td>164.92</td>
</tr>
<tr>
<td>N5-H5A⋯O19</td>
<td>1.925</td>
<td>2.825</td>
<td>169.33</td>
</tr>
<tr>
<td>N10-H10⋯O14</td>
<td>1.899</td>
<td>2.764</td>
<td>167.41</td>
</tr>
<tr>
<td>N17-H17B⋯O7W</td>
<td>1.751</td>
<td>2.618</td>
<td>158.43</td>
</tr>
<tr>
<td>N17-H17A⋯O13</td>
<td>1.815</td>
<td>2.761</td>
<td>158.50</td>
</tr>
<tr>
<td>N22-H22⋯O4W</td>
<td>1.873</td>
<td>2.674</td>
<td>150.43</td>
</tr>
<tr>
<td>N29-H29A⋯O7W</td>
<td>2.171</td>
<td>2.961</td>
<td>144.97</td>
</tr>
<tr>
<td>N29-H29B⋯O46</td>
<td>1.969</td>
<td>2.844</td>
<td>160.48</td>
</tr>
<tr>
<td>N34-H34⋯O40</td>
<td>1.832</td>
<td>2.704</td>
<td>170.44</td>
</tr>
<tr>
<td>N41-H41B⋯O1W</td>
<td>2.355</td>
<td>3.208</td>
<td>156.41</td>
</tr>
<tr>
<td>N41-H41A⋯O41</td>
<td>1.963</td>
<td>2.848</td>
<td>163.93</td>
</tr>
<tr>
<td>N46-H46⋯O6W</td>
<td>1.862</td>
<td>2.688</td>
<td>155.68</td>
</tr>
<tr>
<td>N5-H5B⋯O13W</td>
<td>1.952</td>
<td>2.801</td>
<td>154.70</td>
</tr>
<tr>
<td>N5-H5A⋯O18</td>
<td>1.968</td>
<td>2.808</td>
<td>152.66</td>
</tr>
<tr>
<td>N10-H10⋯O14</td>
<td>1.837</td>
<td>2.704</td>
<td>167.83</td>
</tr>
<tr>
<td>N17-H17B⋯O5W</td>
<td>1.917</td>
<td>2.729</td>
<td>147.63</td>
</tr>
<tr>
<td>N17-H17A⋯O13</td>
<td>1.949</td>
<td>2.792</td>
<td>153.37</td>
</tr>
<tr>
<td>N22-H22⋯O21W</td>
<td>1.861</td>
<td>2.695</td>
<td>157.18</td>
</tr>
</tbody>
</table>
Figure S4. (a) Photographs of the powder of NaMo₆(Ale-4Py)₂ at different UV irradiation time (in min). (b) Evolution of the photo-generated absorption in NaMo₆(Ale-4Py)₂ after 0, 0.5, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60, 90, and 130 min of UV irradiation (λ_{ex} = 365 nm).

Figure S5. Evolution of the photoreduction degree (Y(t)) in (a) NaMo₆(Ale-4Py)₂ and (b) NaKMo₆(Ale-4Py)₂ with the UV irradiation time t. Y(t) is defined as 100×C₅⁺(t)/C₆⁺,r(0), with C₆⁺,r(0) the concentration of reducible Mo⁶⁺ cations at t = 0 i.e., at the time just before UV illumination, and C₅⁺(t) the concentration of photo-reduced Mo⁵⁺ ions at a given UV irradiation time t (for details of the photocoloration kinetics model, see reference 6 in the manuscript).
Table S2. Optical characteristics and coloration kinetic parameters of NaMo$_6$(Ale-4Py)$_2$ and NaKMo$_6$(Ale-4Py)$_2$ compared with those of Mo$_6$-Ale, i.e., the fastest photochromic members of the Mo$_6$(BP)$_2$ series (reference 19 in the article). The R$_{508}$(t) vs. t curve relative to the three materials are fitted as R$_{508}$(t) = a/(bt+1) + R$_{508}$(∞). R$_{508}$(∞) is the reflectivity value at the end of the photochromic process, that is at t = ∞. The a parameter is defined as a = R$_{508}$(0)-R$_{508}$(∞), i.e. the difference between the reflectivity values just before UV illumination (t = 0) and at t = ∞. The b parameter is defined as b = kc×C$_{6+}$(0), where kc is the coloration rate constant, and C$_{6+}$(0) is the initial concentration of photo-reducible Mo$^{6+}$ centers per unit volume. The coloration kinetic half-life time (t$_{1/2}$) is defined as t$_{1/2}$ = b$^{-1}$. The coloration rate constant ratio k$_i$/k$_j$ is defined as k$_i$/k$_j$ = b$_ia_j$/b$_ja_i$.

<table>
<thead>
<tr>
<th></th>
<th>NaMo$_6$(Ale-4Py)$_2$</th>
<th>NaKMo$_6$(Ale-4Py)$_2$</th>
<th>Mo$_6$-Ale</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{max} (nm)a</td>
<td>508</td>
<td>508</td>
<td>508</td>
</tr>
<tr>
<td>R$_{508}$(0)b</td>
<td>0.730</td>
<td>0.655</td>
<td>0.892</td>
</tr>
<tr>
<td>ac</td>
<td>0.655</td>
<td>0.589</td>
<td>0.799</td>
</tr>
<tr>
<td>bc</td>
<td>2.682</td>
<td>2.731</td>
<td>0.348</td>
</tr>
<tr>
<td>R$_2$d</td>
<td>0.995</td>
<td>0.998</td>
<td>0.997</td>
</tr>
<tr>
<td>t$_{1/2}$ (min)e</td>
<td>0.37</td>
<td>0.37</td>
<td>2.87</td>
</tr>
<tr>
<td>kc$_i$/kc$(\text{Mo}_6$-Ale)f</td>
<td>9.4</td>
<td>10.6</td>
<td>1</td>
</tr>
</tbody>
</table>

aPhotoinduced absorption band wavelength. b Reflectivity value before UV excitation (t = 0) at λ_{max} = 508 nm. c Salient coloration kinetic parameters. d Regression coefficient for the R(t) vs. t plots. e Coloration kinetic half-life time (min). f Coloration rate constants ratio.