
Journal of

Low Power Electronics
and Applications

Article

SoC Hardware Implementation of Real-Time
Video Segmentation based on the Mixture of
Gaussian Algorithm

Peng Li † and Hua Tang *

Department of Electrical Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA;
lixxx988@d.umn.edu
* Correspondence: htang@d.umn.edu; Tel.: +1-218-726-7095
† Now with Intel Corporation, Hillsboro, OR 97124, USA.

Academic Editor: Alexander Fish
Received: 10 March 2017; Accepted: 7 May 2017; Published: 18 May 2017

Abstract: Video segmentation based on the Mixture of Gaussian (MoG) algorithm is widely used
in video processing systems, and hardware implementations have been proposed in the past years.
Most previous work focused on high-performance custom design of the MoG algorithm to meet
real-time requirement of high-frame-rate high-resolution video segmentation tasks. This paper
focuses on the System-on-Chip (SoC) design and the priority is SoC integration of the system for
flexibility/adaptability, while at the same time, custom design of the original MoG algorithm is
included. To maximally retain the accuracy of the MoG algorithm for best segmentation performance,
we minimally modified the MoG algorithm for hardware implementation at the cost of hardware
resources. The MoG algorithm is custom-implemented as a hardware IP (Intellectual Property), which
is then integrated within an SoC platform together with other video processing components, so that
some key control parameters can be configured on-line, which makes the video segmentation system
most suitable for different scenarios. The proposed implementation has been demonstrated and
tested on a Xilinx Spartan-3A DSP Video Starter Board. Experiment results show that under a clock
frequency of 25 MHz, this design meets the real-time requirement for VGA resolution (640 × 480) at
30 fps (frame-per-second).

Keywords: Video signal processing; Video segmentation; Mixture-of-Gaussian algorithm; Hardware
implementation; System-on-Chip

1. Introduction and Previous Work

Video segmentation is typically an indispensable part in industrial applications such as video
surveillance, object detection, recognition and tracking. Conventional video segmentation techniques
include non-adaptive methods such as static background subtraction and adaptive methods such
as frame difference (FD) [1–3]. The non-adaptive methods have almost been abandoned because
of the need for manual initialization and/or re-initialization and they are not suitable for highly
automated surveillance environments or applications. Adaptive methods that can dynamically adjust
to the environment changes are favored for improved accuracy. Besides FD, there are several other
adaptive video segmentation methods, such as median filter (MF), linear predictive filter (LPF),
Mixture-of-Gaussian (MoG), and kernel density estimation (KDE) [1–3]. More advanced algorithms
have also been continuously proposed for better accuracy (or intelligence) [4–6].

Video segmentation is arguably one of the most computational intensive steps in a typical
video processing system [7]. In our software implementation of video segmentation based on a
3-mixture MoG algorithm on an Intel i7-4790 processor, the performance was at most 2 frames per

J. Low Power Electron. Appl. 2017, 7, 12; doi:10.3390/jlpea7020012 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
http://dx.doi.org/10.3390/jlpea7020012
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2017, 7, 12 2 of 12

second with a VGA resolution of 640 × 480, which cannot meet the real-time requirement of at least
15 frames per second (fps) for most video processing applications. Therefore, in the past years, there
has been significant effort to improve real-time operation by hardware acceleration of the video
segmentation [8,9], which is also the main context of this work. However, which algorithm is selected
for video segmentation may have a significant effect on its hardware implementation. The most
sophisticated algorithm that provides optimal accuracy for video segmentation may not be a good
candidate for hardware acceleration due to realistic constraints from hardware resources and/or
tremendous complexity of hardware implementation. A qualitative comparison of several popular
algorithms has been made in [7] in terms of performance, memory requirement, segmentation quality,
and hardware complexity and we cited their results in Table 1. It can be seen that MoG may have the
best trade-off among these adaptive video segmentation algorithms.

In the past years, some work has been reported on hardware implementation/acceleration of
MoG algorithm for video segmentation [7–14]. Early work on hardware implementation of MoG
algorithm was conducted in [8,9]. Later, the work was improved in [7], in which the MoG algorithm
was customarily designed, implemented and verified using a Xilinx VirtexII pro Vp30 FPGA platform.
In custom hardware implementation, one main innovation is that the authors used a variety of memory
access reduction schemes to achieve almost 70% memory bandwidth reduction compared to the
worst-case scenario. The design in [7] can meet the real-time requirement of most high-frame-rate
high-resolution segmentation applications (such as VGA resolution of 640 × 480 at 25 fps in
real-time). [10,11] reported work to further improve the performance of MoG hardware implementation
to be able to support full high-definition (1080 × 1920) video segmentation in real-time. [10] targets a
reduction in the power consumption of an FPGA-based hardware implementation, which was claimed
to consume 600 times less power compared to the traditional embedded software implementation. [11]
presents a customized implementation of the MoG algorithm for full high-definition videos to reduce
power consumption and hardware resources after simplifying/modifying the MoG algorithm. To
further increase the performance of MoG hardware implementation, recent work in [12–14] explored to
leverage the power of modern multi-core processors and graphic-processing-units (GPU) with parallel
or vector processing techniques.

Table 1. Comparison of different adaptive video segmentation algorithms [7].

Frame Difference Median Filter Linear Predictive Filter Mixture of Guassian Kernel Density
Estimation

Algorithm
Speed Fast Fast Average Average Slow

Memory
Requirement

1 frame of
pixel data

5 to 300 frames
of pixel data 1 frame of pixel data 1 frame of k

Gaussian parameters
n frames of k

Gaussian parameters

Segmentation
Quality Worst Low Average Good Best

Hardware
Complexity Very low Average Low to average Low High

The MoG algorithm in [9–11] was implemented mainly from a custom design perspective so that
it achieves relatively high performance with a relatively low hardware complexity and small amount
of hardware resources. However, as a customized hardware implementation, the design in [9–11]
lacks adaptability/flexibility. Some key control parameters in the MoG algorithm, such as learning
rate and threshold, cannot be changed on the fly, which limits the adaptability of the design. If such
a custom design of the MoG algorithm can be embedded as hardware IP in an SoC platform that
allows easy integration into other video processing components, the overall SoC design would be
more adaptable to different scenarios or environments. The SoC design has many advantages. First,
a hardware IP can be integrated into an SoC architecture so long as it meets the specified bus standard.
The designer can design other hardware IPs based on the specified bus standard and integrate them
into the SoC architecture, and this gives flexibility that allows rapid prototype implementations of

J. Low Power Electron. Appl. 2017, 7, 12 3 of 12

different applications, such as object detection [15] or object tracking [16]. Second, with the SoC design,
configuration of algorithm-related control parameters would be much easier, which can be performed
on-line via a micro-control unit in the SoC architecture. On-line re-configuration of these parameters
would allow optimal video segmentation performance under various scenarios or environments. For
example, when the video segmentation system was used in the vehicle detection application to be
discussed in Section 4, the user may need to adjust major control parameters of the MoG algorithm
such that optimal video segmentation results are achieved in the sense that maximum vehicle detection
accuracy was observed.

Motivated by the above considerations, this paper focuses on the SoC design and the priority is
SoC integration of the system for flexibility/adaptability, while at the same time including custom
design of the original MoG algorithm. We custom-implemented the MoG algorithm as hardware
IP, and integrated it within an SoC architecture for an MoG-based video segmentation system. We
made minimal modifications to the original MoG algorithm for maximum accuracy at the expense of
hardware resources. A micro-control unit in the SoC architecture is used to configure important control
parameters of the MoG algorithm on-line. The SoC architecture has three types of bus interfaces to
allow integration of the MoG IP and other functional blocks. The proposed SoC implementation of
the video segmentation system has been tested on an SoC architecture from Xilinx Spartan-3A DSP
Video Starter Board [17]. Under a clock frequency of only 25 MHz, the proposed SoC design meets the
real-time requirement of VGA videos (with a resolution of 640 × 480) at 30 fps.

The rest of the paper is organized as follows. Section 2 briefly introduces the computation flow
of the original MoG algorithm from a hardware implementation point of view. Section 3 presents
the implementation of the MoG algorithm as hardware IP and integration of the MoG IP in an SoC
architecture for implementation of the video segmentation system. Experimental results are presented
in Section 4, and finally, conclusions are drawn in Section 5.

2. The Mixture-of-Gaussian Algorithm for Video Segmentation

The MoG algorithm for video segmentation was first proposed in [18]. This algorithm considers
the values of a pixel at a particular position (x, y) of an image over time t as a “pixel process”, and
the recent history of the pixel is modeled by a mixture of K Gaussian distributions. The probability of
observing a value of Xt is [18]:

P(Xt) =
K

∑
i=1

wi,t × η(Xi,t, µi,t, Σi,t) (1)

where Xt is the incoming pixel at time t (or frame t), K the number of Gaussian distributions, wi,t the
weighting factor, η a Gaussian probability density function, µi,t the mean value and Σi,t the covariance
matrix of the ith Gaussian distribution at time t (Σi,t = δ2

i,t I where δ2
i,t denotes the variance of the ith

Gaussian distribution at time t and I the identity matrix). In the following, we describe the computation
flow of the MoG algorithm in Figure 1 from a hardware implementation point of view.

A match is defined as the incoming pixel within J (for instance, 2.5) times the standard deviation
of the mean. The operations outlined in Step1 (in Figure 1) can be used to compute the matching
measure (denoted by t(i) in Step1) of Xt with respect to each Gaussian distribution i (i from 1 to K).

From the computed matching measures, the minimum measure (denoted by min[t(i)]) is found
together with its index r (note that the K Gaussian distributions are sorted ascendingly in terms of
weights wi at any time). If the minimum measure is larger than 0, then it means that the incoming
pixel Xt has no match against any of the K Gaussian distributions. Otherwise, Xt has a match. These
operations are outlined in Step 2 below.

J. Low Power Electron. Appl. 2017, 7, 12 4 of 12J. Low Power Electron. Appl. 2017, 7, 12 4 of 12

Figure 1. Computation flow the MoG algorithm.

Continuing in Step 3, if no match is identified in the previous step, the Gaussian distribution
with the lowest weight (which will be always the first distribution as they are sorted ascendingly in
weights ݓ) will have its mean replaced by ܺ௧ and variance initialized with a typical value (for
instance, 25) [18]. On the other hand, if a match is found at time ݐ	 against the ݎ௧	Gaussian
distribution (that has minimum matching measure from Step 2), then ݓ, ߤ, and ߜ for the next
frame at time ݐ + 1 are updated as follows [18]: ݓ,௧ାଵ = (1 − ,௧ݓ(ߙ + ,௧ାଵߤ	ߙ = (1 − ,௧ߤ(ߚ + ,௧ାଵଶߜ																		௧ܺߚ = (1 − ,௧ଶߜ(ߚ + ௧ܺ)ߚ − ,௧)்(ܺ௧ߤ − (2)																							,௧)ߤ
where ߚ ,ߙ are the learning rates to update weight, mean and variance. Note that the weight for
the matching distribution is increased. For the rest of the Gaussian distributions that do not match,
they will have their weights decreased and mean/variance kept the same, as follows: ݓ,௧ାଵ = (1 − ,௧ାଵߤ	,௧ݓ(ߙ = ,௧ାଵଶߜ 																																													,௧ߤ = ,௧ଶߜ 																																													(3)

Figure 1. Computation flow the MoG algorithm.

Continuing in Step 3, if no match is identified in the previous step, the Gaussian distribution
with the lowest weight (which will be always the first distribution as they are sorted ascendingly in
weights wi) will have its mean replaced by Xt and variance initialized with a typical value (for instance,
25) [18]. On the other hand, if a match is found at time t against the rth Gaussian distribution (that has
minimum matching measure from Step 2), then wr, µr, and δr for the next frame at time t + 1 are
updated as follows [18]:

wr,t+1 = (1 − α)wr,t + α

µr,t+1 = (1 − β)µr,t + βXt

δ2
r,t+1 = (1 − β)δ2

r,t + β(Xt − µr,t)
T(Xt − µr,t)

(2)

where α, β are the learning rates to update weight, mean and variance. Note that the weight for the
matching distribution is increased. For the rest of the Gaussian distributions that do not match, they
will have their weights decreased and mean/variance kept the same, as follows:

wi,t+1 = (1 − α)wi,t
µi,t+1 = µi,t
δ2

i,t+1 = δ2
i,t

(3)

J. Low Power Electron. Appl. 2017, 7, 12 5 of 12

In Step 4, foreground or background is declared for video segmentation outputs. When no
match is asserted from Step 2, then current observation Xt is declared as foreground for the current
pixel. In the case when a match is found, the current observation Xt would be declared a foreground
(or background) if the matching distribution, whose index is r obtained from Step 2, represents
foreground (or background). At any time t, the portion of the Gaussian distributions (B out of K) that
accounts for the background is defined to be

B = argminb

(
b

∑
i=1

wi,t > T

)
(4)

where T, the threshold, is a measure of the minimum portion of the data that is used to account for the
background. Since the K Gaussian distributions are sorted ascendingly in terms of weights wi, a simple
way to determine whether the matching Gaussian distribution indexed by r represents foreground or
background is to compare r against (K − B), as shown in Step 4 below.

Lastly in Step 5, the K Gaussian distributions are sorted ascendingly again after weight update
from the previous step, and finally the portion of them that account for the background (i.e., parameter
B) is computed, so they are ready for the operations in the next image frame.

Note that to retain maximum accuracy from the original MoG algorithm, we did not simplify the
algorithm for reduced hardware implementation complexity and hardware resources as done in [9].
Also, note that J, α, β and T should be easily adjustable for optimal video segmentation performance
depending on the scenario, for instance, a fast or slow light change environment.

3. Hardware Implementation of the MoG IP and SoC Implementation of the Video Segmentation System

With the computation flow of the MoG algorithm laid out in the previous Section, its block-level
diagram of the hardware implementation is shown in Figure 2. It was implemented in the Xilinx
Spartan-3A DSP FPGA Video Starter Board [17]. The core design of the MoG algorithm mainly consists
of the five functional blocks denoted in blue, which corresponds to the five processing steps of the
computation flow described in the last Section. The detailed circuits to implement each processing
step can be found from Figure 3 and we used a 21-stage pipeline design for these circuits.

After series transfer of the incoming pixels of the input video, each pixel was first converted
from RGB to grayscale of 8-bits, denoted by Xt in Figure 2. As the MoG IP was implemented in
Xilinx Spartan-3A DSP Video Starter Board, it utilizes three types of signal interfaces. The first one
is the video bus interface [18], which is used for incoming pixels and segmentation results of video
output. The second interface is the processor local bus (denoted as PLB in Figure 2) interface [19],
which connects the registers J, α, β and T to the micro-controller, i.e., the Xilinx MicroBlaze [20]. Each
register is assigned 8 bits (integer for J and fractional for α, β and T). The third signal interface is
the video frame buffer controller (VFBC) bus interface [21], which connects the MoG IP to Xilinx
multi-port memory controller (MPMC), and this is used to load the Gaussian distribution parameters
(such as wi,t, µi,t, δ2

i,t) from and store them to the memory. The bit width of the VFBC bus is set to
64 [17]. The mean parameter needs a minimum of 16 bits to represent its value (8-bit integer and
8-bit fractional). The variance parameter also needs a minimum of 16 bits to represent its value
(8-bit integer and 8-bit fractional). The weight parameter needs a minimum of 8 bits to represent
its value (8-bit fractional). As a result, each Gaussian distribution requires (16 + 16 + 8) = 40 bits.
Therefore, given the maximum 64 bits of the VFBC bus, the adopted hardware platform needs to use
multiple clock cycles to load and store parameters of multiple Gaussian distributions. Another 4 bits
(integer) of the VFBC bus can be used for the parameter B in equation (4) above. For a typical video of
VGA resolution (640 × 480), to store all parameters of the 3-mixture Gaussian model (i.e., K = 3), we
need 640 × 480 × 40 × 3 bits = 4.6 Mega Bytes of memory space.

J. Low Power Electron. Appl. 2017, 7, 12 6 of 12

J. Low Power Electron. Appl. 2017, 7, 12 5 of 12

In Step 4, foreground or background is declared for video segmentation outputs. When no match
is asserted from Step 2, then current observation ܺ௧ is declared as foreground for the current pixel.
In the case when a match is found, the current observation ܺ௧ would be declared a foreground (or
background) if the matching distribution, whose index is ݎ obtained from Step 2, represents
foreground (or background). At any time ݐ, the portion of the Gaussian distributions (ܤ out of ܭ)
that accounts for the background is defined to be

ܤ = ݊݅݉݃ݎܽ ൭ݓ,௧ > ܶ
ୀଵ ൱																															(4)

where ܶ, the threshold, is a measure of the minimum portion of the data that is used to account for
the background. Since the ܭ Gaussian distributions are sorted ascendingly in terms of weights ݓ,
a simple way to determine whether the matching Gaussian distribution indexed by ݎ represents
foreground or background is to compare ݎ against (ܭ − .as shown in Step 4 below ,(ܤ

Lastly in Step 5, the ܭ Gaussian distributions are sorted ascendingly again after weight update
from the previous step, and finally the portion of them that account for the background (i.e.
parameter ܤ) is computed, so they are ready for the operations in the next image frame.

Note that to retain maximum accuracy from the original MoG algorithm, we did not simplify
the algorithm for reduced hardware implementation complexity and hardware resources as done in
[9]. Also, note that ܬ	 ߙ , ߚ , and ܶ should be easily adjustable for optimal video segmentation
performance depending on the scenario, for instance, a fast or slow light change environment.

3. Hardware Implementation of the MoG IP and SoC Implementation of the Video Segmentation
System

With the computation flow of the MoG algorithm laid out in the previous Section, its block-level
diagram of the hardware implementation is shown in Figure 2. It was implemented in the Xilinx
Spartan-3A DSP FPGA Video Starter Board [17]. The core design of the MoG algorithm mainly
consists of the five functional blocks denoted in blue, which corresponds to the five processing steps
of the computation flow described in the last Section. The detailed circuits to implement each
processing step can be found from Figure 3 and we used a 21-stage pipeline design for these circuits.

Figure 2. Hardware implementation of the MoG algorithm.
Figure 2. Hardware implementation of the MoG algorithm.

J. Low Power Electron. Appl. 2017, 7, 12 6 of 12

Figure 3. Circuit implementations for Step 1 (a), Step 2 (b), Step 3 (c), Step 4 (d) and Step 5 (e).

After series transfer of the incoming pixels of the input video, each pixel was first converted
from RGB to grayscale of 8-bits, denoted by ܺ௧ in Figure 2. As the MoG IP was implemented in Xilinx
Spartan-3A DSP Video Starter Board, it utilizes three types of signal interfaces. The first one is the
video bus interface [18], which is used for incoming pixels and segmentation results of video output.
The second interface is the processor local bus (denoted as PLB in Figure 2) interface [19], which
connects the registers ߚ ,ߙ ,ܬ and ܶ to the micro-controller, i.e. the Xilinx MicroBlaze [20]. Each
register is assigned 8 bits (integer for ܬ and fractional for ߚ ,ߙ and ܶ). The third signal interface is
the video frame buffer controller (VFBC) bus interface [21], which connects the MoG IP to Xilinx
multi-port memory controller (MPMC), and this is used to load the Gaussian distribution parameters

Figure 3. Circuit implementations for Step 1 (a), Step 2 (b), Step 3 (c), Step 4 (d) and Step 5 (e).

J. Low Power Electron. Appl. 2017, 7, 12 7 of 12

As we mentioned in Section 1, if the custom hardware implementation of the MoG algorithm can
be embedded as hardware IP in a System-on-Chip (SoC) platform that allows easy integration to other
video processing and control components, the overall SoC system is more flexible and adaptable. With
this motivation, we integrated the custom-implemented MoG IP described above to other functional
blocks (denoted in green and blue) within a SoC architecture as shown in Figure 4. In our example
implementation, the adopted SoC architecture is from the Xilinx Spartan-3A DSP FPGA Video Starter
board [17]. Except for the MoG IP, which is customarily designed, all other functional blocks are
available from the board (UART stands for Universal Asynchronous Receiver/Transmitter and I2C for
Inter-Integrated Circuit) [17].

J. Low Power Electron. Appl. 2017, 7, 12 7 of 12

(such as ݓ,௧, ,,௧ߤ ,௧ଶߜ) from and store them to the memory. The bit width of the VFBC bus is set to 64
[17]. The mean parameter needs a minimum of 16 bits to represent its value (8-bit integer and 8-bit
fractional). The variance parameter also needs a minimum of 16 bits to represent its value (8-bit
integer and 8-bit fractional). The weight parameter needs a minimum of 8 bits to represent its value
(8-bit fractional). As a result, each Gaussian distribution requires (16 + 16 + 8) = 40 bits. Therefore,
given the maximum 64 bits of the VFBC bus, the adopted hardware platform needs to use multiple
clock cycles to load and store parameters of multiple Gaussian distributions. Another 4 bits (integer)
of the VFBC bus can be used for the parameter B in equation (4) above. For a typical video of VGA
resolution (640 × 480), to store all parameters of the 3-mixture Gaussian model (i.e. ܭ = 3), we need
640 × 480 × 40 × 3 bits = 4.6 Mega Bytes of memory space.

As we mentioned in Section I, if the custom hardware implementation of the MoG algorithm can
be embedded as hardware IP in a System-on-Chip (SoC) platform that allows easy integration to
other video processing and control components, the overall SoC system is more flexible and
adaptable. With this motivation, we integrated the custom-implemented MoG IP described above to
other functional blocks (denoted in green and blue) within a SoC architecture as shown in Figure 4.
In our example implementation, the adopted SoC architecture is from the Xilinx Spartan-3A DSP
FPGA Video Starter board [17]. Except for the MoG IP, which is customarily designed, all other
functional blocks are available from the board (UART stands for Universal Asynchronous
Receiver/Transmitter and I2C for Inter-Integrated Circuit) [17].

Figure 4. SoC implementation of the video segmentation system with embedded MoG IP.

After embedding the MoG IP in the SoC architecture, the overall video segmentation system
works under three clock domains. The components connected to PLB bus work under the 62.5 MHz
clock. The components connected to Video Bus and VFBC work under the 25 MHz clock domain. The
DDR2 SRAM (not shown in Figgure. 4) connected to the MPMC work under the 250 MHz clock
domain. Some components connected to both PLB and Video Bus, such as Camera Processing and
MoG IP, work under two clock domains. MPMC is the only component that works under all of the
three clock domains.

One of the main advantages of the proposed SoC implementation of the video segmentation
system is that the system is very adaptable as most of the components are connected to micro-
controller (i.e. the MicroBlaze) via PLB and these components can communicate with each other via
the micro-controller. For example, if it is desired to change or reset the learning rate ߙ of the MoG
IP via UART, one can send commands to UART first, and then to the micro-controller via PLB. Once
the micro-controller receives these commands, it will configure the value of register ߙ to the desired
one via PLB. This process is independent from video processing, which means that the configuration
can be performed on-line. In the MoG IP, the configurable parameters are ߚ ,ߙ ,ܬ and ܶ. Users can
configure these parameters on-line to most ideal values experimentally depending the specific
scenario for optimal video segmentation performance. On the other hand, since video segmentation
based on MoG typically plays a pre-processing role in many larger applications such as video
surveillance, object detection, and object tracking, an SoC platform is flexible to allow rapid
prototyping of diverse applications. For example, if the designer targets object detection [15] or

Figure 4. SoC implementation of the video segmentation system with embedded MoG IP.

After embedding the MoG IP in the SoC architecture, the overall video segmentation system
works under three clock domains. The components connected to PLB bus work under the 62.5 MHz
clock. The components connected to Video Bus and VFBC work under the 25 MHz clock domain.
The DDR2 SRAM (not shown in Figure 4) connected to the MPMC work under the 250 MHz clock
domain. Some components connected to both PLB and Video Bus, such as Camera Processing and
MoG IP, work under two clock domains. MPMC is the only component that works under all of the
three clock domains.

One of the main advantages of the proposed SoC implementation of the video segmentation
system is that the system is very adaptable as most of the components are connected to micro-controller
(i.e., the MicroBlaze) via PLB and these components can communicate with each other via the
micro-controller. For example, if it is desired to change or reset the learning rate α of the MoG
IP via UART, one can send commands to UART first, and then to the micro-controller via PLB. Once
the micro-controller receives these commands, it will configure the value of register α to the desired
one via PLB. This process is independent from video processing, which means that the configuration
can be performed on-line. In the MoG IP, the configurable parameters are J, α, β and T. Users can
configure these parameters on-line to most ideal values experimentally depending the specific scenario
for optimal video segmentation performance. On the other hand, since video segmentation based
on MoG typically plays a pre-processing role in many larger applications such as video surveillance,
object detection, and object tracking, an SoC platform is flexible to allow rapid prototyping of diverse
applications. For example, if the designer targets object detection [15] or tracking [16], additional video
processing modules such as filtering and tracking, could be designed and integrated within the SoC
platform for rapid prototyping of the application.

4. Experiment Results and Applications

The proposed SoC implementation of the video segmentation system based on the MoG algorithm
has been fully tested and verified using the Xilinx Spartan-3A DSP FPGA Video Starter Board [17].
The critical path delay of the MoG hardware IP is 7.77 ns. The overall design takes 14 k Slices, 12 k

J. Low Power Electron. Appl. 2017, 7, 12 8 of 12

Slice Flip Flops, 15 k 4-Input LUTs, 77 BRAMs, 11 DSP48As, and 2 DCMs. The utilization of the FPGA
hardware resources for the implementation is shown in Table 2, and Table 3 shows the hardware
resources for each major functional block in the video segmentation system in Figure 4.

Table 2. Summary of utilization of hardware resources.

Logic No. of Used Utilization

Slice Flip Flops 12,410 26%
4-input LUTs 15,921 33%

Occupied Slices 14,265 60%
DCMs 2 25%

BRAMs 77 61%
DSP48As 11 8%

Table 3. Hardware resources of different blocks in the video segmentation system.

Logic Block Flip Flops 4-Input LUTs BRAMs

Camera In 10 0 0
Camera Processing 992 1073 3

Gamma 95 62 3
MPMC 7040 7933 43
DVI out 29 1 0
UART 146 134 0

I2C 382 494 0
MicroBlaze 1676 2639 4

MOG IP 1278 2481 0

An sample output of field testing of the video segmentation system is shown in Figure 5 when
targeting walking pedestrians in an indoor office environment (J = 2.5, α = β = 0.0625 and T = 0.75).
Figure 6 shows the segmentation results targeting moving vehicles at an outdoor intersection. These
sample outputs (before morphological processing) have been compared to the ground truth from
the pure software implementation of the video segmentation system based on the original MoG
algorithm, and it was found the outputs were almost 100% accurate when counting the numbers of
matched segmentation results among all pixels in the images. Experiments show that the proposed
SoC implementation can support VGA resolution (640 × 480) at 30 fps in real-time under 25 MHz
clock frequency. A performance summary of the video segmentation system in given in Table 4.

Table 4. Performance summary of the implementation.

Resolution 640 × 480

Throughput 321 MB/s
Frame rate 30 fps

No. of Gaussian 3
PLB clock
frequency 62.5 MHz

Video Bus clock
frequency 25 MHz

DDR2 clock
frequency 250 MHz

J. Low Power Electron. Appl. 2017, 7, 12 9 of 12

J. Low Power Electron. Appl. 2017, 7, 12 9 of 12

Table 4. Performance summary of the implementation.

Resolution 640 × 480
Throughput 321 MB/s
Frame rate 30 fps

No. of Gaussian 3
PLB clock frequency 62.5 MHz

Video Bus clock frequency 25 MHz
DDR2 clock frequency 250 MHz

Figure 5. Video Segmentation Results for an Indoor Pedestrian.

Figure 6. Video Segmentation Results for Outdoor Moving Vehicles.

Such an SoC implementation of the video segmentation system can be used in rapid prototyping
of many industrial applications. We show an example of applying the system for rapid prototyping
of a vehicle detection application for vehicle merging assistance. A separate object detection module
was designed to extract the segmented vehicles from the MoG IP, and integrated within the same
SoC design. If vehicles at both merging lanes were detected, a warning signal is issued and wirelessly
transmitted to a nearby traffic message board to turn on, for example, the flashing lights to alert the
drivers on both lanes to prevent collision. The overall hardware prototype system is shown in Figure
7 and it has been successfully tested at the intersection of I35 highway and Route 53 in Duluth
Minnesota where two ramp lanes merge into one [22]. In this specific application, optimal video
segmentation results in terms of maximum vehicle detection accuracy was achieved by adjusting
major control parameters of the MoG algorithm.

Figure 7. Application of the proposed SoC implementation of video segmentation to object detection
for vehicle merging assistance.

Finally, we made a comparison of the proposed SoC implementation of the video segmentation
system with other relevant works reported [7–11]. The designs reported in [7–11] all had the custom
design perspective, and the priority was to have a high-performance design with reasonable accuracy
while reducing the amount of hardware resources and power consumption. With that perspective,
the design in [7–11] first modified and simplified the MoG algorithm for reduced hardware

Figure 5. Video Segmentation Results for an Indoor Pedestrian.

J. Low Power Electron. Appl. 2017, 7, 12 9 of 12

Table 4. Performance summary of the implementation.

Resolution 640 × 480
Throughput 321 MB/s
Frame rate 30 fps

No. of Gaussian 3
PLB clock frequency 62.5 MHz

Video Bus clock frequency 25 MHz
DDR2 clock frequency 250 MHz

Figure 5. Video Segmentation Results for an Indoor Pedestrian.

Figure 6. Video Segmentation Results for Outdoor Moving Vehicles.

Such an SoC implementation of the video segmentation system can be used in rapid prototyping
of many industrial applications. We show an example of applying the system for rapid prototyping
of a vehicle detection application for vehicle merging assistance. A separate object detection module
was designed to extract the segmented vehicles from the MoG IP, and integrated within the same
SoC design. If vehicles at both merging lanes were detected, a warning signal is issued and wirelessly
transmitted to a nearby traffic message board to turn on, for example, the flashing lights to alert the
drivers on both lanes to prevent collision. The overall hardware prototype system is shown in Figure
7 and it has been successfully tested at the intersection of I35 highway and Route 53 in Duluth
Minnesota where two ramp lanes merge into one [22]. In this specific application, optimal video
segmentation results in terms of maximum vehicle detection accuracy was achieved by adjusting
major control parameters of the MoG algorithm.

Figure 7. Application of the proposed SoC implementation of video segmentation to object detection
for vehicle merging assistance.

Finally, we made a comparison of the proposed SoC implementation of the video segmentation
system with other relevant works reported [7–11]. The designs reported in [7–11] all had the custom
design perspective, and the priority was to have a high-performance design with reasonable accuracy
while reducing the amount of hardware resources and power consumption. With that perspective,
the design in [7–11] first modified and simplified the MoG algorithm for reduced hardware

Figure 6. Video Segmentation Results for Outdoor Moving Vehicles.

Such an SoC implementation of the video segmentation system can be used in rapid prototyping
of many industrial applications. We show an example of applying the system for rapid prototyping
of a vehicle detection application for vehicle merging assistance. A separate object detection module
was designed to extract the segmented vehicles from the MoG IP, and integrated within the same SoC
design. If vehicles at both merging lanes were detected, a warning signal is issued and wirelessly
transmitted to a nearby traffic message board to turn on, for example, the flashing lights to alert the
drivers on both lanes to prevent collision. The overall hardware prototype system is shown in Figure 7
and it has been successfully tested at the intersection of I35 highway and Route 53 in Duluth Minnesota
where two ramp lanes merge into one [22]. In this specific application, optimal video segmentation
results in terms of maximum vehicle detection accuracy was achieved by adjusting major control
parameters of the MoG algorithm.

J. Low Power Electron. Appl. 2017, 7, 12 9 of 12

Table 4. Performance summary of the implementation.

Resolution 640 × 480
Throughput 321 MB/s
Frame rate 30 fps

No. of Gaussian 3
PLB clock frequency 62.5 MHz

Video Bus clock frequency 25 MHz
DDR2 clock frequency 250 MHz

Figure 5. Video Segmentation Results for an Indoor Pedestrian.

Figure 6. Video Segmentation Results for Outdoor Moving Vehicles.

Such an SoC implementation of the video segmentation system can be used in rapid prototyping
of many industrial applications. We show an example of applying the system for rapid prototyping
of a vehicle detection application for vehicle merging assistance. A separate object detection module
was designed to extract the segmented vehicles from the MoG IP, and integrated within the same
SoC design. If vehicles at both merging lanes were detected, a warning signal is issued and wirelessly
transmitted to a nearby traffic message board to turn on, for example, the flashing lights to alert the
drivers on both lanes to prevent collision. The overall hardware prototype system is shown in Figure
7 and it has been successfully tested at the intersection of I35 highway and Route 53 in Duluth
Minnesota where two ramp lanes merge into one [22]. In this specific application, optimal video
segmentation results in terms of maximum vehicle detection accuracy was achieved by adjusting
major control parameters of the MoG algorithm.

Figure 7. Application of the proposed SoC implementation of video segmentation to object detection
for vehicle merging assistance.

Finally, we made a comparison of the proposed SoC implementation of the video segmentation
system with other relevant works reported [7–11]. The designs reported in [7–11] all had the custom
design perspective, and the priority was to have a high-performance design with reasonable accuracy
while reducing the amount of hardware resources and power consumption. With that perspective,
the design in [7–11] first modified and simplified the MoG algorithm for reduced hardware

Figure 7. Application of the proposed SoC implementation of video segmentation to object detection
for vehicle merging assistance.

Finally, we made a comparison of the proposed SoC implementation of the video segmentation
system with other relevant works reported [7–11]. The designs reported in [7–11] all had the custom
design perspective, and the priority was to have a high-performance design with reasonable accuracy
while reducing the amount of hardware resources and power consumption. With that perspective, the

J. Low Power Electron. Appl. 2017, 7, 12 10 of 12

design in [7–11] first modified and simplified the MoG algorithm for reduced hardware implementation
complexity and hardware resources at the cost of algorithm accuracy. For example, the design
in [7] simplified Step 5 (see Section 2) by simply comparing the individual weights instead of
summation of weights against a threshold value, which reduces segmentation accuracy when the
background distribution does not dominate the Gaussian distributions (and this happens when
foreground appearance is relatively frequent). In addition, the design in [7] simplified Step 3 when
computing µi,t, δ2

i,t by skipping multiplication operations involving learning rates α, β and instead
used incremental addition of 1/-1, which also significantly reduced memory bandwidth by neglecting
the fraction portion of µi,t and δ2

i,t. Compared to the design in [7–11], our proposed design has the SoC
design perspective and the priority is SoC integration of the system for flexibility/adaptability, while
at the same time includes custom design of the original MoG algorithm. From such a perspective, note
that the proposed design is more flexible than those in [7–11] thanks to the SoC integration, which
allows users to configure parameters on-line for optimal video segmentation performance depending
on the specific scenario. On the other hand, additional video processing components such as filtering
and morphological operations, object extraction, etc., can be developed and integrated within the same
SoC platform, which makes it flexible to allow fast prototype implementations of different applications
such as video surveillance, object recognition and object tracking. Also note that the proposed design
retains the original MoG algorithm with minimal modification for best accuracy at the cost of more
hardware resources and design complexity.

A comparison of the two designs in terms of hardware resources is given in Table 5, and it is seen
that our design consumes more hardware resources than [7] due to limited algorithm simplification.
On the other hand, there is a clear tradeoff between flexibility of the proposed SoC design and extra
hardware resources compared to the previous work [7]. A comparison of their performances is shown
in Table 5 as well. Basically, the two designs have almost the same performance in terms of processing
speed. Finally, note that the proposed design (and also the design in [7]) can further improve its
performance if modern, more advanced hardware platforms were used as in [10,11]. For example, in
our design, increments of the bit-width of the VFBC bus and clock frequency would allow support of
higher resolutions. As a reference, the recent design presented in [11] can support full HD (1920 × 1080)
segmentation at 90 fps when implementing the MoG algorithm from the OpenCV library on a Virtex6
FPGA, which makes the design 18 times faster than our design.

Table 5. A comparison of the Hardware Resources and Performance Measures.

Design in [7] The Proposed Design

of Slices 6,107 14,625
of Flip Flops 4,273 12,410

of DCMs 5 2
of BRAMS 84 77
Resolution 640 × 480 640 × 480
Frame rate 25 fps 30 fps

Throughput 170 MB/s 321 MB/s
of Gaussian 3 3

5. Conclusions

This paper presents an SoC hardware implementation of real-time video segmentation system
based on the MoG algorithm. Compared to previous designs from custom design perspective
for high-performance (i.e., support of higher resolution, reduced hardware sources and power
consumption), the proposed design is undertaken from the SoC integration perspective for
flexibility/adaptability. We first custom-implemented hardware IP for the MoG algorithm and then
integrated it to other video processing components in a SoC architecture. When designing the MoG IP,
we targeted the original MoG algorithm without simplification at the cost of hardware resources and

J. Low Power Electron. Appl. 2017, 7, 12 11 of 12

complexity. The SoC design not only makes the overall system more adaptable to different scenarios
via on-line parameter control, but also flexible to allow easy integration of other hardware IPs for
rapid prototyping of diverse applications. The proposed implementation has been demonstrated and
tested on the Xilinx Spartan-3A DSP Video Starter Board. Experiment results show that under a clock
frequency of 25 MHz, this design meets real-time video segmentation for VGA resolution (640 × 480)
at 30 fps (frame-per-second). Such an SoC implementation of the video segmentation system can be
used in rapid prototyping of many industrial applications. In future work, we look to improve the
SoC design so that not only major control parameters of the MoG algorithm can be configured but also
the algorithm design itself (such as number of Gaussian distributions, bit width, etc.) such that is can
be more flexible in different applications.

Acknowledgments: The study was funded by the Intelligent Transportation Systems (ITS) Institute, a program
of the University of Minnesota’s Center for Transportation Studies (CTS). Financial support was provided by
the United States Department of Transportation’s Research and Innovative Technologies Administration (RITA).
The project was also supported by the Northland Advanced Transportation Systems Research Laboratories
(NATSRL), a cooperative research program of the Minnesota Department of Transportation, the ITS Institute, and
the University of Minnesota Duluth Swenson College of Science and Engineering.

Author Contributions: Peng Li designed and implemented the circuits and system while he was a graduate
student under Hua Tang’s supervision. Peng Li wrote the paper, which was significantly revised by Hua Tang.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Wang, L.; Yung, N. Extraction of Moving Objects From Their Background Based on Multiple Adaptive
Thresholds and Boundary Evaluation. IEEE Trans. Intell. Transp. Syst. 2010, 11, 40–51. [CrossRef]

2. Hsieh, J.-W.; Yu, S.-H.; Chen, Y.-S.; Hu, W.-F. Automatic Traffic Surveillance System for Vehicle Tracking and
Classification. IEEE Trans. Intell. Transp. Syst. 2006, 7, 179–186. [CrossRef]

3. Benezeth, Y.; Jodoin, P.; Emile, B.; Laurent, H.; Rosenberger, C. Comparative study of background subtraction
algorithms. J. Electron. Imaging 2010, 19. [CrossRef]

4. Grundmann, M.; Kwatra, V.; Han, M.; Essa, I. Efficient Hierarchical Graph-Based Video Segmentation.
In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–18 June 2010. [CrossRef]

5. Kita, Y. Background Modeling by Combining Joint Intensity Histogram with Time-Sequential Data.
In Proceedings of the International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010;
pp. 991–994.

6. Yagi, R.; Kajimoto, T.; Nishitani, T. GMM Foreground Segmentation Processor based on Address Free Pixel
Streams. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Kyoto, Japan, 25–30 March 2012; pp. 1653–1656.

7. Jiang, H.; Ardo, H.; Öwall, V. A Hardware Architecture for Real-Time Video Segmentation Utilizing Memory
Reduction Techniques. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 226–236. [CrossRef]

8. Jiang, H.; Ardo, H.; Öwall, V. Hardware Accelerator Design for Video Segmentation with multi-Modal
Background Modeling. In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe,
Japan, 23–26 May 2005; pp. 1142–1145.

9. Kristensen, F.; Hedberg, H.; Jiang, H.; Nilsson, P.; Öwall, V. An embedded real-time surveillance system:
Implementation and evaluation. J. VLSI Signal Process. Syst. 2008, 52, 75–94. [CrossRef]

10. Tabkhi, H.; Sabbagh, M.; Schirner, G. A Power-efficient FPGA-based Mixture-of-Gaussian (MoG) Background
Subtraction for Full-HD Resolution. In Proceedings of the IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, Boston, MA, USA, 11–13 May 2014; p. 241.

11. Genovese, M.; Napoli, E. ASIC and FPGA Implementation of the Gaussian Mixture Model Algorithm for
Real-Time Segmentation of High Definition Video. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22,
537–547. [CrossRef]

http://dx.doi.org/10.1109/TITS.2009.2026674
http://dx.doi.org/10.1109/TITS.2006.874722
http://dx.doi.org/10.1117/1.3456695
http://dx.doi.org/10.1109/CVPR.2010.5539893
http://dx.doi.org/10.1109/TCSVT.2008.2009244
http://dx.doi.org/10.1007/s11265-007-0100-7
http://dx.doi.org/10.1109/TVLSI.2013.2249295

J. Low Power Electron. Appl. 2017, 7, 12 12 of 12

12. Carr, P. GPU accelerated multimodal background subtraction. In Proceedings of the Digital Image
Computing: Techniques and Applications, Canberra, Australia, 1–3 December 2008; pp. 279–286.

13. Pham, V.; Vo, P.; Vu, H.T.; Bac, L. GPU implementation of extended gaussian mixture model for background
subtraction. In Proceedings of the IEEE RIVF International Conference on Computing and Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF), Hanoi, Vietnam, 1–4 November 2010;
pp. 1–4.

14. Popa, S.; Crookes, D.; Miller, P. Hardware Acceleration of Background Modeling in the Compressed Domain.
IEEE Trans. Inf. Forensics Secur. 2013, 8, 1562–1574. [CrossRef]

15. Kryjak, T.; Komorkiewicz, M.; Gorgon, M. Real-time moving object detection for video surveillance system
in FPGA. In Proceedings of the International Conference on Design and Architectures for Signal and Image
Processing (DASIP), Tampere, Finland, 2–4 November 2011; pp. 1–8.

16. Li, Y.; Sun, P. The Design of Embedded Video-Based Vehicle Tracking System. In Proceedings of the
International Conference on Digital Manufacturing and Automation, Qingdao, China, 29–30 June 2013;
pp. 1437–1440.

17. Spartan-3A DSP FPGA Video Starter Kit User Guide; Xilinx Inc.: San Jose, CA, USA, 2008.
18. Stauffer, C.; Grimson, W. Adaptive Background Models for Real-time Tracking. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, 23–25 June 1999;
pp. 246–252.

19. Processor Local Bus (PLB) v4.6 (v1.04a)-Product Specification; Xilinx Inc.: San Jose, CA, USA, 2009.
20. MicroBlaze Processor Reference Guide; Xilinx Inc.: San Jose, CA, USA, 2009.
21. Multi-Port Memory Controller (MPMC) (v5.04.a)-Product Specification; Xilinx Inc.: San Jose, CA, USA, 2009.
22. Google maps. Available online: https://www.google.com/maps/@46.7657689,-92.1226375,19z (accessed on

8 December 2016).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIFS.2013.2276753
https://www.google.com/maps/@46.7657689,-92.1226375,19z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Previous Work
	The Mixture-of-Gaussian Algorithm for Video Segmentation
	Hardware Implementation of the MoG IP and SoC Implementation of the Video Segmentation System
	Experiment Results and Applications
	Conclusions

