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Abstract: Honey bees move through a series of in-hive tasks (e.g., 
higher levels of 

metabolic activity. Social context can cause worker bees to speed up or slow down this 
process, and foragers may revert back to their earlier in-hive tasks accompanied by 
reversion to earlier physiological states. To investigate the effects of flight, behavioral state 
and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain 
tissue and flight muscle exhibited different patterns of expression during behavioral 
transitions, with expression patterns in the brain reflecting both age and behavior, and 
expression patterns in flight muscle being primarily determined by age. Our data suggest 
that the transition from behaviors requiring little to no flight (nursing) to those requiring 
prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a 
major effect on gene expression. Following behavioral reversion there was a partial reversion 
in gene expression but some aspects of forager expression patterns, such as those for genes 
involved in immune function, remained. Combined with our real-time PCR data, these data 
suggest an epigenetic control and energy balance role in honey bee functional senescence. 
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1. Introduction 

Aerobic cellular respiration inevitably produces reactive oxygen species (ROS) that damage DNA, 
proteins, and lipids if antioxidant and repair systems are overwhelmed [1,2]. These accumulated 
effects of oxidative stress are the basis for the free radical theory of aging, which is widely researched, 
but often disputed [3], (but see [4 6]). Studies in social insects reveal ROS damage is important in 
aging, but only a single part of a more complex phenomenon [7]. Despite the controversy among 
theories of aging, evidence suggests that damage to biological macromolecules readily leads to 
premature aging, cell death, and senescence [8] unless defense systems can be up-regulated. However, 
individuals with increased antioxidant capacity are not necessarily better prepared to mitigate damage 
from ROS [9
ontogenetically across its lifetime and is affected by diet and other environmental conditions [10]. 
While metabolically-intensive behaviors and other secondary sexual traits requiring greater ability to 
mitigate ROS may be selected for as honest signals of fitness [10 12], how these physical and 
behavioral traits contribute to senescence is not well-known. Understanding how senescence occurs 
and how it is influenced by behavioral development and behavioral intensity may reveal how behavior 
itself can damage a cell and consequently limit lifespan.  

Few studies link variation in metabolically-intensive, naturally-occurring behaviors to oxidative 
stress, fitness, and lifespan [10]. In this study, we use the experimental tractability of the honey bee 
(Apis mellifera), to examine links between behavior, oxidative stress, and senescence. Senescence in 
traditional model organisms such as mice, rats, flies, and nematodes is characterized by irreversible 
aging as time progresses, while honey bee aging is directly related to behavioral state. The  
non-

foragers  in response to a multitude of environmental and physiological 
factors [13,14]. The pace of these transitions can be increased, decreased, or reversed by controlling 
these cues [15]. 

Typically, during the first 2 3 weeks of adult life, female workers perform hive maintenance and 
brood care, or nursing, during which they rarely fly. After transitioning to foraging, workers can fly 
long distances (up to 8 km) gathering nectar and pollen for several hours per day [16]. Once honey 
bees begin to forage for pollen and nectar, their aerobic metabolism greatly increases. Foraging honey 
bees have a metabolic rate of 100 120 mL O2 g  h , which is the highest mass-specific metabolic rate 
known and is 10 100 times higher than in nurse bees, which fly much less often [17]. Previous 
experiments from our laboratory suggest that the elevated metabolism of flying honey bees likely 
produces high levels of ROS that, coupled with an age-dependent decrease in antioxidant activity, 
negatively affects longevity [18]. Additionally, foraging bees show a decline in flight capacity with 
age [19] and time spent flying is negatively correlated with survivorship [20]. When the transition 
from nurse to forager is delayed, bees that stay in the hive can live up to 8 times longer than bees that 
transition  naturally [21]. 
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Another aspect of the plasticity of honey bee aging is the ability to revert from foraging tasks to  
in-hive nursing duties [22,23], with an accompanying reversion of many physiological characteristics. 
During behavioral reversion, hypopharyngeal glands (which produce food that young larvae consume 
and that atrophy in foraging bees) redevelop [24,25], juvenile hormone titers drop [22,23], and 
vitellogenin levels increase [26]. Reverted nurse bees also undergo a reversal of the immunosenescence 
observed in foraging bees [24 -related learning deficits also reverse during behavioral 
reversion [27]. Despite exhibiting many of the physiological traits of typical nurse bees, reverted nurse 
bees are not identical to typical nurse bees. Reverted nurse bees have a mixed proteomic profile that is 
similar to both nurses and foragers [28]. Additionally, some foragers appear to reach a threshold where 
they are unable to revert and continue to progress towards functional senescence [28]. It remains 
unclear if reverted nurse bees revert at the genomic level or if the effects of extended flight bouts on 
gene expression are permanent. 

Here we examine how performance of behaviors with low vs. high metabolic cost affects gene 
expression in the flight muscle and the brain as bees transition to foraging and during reversion from 
forager to nurse. We chose to do this analysis on both tissues because brain tissue is particularly 
susceptible to oxidative stress [29] and flight muscle experiences oxidative stress resulting from  
flight [18]. In these experiments, we compared whole-genome transcriptional profiles of nurse bees 
and forager bees of different ages with different flight histories, including reverted nurse bees. We 
found that patterns of transcription differ between tissues in response to flight and that these changes 
can partially revert. We identified particular transcripts involved in stress response pathways that are 
differentially expressed between bees of various ages and with various fight experiences. 

2. Experimental Section 

2.1. Field Methods 

Honey bees (Apis mellifera L.) used for this project were reared at the University of Nevada, Las 
Vegas apiary. For the microarray experiments and follow-up mRNA quantification of immune genes,  
4 source colonies headed by unrelated single-drone inseminated queens (Glenn Apiaries, Fallbrook, 
CA, USA) carrying the Minnesota (MN) varroa sensitive hygienic (VSH) genotype were used to 
obtain age/genotype-matched workers to start single-cohort colonies (SCCs). Single, drone-inseminated 
queens were chosen to head the source colonies for the microarray experiment to decrease the genetic 
variability between worker bees. From these source colonies, eight SCCs were created using a frame of 

approximately 2,000 bees originating from multiple source colonies. A SCC uses skewed colony age 
demography to induce precocious foraging in approximately 10% of the bees at 7 10 days of age, 
whereas the onset of foraging normally takes place at 21 25 days of age [30]. The SCC allows the 
effects of age and behavior to be decoupled, permitting comparison of same-aged bees with drastically 
different flight histories and bees of different ages with the same behavioral activity. 

Reversion colonies were made from 4 of the original SCC colonies (3 in June and 1 in July). 
Reversion colonies were made by collecting 1,000 3,000 19
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larvae (1st 5th instar) with occasional capped brood, one frame each of honey and pollen, one sugar 
water in-hive feeder (half filled), a small pollen patty, and a Bee Boost strip at the center as source of 
queen mandibular pheromone. Foragers from separate colonies were not mixed together. This was 
done for each of the 4 colonies in turn resulting in 4 reversion colonies. The original colonies and their 
queens were moved out of the bee yard. The reversion colonies were moved to the location of the 
parent colonies and kept closed for three days to keep the foragers inside and force some to revert. 
Although unconventional, we chose to confine bees to the colony for three days to induce more bees to 
detectably revert (as suggested by Zachary Huang pers. comm.). Using our altered methodology, more 
foragers reverted and reverted nurses were more clearly attending to brood compared to our pilot 
study, which used previously described methods that do not include confinement [24,27,28]. This set 
of manipulations induced a small portion of the foragers in each of the 4 colonies to revert to nursing 
tasks [22,23,31]. Reverted nurse bees were then identified and collected.  

In a separate follow-up experiment, additional SCCs were made to measure mRNA levels in genes 
known to play a role in aging [32 34]. Two source colonies headed by naturally-mated queens were 
used to obtain workers to start four SCCs. Each SCC contained bees from multiple colonies.  
Naturally-mated queens were used in this experiment to mimic typical hive conditions, which naturally 
have high genetic variability. Because the SCCs for the experiment above were made from only four 
source colonies headed by SDI queens, those colonies would represent at most four patrilines and four 
matrilines. In contrast, these SCCs made from source colonies with naturally mated queens like had 
10 40 times more genetic variability than SCCs in the first experiment. The SCCs were created using 
seven frames of brood from the source colonies. The frames were placed in an incubator (32 °C, 75% 
relative humidity RH, 24 h dark cycle) and newly-eclosed bees were removed from the frames every 
24 h. A SCC was formed by housing approximately 2,000 single, day-old workers from, which eclosed 
over two consecutive days, with a naturally mated queen (Koehnen Apiaries, CA, USA). These bees 
were placed in a nucleus colony containing one frame each of pollen and honey and three empty 
frames to allow the queen to lay eggs. The dorsal thorax of each bee was marked with a single dot of 
paint (Testors, Rockford, IL, USA) to indicate age, prior to placing them in their SCC. Each SCC was 
kept in the laboratory for five days post-adult emergence to allow for young worker adult maturation 
and queen egg laying before being moved to the outdoor apiary on the UNLV campus. 

2.2. Behavioral Groups 

Foraging bees were identified as bees returning to the hive with a pollen load or distended 
abdomens from nectar. Nurse bees were identified as individuals placing their heads into frame cells 
containing an egg or larva [13]. Once identified behaviorally, bees were marked with a dot of paint, 
and only marked foragers and nurses were used for these analyses. Sample sizes collected were n = 5 6 
per group for the microarray and immune gene experimental colonies and n = 12 per group for the 
aging gene experiments. Bees were immediately placed in liquid nitrogen upon collection and stored at 

. 
To separate the effects of age and behavior, nurse bees and forager bees were collected at various 

time points (8 10 days, 19 22 days, and 25 26 days) with various flight experiences ranging from less 
than one day of flight experience to over 25 days (See Table 1 for more details). For the aging genes 
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experiment, the same collection regime was followed except collection days for nurses and foragers 
were extended until 40 days past eclosion so that any pronounced changes in gene expression (mRNA 
levels) could be detected. Because this second experiment was concerned with expression of genes 
involved in aging, we did not create reversions. During all experiments, capped brood was removed 
and replaced with empty frames to encourage the queen to lay eggs normally and to prevent any new 
bees from eclosing and changing the demography of the SCCs. 

Table 1. Behavioral Groups. Group of nurse bees and forager bees with varying amounts 
of flight were used in the microarray and real-time PCR experiments. Abbreviations are 
used throughout experiments. 

Behavioral Group Abbreviation Age (days)  Days of flight 
Young nurse YN 8 to 10 < 1 

Precocious forager PF 8 to 10 2 to 3 
Older nurse ON 19 to 22 < 1 

Forager-low flight TL 19 to 22 2 to 3 
Forager-high flight TH 19 to 22 7 to 9 

Forager-old OF 25 to 26 10 to 12 
Reverted nurse RN 25 to 26 7 to 9 

2.3. RNA Extraction 

Whole bee heads and thoraces were partially lyophilized at 5]. 
Heads and thoraces were then dissected on dry ice to prevent RNA degradation. Care was taken to 
avoid including the hypopharyngeal or subesophageal glands in brain samples (leaving the optic lobes, 
antennal lobes, and mushroom bodies) and to precisely obtain the primary flight muscles of the 
thoraces. The high yields of RNA needed for microarray experiments were extracted from dissected 

s protocol 
(Molecular Devices, Sunnyvale, CA, USA). For the aging genes real-time PCR experiment, which 
required less RNA than the microarray experiment, RNA was extracted using 1 mL of Trizol reagent 
(Invitrogen, Carlsbad, CA, USA) following the manufactu  

2.4. Microarray Hybridization 

Brains and thoraces from the same individuals of all behavioral groups were compared on a total of 
132 arrays. The samples were hybridized against each other using a loop design [36] (See Figure 1  
for experiment design). The microarray hybridization procedure followed previously described 
methods [37]. Extracted total RNA, cDNA, and labeled aRNA sample concentrations were quantified 
using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 
Five hundred nanograms of RNA were amplified using the MessageAmp II aRNA amplification kit 
(Ambion, Austin, TX, USA). For each individual, 4 micrograms of brain RNA were labeled with cy3 
and 4 micrograms of thorax RNA were labeled with cy5 using a Kreatech Labeling Kit (Applied 
Biosystems, Salt Lake City, UT, USA). The directionality of the dye labeling was switched between 
replicates to avoid a dye bias. Whole genome oligonucleotide arrays (W.M Keck Center for 
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Comparative and Functional Genomics, University of Illinois, Urbana-Champaign) were hybridized 

(Molecular Devices, Sunnyvale, CA, USA) and visualized using GenePix software (Agilent 
Technologies, Santa Clara, CA, USA). Prior to data analysis, each array was visually inspected for any 
inconsistencies in dye incorporation. 

Figure 1. Microarray experimental design. The microarray experiment was designed with 
- ach arrow represents 6 arrays. YN = young nurse  

(10 days-old; <1 day flight); RN = reverted nurse (25 26 days-old; 7 9 days flight);  
OF = old forager (25 26 days-old; 10 12 days flight); TH = typical-aged forager-high 
flight (19 22 days old; 7 9 days flight); ON = older nurse (19 22 days old; <1 day flight); 
TL = typical-aged forager-low flight (19 22 days old; 2 3 days flight); PF = precocious 
forager (8 10 days old; 2 3 days flight). 

 

2.5. Microarray Data Analysis 

Analysis was implemented in R version 2.8 [38]. Data was normalized using the Limma package in 
R [39]. Spots were log-transformed and within-slide normalization was conducted using a print-tip 
Loess to correct for differences between print-tips on the array printer and variation during the print 
run [39]. No background correction was used for within-slide normalization. For between-slide 
normalization, a quantile normalization method was used [40]. Pre- and post- normalization MA plots 
were generated to ensure each array was of acceptable quality to use. To detect differential expression, 
we used a mixed-model two-way ANOVA from the MAANOVA package in R [41,42]. The model 
was fit with treatment and dye as fixed effects and array as a random effect. Contrast statements were 
used to identify transcripts that were differentially expressed between different tissues. Transcripts 
were considered differentially expressed when their interactions yielded an adjusted p-value (FDR) of 
less than 0.05 [43]. Gene ontology analysis was conducted using ArrayTrack [44]. The microarray data 
for this manuscript were submitted to the NCBI Gene Expression Omnibus database (accession 
number: GSE40650). 

2.6. Quantitative Real-Time Polymerase Chain Reaction 

We performed quantitative real-time PCR on flight muscle for 6 immunity genes and on brains and 
flight muscle for 3 aging genes that yielded statistically significant results in the microarray 
experiments. For the immunity genes, cDNA was synthesized from 200 ng of RNA used for the 
microarray experiments and for the ag
instructions using a qScript cDNA synthesis kit (Quanta Biosciences, Gaithersburg, MD, USA).  
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qRT-PCR was performed on an iCycler iQ (BioRad, Richmond, CA, USA) using the SYBR green 
detection method (Quanta Biosciences, Gaithersburg, MD, USA). Five individual thoraces were used 
for the immunity gene analysis and brains and thoraces from five different individual bees were used 
for the aging genes experiment. As a transcriptional control, mRNA levels of the genes of interest were 
measured relative to the housekeeping gene, ribosomal protein 49 (rp49). Statistical analyses were 
done using delta Ct values using a two-way analysis of variance with age and behavior as the main 
effects and colony and PCR plate as random effects in JMPv8.0 (SAS Institute, Cary, NC, USA). 

3. Results and Discussion 

3.1. Behavior Induces Dramatic Changes in Global Gene Expression of A. mellifera Brains  
and Thoraces 

In this study, we compared age-matched nurse bees and forager bees with differing amounts of prior 
flight activity to examine gene expression associated with flight in brain tissue and flight muscle. 
Using whole-genome oligonucleotide arrays, either 6 or 12 biological replicates (Figure 1) were used 
for each group involved in this analysis. By using a manipulation that causes forager bees to revert 
back to nurse bees, we were able to determine the reversibility of the transcriptional profile of these 
bees (Figure 2A). Groups more closely related in age had the most similar transcriptional patterns 
(Figure 2B). Similar to the findings of a previous study looking at brain transcriptional patterns [45], 
we found that honey bee flight induces unique patterns of expression across the genome in brain tissue, 
but in the flight muscle we saw age-related patterns of expression similar to expression patterns in 
Drosophila thoraces [46]. 

In brain tissue (Figure 2A), gene expression patterns between young, aged-matched (8 10 days old) 
nurses and foragers were the least similar. These expression differences were not as pronounced 
between older nurses (19 22 days old; <1 day flight experience) and foragers (19 22 days old;  
2 3 days flight experience or 7 to 9 days flight experience). In flight muscle (Figure 2A), reverted 
nurse transcriptional patterns were most related to older nurses (19 22 days old; <1 day flight 
experience) followed by typical-aged foragers (19 22 days old with either 2 3 days flight experience 
or 7 to 9 days flight experience). We found no effect of the number of days spent flying, independent 
of age, in either tissue. This suggests that the transition to foraging behavior and the interaction 
between age and frequent flight have more impact on gene expression and senescence than the actual 
amount of flight. Over the course of an entire foraging day, acute effects of flight have an effect on 
levels of heat shock proteins and antioxidant activity, but behavioral state (nurse or forager) does not 
have an effect [18]. Consequently, behavioral state affects many transcripts, such as those involved in 
signaling pathways. Because no transcriptional changes between high and low flight foragers were 
detected, but changes between age-matched nurses and foragers were present, this suggests the 
transcriptional differences are due to both flight and caste-specific behavioral/physiological differences. 
To fully separate acute effects of flight and effects of physiology/behavior, nurse bees with high 
amounts of flight time would be ideal. However, obtaining these bees in a natural hive or SCC is 
difficult and likely unfeasible at a large scale. To more closely examine the effects of flight, our 
ongoing studies are examining foragers restricted from flying, foragers with high and low amounts of 
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flight time, and nurse bees. Longevity in honey bees is directly related to flight activity [47]. As the 
transition from in-hive nursing tasks to outside foraging tasks occurs, senescence accelerates, and time 
spent foraging is negatively correlated with survivorship [20]. After approximately 14 days of foraging, 
foragers experience cognitive decline [48] and oxidatively-damaged proteins accumulate in the  
brain [49]. As our lab has previously shown, a decrease in antioxidant activity also occurs in forager 
and nurse flight muscle, but not the brain, of bees greater than 30 days of age [18]. As foraging time 
increases bees show a decline in flight capacity [19]. However, longevity increases when the transition 
from nurse to forager is delayed [21]. Together, the results of previous studies and the results from this 
study suggest that brain tissue and flight muscle respond differently to cellular stress. These results 
also imply that the brain is perhaps more effectively able to mitigate flight associated cellular stress. 
Flight muscle is the most metabolically active tissue in the honey bee [17]; hence it experiences greater 

become compromised as foraging time increases. Indeed our previous work suggest older foragers are 
less able to mitigate that stress [18]. Once the flight muscle is compromised, the honey bee forager is 
essentially ecologically dead even if the brain is not yet showing signs of senescence. Because brain 
tissue is particularly susceptible to stress [29], the honey bee brain may possess additional mechanisms 
to mitigate flight-associated stress that are absent in flight muscle. However, even protective mechanisms 
in the brain may be eventually overcome leading to cognitive or whole-organism functional senescence. 

Previous studies show that under certain conditions forager bees can behaviorally revert and return 
to nurse behaviors [22,23] and that this reversion is also accompanied by physiological reversions. 
During reversion, JH levels drop [22,23], vitellogenin levels increase [26], hypopharyngeal glands 
redevelop and immunosenescence reverses [24]. In general, our results reveal that, at the 
transcriptional level, there also exists a reversion, but some aspects of forager gene expression patterns 
persist (Figure 2A). This intermediate pattern of transcription is likely due to the combined effects of 
both behavioral/physiological differences between nurses and foragers as well as the effects of flight. 
In brain tissue, reverted nurse transcriptional patterns are most closely related to those of young nurses 
(8 10 days old; <1 day flight experience). However, in flight muscle, reverted nurse transcriptional 
patterns were most related to older nurses (19 22 days old; <1 day flight experience) followed by 
typical aged foragers (19 22 days old with either 2 3 days flight experience or 7 to 9 days flight 
experience). This result suggests the brain has more transcriptional plasticity than flight muscle, which 
may allow the brain to more effectively mitigate stress. 

After a small pilot study using the reversion methods of previous studies [22 24,27,28] yielded 
only a small number of reverted foragers exhibiting clear nursing behavior , we chose to modify the 
reversion method as noted above. Our modified method used queen pheromone in place of a queen, 
and confinement of foragers to the hive during the reversion time. This strategy induced more frequent 
and less ambiguous reversion perhaps because closing the colony blocks out photoperiod, allowing the 
reverted foragers to more easily assume a more nurse-like circadian rhythm. Despite these differences, 
our transcriptional data agree with Wolschin et al. [28], which show the proteomic signature of 
reverted nurses is a mix between nurses and foragers. Additionally our transcriptional data and the 
proteomic data of Baker et al. [27] show reversion affects levels of cellular stress transcripts or proteins. 
Because of experimental agreement between our results and others, we conclude that our reversion 
technique and collection regime, albeit slightly different than other reversion techniques [23,24], 
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produced a comparable reversion. While it is possible that confining foragers to the hive during 
reversion induced a stress response that altered transcriptional patterns, this response may also be 
present in other reversion techniques as reversion may be a response to colony level stress. 
Additionally, Baker et al. [27] and Wolschin et al. [28] allowed the reversion to continue longer than 
three days before collection. Thus, it is possible that some effects of reversion that do not occur 
immediately were undetectable in this study. 

Figure 2. Global expression analysis. Hierarchical clustering was performed to visualize 
global patterns of gene expression. Replicates were averaged before analysis. Each graph 
represents over 12,000 transcripts and each row of the graphs represents one transcript.  
(A) Unique patterns of transcription were seen between groups that represented various 
ages and behavioral groups with varying amounts of flight experiences. Unique expression 
patterns were also seen between tissues. (B) Hierarchical clustering reveals groups more 
closely related in age are most related. YN = young nurse (8 10 days-old; <1 day flight); 
RN = reverted nurse (25 26 days-old; 7 9 days flight); OF = old forager (25 26 days-old; 
10 12 days flight); TH = typical-aged forager-high flight (19 22 days old; 7 9 days 
flight); ON = older nurse (19 22 days old; <1 day flight); TL = typical-aged forager-low 
flight (19 22 days old; 2 3 days flight); PF = precocious forager (8 10 days old; 2 3 days 
flight). Y = young bees (8 10 days-old); O = old bees (25 26 days-old foragers;  
19 22 day-old nurses); R = reverted nurse bees (25 26 days-old; 7 9 days flight). 
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3.2. Unique and Shared Transcripts between Behaviors and Ages 

We used a two-way ANOVA to find transcriptional differences between young bees, older bees and 
reverted nurse bees as well as between different aged nurses and between different aged foragers. 
Statistically significant differences in transcript expression were found by using the false discovery 
rate for multiple comparisons. Figure 3A shows which differentially expressed transcripts were unique 
to each age comparison and which transcripts overlapped. We found 684 differentially expressed 
transcripts unique to young bees (PF and YN) compared to old bees (OF and ON) and 231 transcripts 
unique to young bees (PF and YN) compared to reverted nurse bees (RN). This result implies only a 
small subset of the genes differentially transcribed during the nurse-to-forager transition do not revert 
during reversion from forager to nurse. There were no unique transcripts when old (OF and ON) bees 
were compared to reverted nurse bees (RN). When we analyzed what transcripts were unique within 
nurses and within foragers (Figure 3B,C), we found that foragers had more differentially expressed 
transcripts than aged-matched nurses, indicating that gene expression varies with age and behavior but 
flight has a greater effect on gene expression than age. This result is not surprising because flight 
produces high levels of reactive oxygen species and flight muscle antioxidant capacity decreases with 
age [18], both of which may lead to changes in gene expression. 

3.3. Gene Ontology Analysis Reveals Age Causes a Decrease in Certain Stress and Immune Processes in 
A. mellifera 

To put the changes in gene expression we identified into a functional context, we performed a gene 
ontology and biological pathway analysis in ArrayTrack. Figure 4 shows six biological processes 
relevant to immune function and aging/senescence. In general, young bees compared to old bees had 
the most differentially expressed transcripts involved in any particular biological process, while young 
bees (PF and YN) compared to reverted nurse bees (RN) had considerably less differentially expressed 
transcripts between each other, if any at all. All three comparison groups yielded statistically significant 
enrichment of response to DNA damage stimulus (GO:0006974) and apoptosis (GO:0006915). 

In our specific comparison of old bees (ON and OF) vs. reverted bees (RN), we found two gene 
ontology categories, apoptosis (GO:0006915) and response to DNA damage stimulus (GO:0006974), 
statistically enriched. These results may suggest that reversion from forager to nurse may increase 
DNA damage repair thus decreasing apoptosis and increasing lifespan. In Drosophila, apoptosis 
increases with age, limiting lifespan [50], and so honey bees may employ a mechanism during 
behavioral reversion that could decrease apoptosis to delay functional senescence. Additionally, 
macroautophagy (GO:0016241) was significantly enriched in young (PF and YN vs. old bees (OF and 
ON) but not in any other comparisons. Under most cellular conditions, autophagy promotes cell 
survival by adapting the cell to various conditions of stress. However, if autophagic activity is lost, cell 
death is accelerated leading to functional senescence [51]. The transition to foraging behavior 
contributes to a loss of autophagy, thus increasing senescence in the honey bee. 

 
 



Insects 2013, 4 19 
 

 

Figure 3. Unique and shared transcripts. Venn diagrams were used to visualize transcripts 
unique and shared between each group. Numbers represent transcripts differentially 
expressed (FDR < 0.05). (A) Transcripts differentially expressed between young bees, old 
bees and reverted nurse bees. (B) Transcripts differentially expressed between nurse bees. 
(C) Transcripts differentially expressed between forager bees. YN = young nurse  
(8 10 days-old; <1 day flight); RN = reverted nurse (25 26 days-old; 7 9 days flight);  
OF = old forager (25 26 days-old; 10 12 days flight); TH = typical-aged forager-high 
flight (19 22 days old; 7 9 days flight); ON = older nurse (19 22 days old; <1 day flight); 
TL = typical-aged forager-low flight (19 22 days old; 2 3 days flight); PF = precocious 
forager (8 10 days old; 2 3 days flight). 
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Figure 4. Comparison of biological processes. Gene ontology analysis revealed a series of 
biological processes involved in immune function and aging/senescence that were enriched 
in each comparison. The x-axis represents the number of genes differentially expressed for 
the biological processes represented on the y-axis. Stars represent a Fisher p-value <0.05. 
YN = young nurse (8 10 days-old; <1 day flight); RN = reverted nurse (25 26 days-old; 
7 9 days flight); OF = old forager (25 26 days-old; 10 12 days flight); ON = older nurse 
(19 22 days old; <1 day flight); PF = precocious forager (8 10 days old; 2 3 days flight). 

 

3.4. KEGG Pathway Analysis Reveals Age Alters Specific Signaling Pathways in A. mellifera 

Along with the gene ontology analysis, we conducted a biological/biochemical pathway analysis to 
putatively identify pathways that differed in the expression of their constituents between 
age/behavioral groups (Figure 5). The analysis was implemented in ArrayTrack using the KEGG 
database of pathways. Similar to biological processes, young bees compared to old bees had the most 
differentially expressed transcripts in each pathway, while young bees compared to reverted nurse bees 
had far fewer differentially expressed transcripts and in some cases none at all. The oxidative 
phosphorylation, Jak-Stat, and Toll-like receptor pathway signaling pathways were not represented in 
old bees (OF and ON) compared to reverted nurse bees (RN), but pathways such as MAPK and mTOR 
were represented. These results suggest a number of distinct biochemical pathways are activated or 
repressed with age and the reversion from forager to nurse. 
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Figure 5. Comparison of signaling pathways. The KEGG database revealed pathways and 
the number of differentially expressed (FDR < 0.05) transcripts. The x-axis represents the 
number of genes differentially expressed for the biological pathway represented on the y-axis. 
YN = young nurse (8 10 days-old; <1 day flight); RN = reverted nurse (25 26 days-old; 
7 9 days flight); OF = old forager (25 26 days-old; 10 12 days flight); ON = older nurse 
(19 22 days old; <1 day flight); PF = precocious forager (8 10 days old; 2 3 days flight). 

 

3.5. Expression of Transcripts Involved in the A. mellifera Immune Response 

As nurse bees transition to foraging, systemic levels of JH increase [52], and this increase in JH is 
correlated with a dramatic loss of hemocytes [26,53,54]. With the loss of functional hemocytes, the 
nodulation response, a key aspect of the insect infection response, is lost [55,56]. Levels of both JH 
and hemocytes are restored during reversion of foraging bees to nurse bees [24]. These results suggest 
that loss of immune function may contribute to functional senescence in foraging honey bees. In a 
study measuring expression of a variety of immunity transcripts in adult worker bee abdomens Evans 
et al. [57] found 6 immunity transcripts were highly up-regulated following injection of pathogens or 

therefore, could be more important in determining immune function than its age because as intensity of 
flight activity increases, proper immune responses may decrease.  

We determined whether different amounts of flight and behavioral reversion have an effect on the 
expression of a subset of these immunity transcripts identified as differentially expressed in our flight 
muscle microarray data (Figure 6). We measured mRNA levels in 2 bee-specific immunity transcripts: 
apidaecin (apid1) and abaecin (LOC406144), 2 immune signaling pathway transcripts: Toll-like 
receptor (tlr1) and hopscotch (hop), which is part of the Jak-Stat signaling pathway, and 2 transcripts 
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involved in insect innate immunity: lysozyme (lys1) and polyphenoloxidase (ppo) using qRT-PCR. If 
the loss of immune function were primarily due to age, one would expect to see decreased expression 
of all of these immune function genes with aging in nurses as well as foragers. 

Figure 6. Expression of immune transcripts in A. mellifera flight muscle. Quantification of 
mRNA levels of bee specific immune transcripts (A, C), transcripts involved in immune 
signaling pathways (B, E), and innate immune response transcripts (D, F) revealed 
differential expression between ages and behaviors. Fold change represents the relative 
difference compared to one day old bees. 
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Expression of apidaecin mRNA (Figure 6A) was similar between bees performing different 
behaviors regardless of age and no statistically different expression patterns by age or behavior alone 
were apparent (Figure 6C). Expression of both transcripts involved in immune signaling pathways 
(toll-like receptor and hopscotch) was up-regulated with the transition to foraging and reverted nurse 
bee expression levels were more similar to those of forager bees than to nurse bees (Figure 6B,E). 
Expression of lysozyme did not statistically differ with age or behavior (Figure 6D). As foraging 
flights increased, mRNA levels of polyphenoloxidase decreased and remained lower when reverted 
bees returned to in-hive nursing tasks (Figure 6F). 

These data suggest that for nurse bees, age is not the primary influence on the expression of these 
transcripts in flight muscle. Although the expression of most immune transcripts did not change with 
age, some transcripts in flight muscle were behaviorally up-regulated as nurses transitioned to foragers. 
This transition increases levels of ROS in the flight muscle as both metabolic rate and metabolic 
capacity increase [58]. In mammals, reactive oxygen species stimulate innate immunity signal 
transduction pathways [59], such as the toll-like receptor signaling pathway [60]. Because honey bees 
have activity rates and levels of endothermy more similar to mammals than most insects, [61,62] this 
immune pathway upregulation may also occur in bees and other active, strongly endothermic insects. 
In all of the immune transcripts we measured, reverted nurse bees had mRNA levels similar to that of 
foragers, suggesting transcripts involved in the immune response may not revert during transition from 
forager to nurse. Another explanation for absence of detectable changes in reverted nurse bees may 
that reverted nurse bees were collected 3 days post-reversion and the transcriptional control 
mechanisms of immune transcripts in honey bee flight muscle may require greater than 3 days to 
revert. In Drosophila, expression of immunity genes increase with age [63], but honey bee immune 
gene transcription appears to be more tied to typical behavioral trajectories rather than age. Although 
reverted nurses experience a physiological reversion (enough to care for and feed young larvae), this 
was accompanied only by a partial genomic reversion. The linked pressures of intense flight 
metabolism and ROS production in foragers may lead to a loss of immune function that is delayed, but 
not prevented, by the reversion process. Therefore, the longevity conferred upon older nurses restricted 
to the hive [21] may be more generous than that accorded to reverted nurses that once foraged. 

3.6. Expression of Longevity Mediating Transcripts 

A large body of the research on honey bee longevity and senescence has focused on a few main 
factors such as vitellogenin expression and insulin signaling [64]. These data from our microarray 
experiment suggests additional factors for investigation. To further explore the role of aging-related 
genes identified in the GO analysis relative to behavior and age, we set up another SCC experiment 
and obtained age-matched nurse bees and forager bees at days 10, 20 and 40 post eclosion. We 
quantified brain tissue and flight muscle mRNA levels of 2 transcripts differentially expressed in our 
array analysis and known to mediate longevity in other model organisms such as flies and nematodes, 

indy), silent mating-type information regulation 2 (sirt2) (Figure 7). We chose an 
additional transcript not on the array but identified in other model organisms involved in regulating 
mitochondrial biogenesis, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
(pgc1alpha) which may be intimately connected with honey bee metabolism and senescence (Figure7). 
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Figure 7. Expression of longevity mediating transcripts in A. mellifera flight muscle and 
brain. mRNA levels of putative genes involved in aging/senescence were measured in 
brain tissue and flight muscle. Expression of (A) indy, (B) sirt2, and (C) pgc1alpha 
revealed distinct expression patterns both between tissues and within tissues. D = single 
day old bee; N = nurse; F = forager. Fold change represents the relative difference 
compared to one day old bees. 
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Although controversial, decreased activity in the indy 
intermediates, extends lifespan in Drosophila [34]. Expression of indy (Figure 7A), in both the brain 
and flight muscle, significantly increased in nurse bee mRNA between 10 days of age and 20 days, and 
then decreased to levels seen at 10 days by 40 days of age. However, single day old bees had mRNA 
levels similar to 20 day old nurse bees. These data are consistent with studies that show delaying the 
onset of foraging and remaining a nurse bee extends lifespan [21]. We did not see an effect of the 
transition to foraging on expression of indy in either brain tissue or flight muscle. This result suggests 
that the transition to foraging does not affect levels of indy, negating the potential protective effects of 
its decreased activity. 

In Drosophila increased levels of the NAD dependent histone deacetylase, sirt2, increased  
lifespan [32]. In our study, expression of sirt2 (Figure 7B) levels in the brain revealed precocious 
foragers had higher levels of sirt2 compared to their age-matched nurse-bee counterpart. There was 
also an age-related increase in nurse bees. In flight muscle, we saw an age-related increase in sirt2 
mRNA in both foragers and hive bees. Earlier up-regulation of sirt2 in brain tissue may contribute to 

-associated cellular stress better than flight muscle, which  
up-regulates sirt2 later. 

Because honey bee flight is metabolically intensive [17], high levels of ATP are needed during this 
behavior. However, mitochondrial activity has been shown to decrease with age in Drosophila [65]. In 
contrast, honey bee flight occurs towards the later part of the honey bee life cycle, thus a mechanism 
likely exists to maintain levels of ATP and mitochondrial activity. Hence, we measured levels of 
pgc1alpha, a gene involved in regulating mitochondrial biogenesis [33]. Expression of pgc1alpha 
(Figure 7C) in the brain did not significantly differ between age or behavioral groups. In flight muscle, 
however, young nurse bees (10 days old) had lower pgc1alpha mRNA levels than that of 20 or 40 day 
old nurses. Expression of pgc1alpha in forager flight muscle did not significantly differ between age or 
behavioral groups. These results may imply functional senescence is delayed by maintaining steady 
levels of pgc1alpha expression in honey bee brain tissue and flight muscle. This is consistent with the 
findings of Williams et al. (in prep), which shows foragers and nurses, regardless of age, have similar 
activity levels of citrate synthase, an extremely robust enzyme that is routinely used to estimate 
mitochondrial number [66,67]. The impaired metabolic and flight capacity of aged honey bees may 
instead be due to structural lesions in the mitochondria and the sliding filament apparatus of flight 
muscle [68,69]; a possibility we are currently investigating. 

4. Conclusions 

Brain tissue and flight muscle responded differently to the cellular stress induced by flight. Our data 
suggest that intense flight (forager) vs. little-to-no flight (nurse) has a major effect on gene expression, 
rather than smaller-scale variation flight activity. The reversion from forager to nurse was also 
accompanied by a partial genomic reversion revealed by our microarray data, but the cellular and 
genomic mechanisms of how this reversion occurs remain unclear. Upregulation of sirt2 in the brain 
during the transition from nurse to forager suggests a possible epigenetic mechanism of regulation and 
role for energy balance processes in honey bee senescence. Therefore, the behavioral and ecological 
contexts of bee flight should also be taken into account when considering the progression of honey bee 
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senescence. Although honey bee flight likely produces high levels of ROS [16], which may be a 
contributing factor to senescence, this has not been demonstrated experimentally and the ultimate 
cellular cost of foraging has yet to be determined. Understanding how variation in the timing and 
duration of foraging leads to whole-organism functional senescence and what mechanisms are 
employed to prevent senescence in old and reverted nurse bees will be important in understanding 
honey bee aging and control of aging in general. 
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