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Abstract: A cyber-physical system (CPS) is composed of interdependent physical-resource and
cyber-resource networks that are tightly coupled. The malfunction of nodes in a network may trigger
failures to the other network and further cause cascading failures, which would potentially lead to
the complete collapse of the entire system. The number and communication of operating nodes at
stable state are closely related to the initial failure nodes and the topology of the network system.
To address this issue, this paper studies the survivability of CPS in the presence of initial failure
nodes, proposes (m, k)—survivability, which is defined as the probability that at least k nodes are still
working in CPS after m nodes are attacked, and discusses the problem of cascading failure based on
reliability (CFR). Further, we propose an algorithm to calculate (m, k)—survivability and find that the
minimum survivability of system with regular allocation strategy decreases with k for a fixed m, and
the proportion of initial failure node groups that cause the system to completely fragment increases
with m. The simulation shows the properties and the result of CFR of the system with 12 nodes.
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1. Introduction

A CPS consists of a physical network and a cyber network that are tightly coupled together and
has been widely applied in many fields. Smart grid is a typical application of CPS. A power grid is
covered on the computer network to realize the automation of the power grid and improve efficiency.
The most striking feature of CPS is interdependency. Although interdependent networks make the
system more intelligent and complex, Vespignani [1] showed that the system has greater vulnerability
than a single network when facing attacks, failures, and natural disasters. A random removal of a
small fraction of nodes from one network can cause an iterative cascade of failures in interdependent
network and further lead to a disastrous impact on the overall cyber-physical system, such as 2003
blackout in the Northeastern United States and Southeastern Canada [2], and the electrical blackout
that cause many losses in Italy on 28 September 2003 [3]. The cascading effect is one of the important
characteristics of CPS. In the case of initial random node failures, cascading failures sometimes may
not trigger complete collapse of CPS, resulting in several surviving nodes at steady state, such as
micro grids. The network performance of surviving nodes is also an important issue to be addressed.
In engineering, survivability is the quantified ability of a system, subsystem, equipment, process,
or procedure to continue to function during and after a natural or man-made disturbance [4]. For CPS,
the steady state is absolutely a subsystem of CPS and obtained after disturbance, i.e., random node
failures. Survivability is consistent with the issue we address. Further, we focus on the communication
ability of surviving nodes at steady state. Fortunately, reliability is an effective parameter to evaluate
network performance and has been utilized in CPS [5]. In this article, we study the survivability of
CPS based on reliability. For convenience, some definitions are listed as follows:
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Definition 1 [6]. Suppose the edges of graph G never fail and the nodes fail independently with probability
1 − p, then the reliability of graph G is

R(G) =
n

∑
r=1

Sr(G)Pr(1− p)n−r (1)

where Sr(G) is the number of connected induced subgraphs of graph G that contain exactly r nodes.

All-terminal reliability with node failures describes the connectivity of all nodes in one network.
Based on all-terminal reliability theory, Zhang et al. [5] gave k-reliability (denoted by Rk) which was
defined as the probability that at least k surviving nodes of set V span an operating subgraph and
defined cascading failures on reliability (CFR).

Definition 2 [5]. CFR, given constants k and R0, if the number of surviving nodes at steady state in the case of
random node failures is smaller than k or the k-reliability of steady state Rk < R0, then random node failures have
caused CFR of the CPS.

The definition is based on all-terminal reliability with node failures. For interdependence,
cascading failures may occur after some nodes are attacked. All-terminal reliability with node failures
can describe the connectivity of two networks. Therefore, it can represent the ability that the system
can meet the required level of service when a certain number of nodes fail.

Based on these definitions, we propose (m, k)—survivability, which is defined as the probability
that at least k nodes are still working in CPS after m nodes are attacked, and discuss the problem
of cascading failure based on reliability. The proposed (m, k)—survivability reflects the connectivity
of nodes in networks and illustrates the probability that the system meets the service requirements.
Further, we propose an algorithm to calculate (m, k)—survivability and find that the minimum
survivability of the system with a regular allocation strategy decreases with k for a fixed m, and the
proportion of initial failure node groups that cause a system to fragment increases with m.

The rest of this paper is organized as follows. Section 2 shows background and related work.
In Section 3, we introduce the definition of (m, k)—survivability and analyze cascading failures.
Section 4 gives simulation and experiment to survivability of a CPS. The analysis and conclusion
appear in Sections 5 and 6, respectively.

2. Background and Related Work

The fragility of interdependent networks and designation of robust networks have been hot
spots for CPS. Buldrev et al. [3] put forward a “one-to-one correspondence” model for interdependent
networks and studied its robustness. They found that a random removal of a small fraction of nodes
from one network can cause cascading failures and even complete fragmentation of interdependent
networks. In order to estimate the robustness of the system, they calculated the size of functioning parts
for each stage of cascading failures. Moreover, they presented a critical threshold pc and showed that if
the fraction of node failures 1 − p in one network satisfies pc ≤ p, the two networks will completely
fragment. Some literature [3] has received widespread attention and has aroused the interest of
researchers in interdependent networks. Further research appears in different directions [7–9].
For instance, Buldyrev et al. [7] also considered the model in the case of “one-to-one correspondence,”
but the difference from [3] is that mutually dependent nodes are assumed to have the same intraedges
in their own networks. Shao et al. [9] considered multiple support-dependence relations between two
coupled networks. They used a model where there existed some autonomously nodes in one network,
meaning that these nodes can operate without supporting nodes from the other network. Furthermore,
Yagan et al. [10] described the dynamic characteristics of cascading failures in the system where the
topology of each individual network is unknown and showed that the regular allocation strategy has
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better robustness compared with all possible strategies. The above literature considers different CPS
models and studies the robustness of CPS.

In engineering, survivability concepts appear in many other networks or research areas.
For example, Neumann et al. [11] proposed the survivability definition of the network system for
the first time. In a communication system, survivability is seen as the probability that its service is
still available when the system is damaged or fails. Deutsh et al. [12] defined survivability in the
context of software engineering, even if some parts of the system do not work and the basic services
are reachable. Ellison et al. [13] discussed that survivability is the ability of the system to complete
the task in time facing attacks, failures, and contingencies. Moitra et al. [14] argued that survivability
is the ability of the system to resist the attack and to provide certain services after being attacked.
In a wireless network, Panirahi [15] defined survivability as the ability of the system to complete its
tasks in time for attacks, failures, and contingencies. Levitin et al. [16] argued that the survivability
of information systems is the ability to maintain a working state when a fault event occurs. In the
above article, the authors give different descriptive definitions of survivability. On the other hand,
the study of survivability varies with researchers’ fields. Liang et al. [17] studied the survivability
of time-varying networks and proposed a new survivability framework for time-varying networks.
Wan et al. [18] researched the node survivability of a sensor network and considered how to schedule
each sensor between active and sleep modes to maximize the network lifetime while meeting survival
requirements. Petridou et al. [19] put forward a quantitative analysis for evaluating survivability of
wireless sensor networks and defined four measures of network survivability: the frequency of failures,
the data loss, the delay, and the compromised data under three different type of failures, namely, link,
node, attack failures.

In the model of network reliability, K-terminal network reliability is the probability that Gk is
connected, where Gk is a subgraph with specified k nodes [20]. Two nodes are connected to each other
if there is a path between them in the network [21]. The following literature provides results ideal for
calculating network reliability. Moskowitz [22] investigated a network model where nodes never fail,
but each edge fails independently with probability. A factoring algorithm is put forward to calculate
the reliability of network. On the basis of this result, Carlier et al. [23] applied a factoring algorithm
and reductions to the network model in which vertices and edges may fail. As the calculation of
network reliability is an NP-hard problem, the method of network reduction may reduce computation
time. On the other hand, many studies have concentrated on approximating reliability. A discrete and
dynamic model is defined to evaluate the reliability of telecommunication networks [24] and in this
case, the set of terminals K of network is specified arbitrarily. Three methods were presented and they
showed that failures have negative impact on service quality offered by network. Ayoub et al. [25]
developed an algorithm that uses Monte–Carlo simulation and Breadth–First search to calculate the
reliability of telecommunication networks. An exact reliability estimate was found by them in feasible
and practical time after a sufficient number of simulations. The above researches on network reliability
do not restrict the length of the path. Petingi et al. [26] proposed a polynomial-time algorithm for
detecting and deleting irrelevant edges that make no difference to the source-to-terminal diameter
constrained network reliability. They integrated this algorithm within an exact recursive factorization
approach based upon Moskowitz’s edge decomposition, conducted on different real-world topologies
and confirmed a substantial computational gain.

3. Survivability of Cyber-Physical Systems

A cyber-physical system is made up of two interacting networks, say, Networks A and B, both
with N nodes, so the total number of nodes is n = 2N. We denote the node sets of A and B by 1,
2, . . . , N and N + 1, N + 2, . . . , n respectively. We call edges that connect different networks as
interedges and those in the same network as intraedges. A node is functioning only if there is at least
one interedge and one intraedge. We are concerned with whetheer the system exists functioning giant
component [10] or completely separated when cascading failures occur.
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Definition 3. If m nodes are attacked, the probability that at least k nodes still operate is called (m,
k)—survivability, denoted by S (m, k).

Discussion: Definition 3 does not indicate where the m nodes are located and thus imply the
best-case and worst-case survivability. The parameter m is the number of failed nodes in the system,
and the parameter k indexes the communication quality of surviving nodes with node failures. Actually,
S (m, k) with all possible m and k is a matrix.

For any 1 ≤ k ≤ n, 1 ≤ m ≤ n,

S(m, k) :=



S11 S12 S13 . . . S1,n−1 S1n
S21 S22 S23 . . . S2,n−1 S2n
S31 S32 S33 . . . S3,n−1 S3n
. . . . . . . . . . . . . . . . . .

Sn−1,1 Sn−1,2 Sn−1,3 . . . Sn−1,n−1 Sn−1,n
Sn1 Sn2 Sn3 . . . Sn,n−1 Snn


where Sij denotes the probability that there has at least j nodes are still working after i nodes are
attacked. Obviously, the locations of node failures may cause different steady state. Thus, Sij is a vector
where the elements denote the survivability after i nodes in different positions are invalidated. That is,
Sij = {Sx (i, j) | 1 ≤ x ≤ Cn

i}. The survivability Sx (i, j) is stated mathematically as follows:

Sx(i, j) =
|Vx |
∑

r=j
Sr(G)Pr(1− p)|Vx |−r (2)

where 1 ≤ x ≤ Cn
i, Sx (i, j) is the survivability of system after the xth combination of i nodes are

invalidated. |Vx| is the number of nodes in the steady state.
We propose an Algorithm 1 based on network reliability method in the presence of initial

node failures.

Algorithm 1: (m, k)—survivability in G = (V, E)

Input: A connected graph G = (V, E) with the node set V, edge set E, and node probability p require the
number of normal work k and failure nodes m.
Output: (m, k)—survivability S (m, k) of G = (V, E).
Step 0. Let M = ∅.
Step 1. Choose all the endpoint groups with m numbers, and store them into the collection M.
Step 2. For each group v ∈M, obtain the adjacency matrix A of steady state.
Step 3. Let s = 0, r = k, S = ∅, Sr = 0.
Step 4. calculate the node number of steady state n1 for each terminal nodes groups, find all the connected
endpoint sets of r, and stored in the collection S.
Step 5. Sr = |S|.
Step 6. R = R + Sr * pr * (1 − p )n1-r.
Step 7. r = r + 1, S = ∅, go to Step 4.

The complexity of computation: First step, choosing all groups is based on permutation and
combination theory and belongs to the NP-hard problem. That is, for a given m, we need to choose(

n
m

)
= n!

(n−m)!m! groups of nodes. For example, in Figure 1, i = 1 and j = 2.
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Then, S (1,2) = {Sx (1,2) | 1 ≤ x≤ 8}. According to Equation (2), we can obtain

S (1,2) = {0.9898, 0.9950, 0.9979, 0.9973, 0.9877, 0.9877, 0.9869, 0.9885}.

Especially, if the indices i and j satisfy i + j > n, then the corresponding elements of the matrix are zero,
and the actual situation means no surviving nodes. Therefore, the matrix can be written as

S(m, k) =



S11 S12 S13 . . . S1,n−1 0
S21 S22 S23 . . . 0 0
S31 S32 S33 . . . 0 0
. . . . . . . . . . . . . . . . . .

Sn−1,1 0 0 . . . 0 0
0 0 0 . . . 0 0


.

In order to explore the survivability of CPS, we analyze the nonzero elements in the matrix.

For any i and j, Sij is a vector of length Cn
i. We use

−
Sij to denote the average of Sij. The corresponding

matrix is

−
Smk =



−
S11

−
S12

−
S13 . . .

−
S1,n−1 0

−
S21

−
S22

−
S23 . . . 0 0

−
S31

−
S32

−
S33 . . . 0 0

. . . . . . . . . . . . . . . . . .
−
Sn−1,1 0 0 . . . 0 0

0 0 0 . . . 0 0


An average is a measure of the trend in a set of data sets. Through the above matrix, we can

get the average survival level of the system for different m- and k-values. If the average value is
large, it shows that the system has strong survivability when m nodes are attacked. Otherwise, it has
weak survivability.

For the interdependent network, whether the system is still to provide a certain service after some
nodes are attacked is concerned problem. Thus, we give the following definition.

Definition 4. Given a constant R0, S (m, k) is associated with a pair of (m, k), 1 ≤ i ≤ Cn
m,

(1) If max Si (m, k) < R0, we say the cyber-physical system is not (m, k)—survivable and has occurred
cascading failures, denoted by (m, k)—CF.

(2) If min Si (m, k) > R0, the cyber-physical system is robust (m, k)—survivable, denoted by (m, k)—RS.
(3) If min Si (m, k) < R0 < max Si (m, k), let Ω1(m, k) denotes the set of the node groups that let Si (m, k) <

R0 hold. The node groups in Ω2(m, k) satisfy Si (m, k) > R0. | Ω1(m, k) | and | Ω2(m, k) | denote the
number of node groups, respectively. If | Ω1(m, k) | ≥ | Ω2(m, k) |, we say the system is (m, k)—frail,
denoted by (m, k)—FR. If | Ω1(m, k) | < | Ω2(m, k) |, the system is weak (m, k)—survivable, denoted
by (m, k)—WS.

We consider a critical value to determine whether node-attacks cause cascading failures. Different
from [5], we require the maximum, minimum survivability, and the number of node groups that are
less or more than R0. The situations where k = 0 or R0 = 1 are specifically discussed in [2], and situation
k = |V| indicates the all-terminal reliability of the system. |V| denotes the number of nodes at steady
state. The value of R0 is related to m and k.

For example, in Figure 1, R0 = 0.98, and min S (1,2) > R0, then the system is (1,2)—RS, max S (1,5)
= 0.9743 < R0 = 0.98, so the system is (1,5)—CF. | Ω1(2,3) | = 9 < | Ω2(2,3) | = 21, so the system is
(2,3)—WS. Given an R0 = 0.95, | Ω1(2,4) | = 18 > | Ω2(2,4) | = 10, so the system is (2,4)—FR.

The regular allocation strategy is to allocate the same number of bidirectional inter-links to
each node of the system. We study the systems with regular allocation strategy and have the
following results.

Proposition 1. For a fixed m, the survivability of CPS decreases monotonously with k for the same locations.
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Proof. Assume that the xth combination of m nodes are attacked, the number of nodes in steady state
is |Vx|. For any 1 ≤ k ≤ |Vx|, 1 ≤ x ≤ Cn

m.

Sx(m, k) =
|Vx |
∑

r=k
Sr(G)pr(1− p)|Vx |−r =

|Vx |
∑

r=k+1
Sr(G)pr(1− p)|Vx |−r

+Sk(G)pk(1− p)|Vx |−k ≥ Sx(m, k + 1).

For example, in Figure 1a, m = 1 and 1 ≤ k ≤ 7, so

S4(1, k) = {0.9973,0.9973,0.9972,0.9953,0.9743,0.8503,0.4783}.

Therefore, the survivability of CPS decreases monotonously with k at the same position.

Proposition 2. The survivability of a graph G = (V, E) is not less than that of its subgraphs if same locations
are attacked.

Proof. Assume that G* = (V*, E*) is a subgraph of G = (V, E), where V* ⊆ V, E* ⊆ E. |V*
x| and |Vx|

denote the number of nodes in steady state after the xth combination of m nodes are attacked and
|V*

x|<|Vx|.
First, if |V*| ≤ m, then the inequality is satisfied.
If |V*| > m and k < |V*

x|, Ek denotes the events that k nodes work after m nodes are attacked.
Hence, the survivability of G can be calculated by

Sx(m, k) = P(Ek ∪ Ek+1 ∪ · · · ∪ E|Vx|).

The survivability of subgraph G* can be calculated by

S*x(m, k) = P(E*k ∪ E*k+1 ∪ · · · ∪ E*|V*x|)

where G* = (V*, E*) is a subgraph of G = (V, E), hence {Ek , . . . , E|Vx|} ⊇ {E*k , . . . , E*|V*x|}.
Let {Ek , . . . , E|Vx|} = {Ek , . . . , E|V*x|, E|V*x|+1, . . . , E|Vx|}, where Ek⊇ E*k, . . . , E|V*x|⊇ E*|V*x|.
According to the probability theory, we obtain

Si(m, k) = P(Ek ∪ Ek+1 ∪ · · · ∪ E|Vx|) = P(Ek ∪ Ek+1 ∪ · · · ∪ E|V*x| ∪ E|V*x|+1 ∪ · · · E|Vx|)

≥ P(E*k∪E*k+1 ∪ · · · ∪E*|V*x|)

= S*x(m, k).

For example, Figure 2b is subgraph of (a), when same nodes are attacked, steady state of (b) is
subgraph of (a). Accordingly, the survivability of (a) is better than (b).
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From Propositions 1 and 2, the survivability of the system is closely related to m and k. Therefore,
it is meaningful to evaluate CPS by checking m and k of the survivability.
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Proposition 3. For a fixed m, the number of initial failed node groups that provide the system with minimal
survivability increases monotonically as k increases.

Proof. According to Proposition 1, the survivability of CPS decreases monotonously with k at the
same position. nk and nk+1 denote the number of initial failure node groups that provide the system
with minimal survivability respectively. Nk and Nk+1 denote the set of initial failure node groups that
provide the system with minimal survivability respectively. Then Nk ⊆ Nk+1, so nk ≤ nk+1.

We also study the robustness of system with regular allocation strategy. Let ns denote the number
of remain nodes of system at steady state. Then, for a fixed m, ns is a vector of length Cn

m. We use
average number of remain nodes of ns (denoted by ANRN) to describe the robustness of entire system
macroscopically. And we have follow result on robustness.

Proposition 4. The proportion of node groups that cause the system to completely fragment increases with m.

Proof. Vm denote the set of node groups that cause the system to completely separate for a fixed m.
Therefore, Vm ⊆ Vm+1. According to | Vm+1|≥Cn-m

1 | Vm | and Cn
m+1 = m+1

n−m Cn
m, we can obtain

|Vm |
Cm

n
≤ |Vm+1|

Cm+1
n

.

4. Simulation and Examples

In this part, we choose a CPS with a regular allocation strategy to simulate and experiment. Each
network has six nodes, and each node has the same interedges that are assumed to be bidirectional.
Let the reliability of each node be p = 0.9. Network topology is shown in Figure 3.
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Next, we analyze the remain elements of the matrix. The mean and minimum value of
survivability for different m- and k-values are given, and we also obtain the number of initial failure
node groups that provide the system with minimal survivability. The results are as follows (Table 1):

Table 1. The mean and minimum value of survivability for different m- and k-values and the number
of initial failure node groups that provide the system with minimal survivability. (The first parameter
indicates the mean survivability. The second parameter indicates minimum survivability. The third
parameter indicates the number of node groups).

m k 2 4 6 8 9 10 11

1

0.9836 0.9836 0.9831 0.9492 0.8365 0.5811 0.2354

0.9575 0.9574 0.9534 0.7748 0.3874 0 0

1 1 1 1 1 1 1

2

0.9389 0.9081 0.8204 0.6462 0.4226 0.1585

0 0 0 0 0 0

2 2 8 13 21 36

3

0.7972 0.7336 0.5039 0.2483 0.0863

0 0 0 0 0

38 38 91 132 171

4

0.5712 0.4953 0.2062 0.0383

0 0 0 0

204 204 361 451

5

0.3429 0.2781 0.0497

0 0 0

515 515 731

6

0.1693 0.1282 0.0063

0 0 0

765 765 913

7

0.0634 0.0449

0 0

741 741

8

0.0139 0.0093

0 0

488 488

9

0

0

220

10

0

0

66

In Table 2, we give a constant R0 for different m- and k-values to estimate the survivability of
the system.
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Table 2. Cascading failure evaluation for Figure 3.

m k R0 max min |Ω1| |Ω2| Survivability

1 2 0.99 0.9935 0.9575 7 5 (1,2)-FR
1 5 0.95 0.9935 0.9571 0 12 (1,5)-RS
2 4 0.98 0.9916 0 49 17 (2,4)-FR
2 6 0.90 0.9908 0 15 51 (2,6)-WS
3 5 0.90 0.9874 0 124 96 (3,5)-FR
4 6 0.7 0.9566 0 405 90 (4,6)-FR
5 4 0.8 0.9848 0 654 138 (5,4)-FR
6 4 0.7 0.9776 0 872 52 (6,4)-FR
7 3 0.7 0.9914 0 741 51 (7,3)-FR
8 4 0.5 0.6561 0 488 7 (8,4)-FR
9 1 0 0 0 220 0 (9,1)-CF
10 1 0 0 0 66 0 (10,1)-CF
11 1 0 0 0 12 0 (11,1)-CF

In Table 3, we give the number and proportion of node groups that cause the system to fragment
and average remain nodes for any m. When m > 9, the system always collapses. Therefore, we just
analyze m < 9.

Table 3. The number and proportion of node groups that cause the system to completely fragment and
ANRN with 12 nodes.

m Proportion Number ANRN m Proportion Number ANRN

1 0 0 10.6667 5 0.6505 515 1.6793
2 0.0303 2 8.4091 6 0.8279 765 0.7565
3 0.1727 38 5.6727 7 0.9356 741 0.2677
4 0.4121 204 3.2788 8 0.9859 488 0.0566

5. Discussion

The average survivability can represent a variation trend of survivability of a system for different
m- and k-values macroscopically. From Table 1, the mean survivability of the system decreases with the
parameters k and m. When both m and k are small, the system has a strong survivability; i.e., when m
nodes are attacked, the system has a great probability that k nodes are still working. It represents that
the ability which the system satisfies the specified level of service is great. Otherwise, the system has
weak survivability; i.e., the system has a small probability that k nodes are still working and the ability
which the system satisfies the specified level of service is not good. Moreover, when m > 9, the mean
survivability is always equal zero. It shows that the system always collapses as m > 9. For other values,
some node groups cause the system to collapse, and the system has the best survivability after it
is attacked by other node groups. The second parameter indicates that the minimum survivability
decreases with k for a fixed m. That is, the minimum probability that k nodes are still functioning
decreases with k when m nodes are attacked. We also find the number of initial failure node groups
that provide the system with minimal survivability increase with k for a fixed m. Let p = nk/Cm

n if
an intelligent adversary chooses some nodes to attack, we can know what the probability of getting
the worst impact is. From Table 2, the survivability of the system changes as R0, m and k vary. R0 is a
critical threshold to determine the impact that random attacks cause. Moreover, the system experiences
cascading failure as m > 9 and R0 = 0. From Table 3, we can see that the average of the remain node
decreases with m. The nodes groups that cause the system to fragment increases with m. The other
two sets of data illustrate this point. The more nodes of failure there are, the less ability to reach the
specified service the system will have.

For a clearer explanation of Propositions 1 and 3, see Figure 4, wherein the image of S1(1, k),
S8(1, k) changes with k. The image of num changes with k for a fixed m in Figure 5.
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6. Conclusions

We investigate the survivability problem of a cyber-physical system and define survivability
of the cyber-physical system, namely (m, k)—survivability. By analyzing (m, k)—survivability, we
find that the survivability of a system with a regular allocation strategy is not less than that of its
subsystem for given node failures and for a fixed m, the number of initial failed node groups that
provide the system with minimal survivability increases monotonically as k increases. We also find
that the proportion of node groups that cause the system to completely fragment increases with m.
Therefore, the survivability of a system is closely related to m and k. Our results are beneficial for
network design. For example, the evaluation of survivability can be used to predict whether a designed
network can meet given requirements and a certain level of communication quality. As for future work,
we will research the survivability of a system with a random allocation strategy and a unidirectional
interedge allocation strategy. Furthermore, we will investigate the relationship between threshold R0

and the network.
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