Supplementary Materials

Cytotoxicity and antibacterial activities of a group of amicoumacins from a marine-derived bacterium *Bacillus subtilis*

Yongxin Li ¹, Ying Xu ¹, Lingli Liu ¹, Zhuang Han ¹, Pok Yui Lai ¹, Xiangrong Guo ²,
Xixiang Zhang ², Wenhan Lin ³, Pei-Yuan Qian ¹,*

¹ KAUST Global Collaborative Research, Division of Life Science,
 Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong;
 E-mail: liyongxin@ust.hk (Y.L.); boxuying@ust.hk (Y.X.); leonie@ust.hk (L.L.); zhuanghan@ust.hk (Z.H.); cycylai@ust.hk (P.Y.L.);
² King Abdullah University of Science and Technology, Saudi Arabia;
 E-mail: xianrong.guo@kaust.edu.sa (X.G.); xixiang.zhang@kaust.edu.sa (X.Z.)
³ State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
 Beijing 100191, P.R. China; E-mail: whlin@bjmu.edu.cn

* Author to whom correspondence should be addressed; E-Mail: boqianpy@ust.hk;
 Tel.: +852-2358-7331; Fax: +852-2358-1559

Supporting information 1

<table>
<thead>
<tr>
<th>Table</th>
<th>NMR data</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lipoamicoumacins A–D (1–4)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>bacilosarcin C (5) and bacilosarcin B (6)</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 1. NMR data of lipoamicoumacins A–D (1–4)

<table>
<thead>
<tr>
<th>position</th>
<th>δ_C, mult</th>
<th>δ_H (J in Hz)</th>
<th>HMBC</th>
<th>δ_C, mult</th>
<th>δ_H (J in Hz)</th>
<th>HMBC</th>
<th>δ_C, mult</th>
<th>δ_H (J in Hz)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.2, C</td>
<td>171.2, C</td>
<td></td>
<td>171.2, C</td>
<td>171.2, C</td>
<td></td>
<td>171.2, C</td>
<td>171.2, C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>82.7, CH</td>
<td>4.68, m</td>
<td>1</td>
<td>82.7, CH</td>
<td>4.68, m</td>
<td>1</td>
<td>82.7, CH</td>
<td>4.69, dt (11.0, 3.8)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>30.8, CH₂</td>
<td>2.98, dd (3.5, 16.0), 3.06, m</td>
<td>5, 9, 10</td>
<td>31.0, CH₂</td>
<td>2.98, m, 3.06, m</td>
<td>5, 9, 10</td>
<td>30.8, CH₂</td>
<td>2.98, dd (3.5, 16.0), 3.06, m</td>
<td>5, 9, 10</td>
</tr>
<tr>
<td>5</td>
<td>119.8, CH</td>
<td>6.81, d (7.6)</td>
<td>4, 7, 9</td>
<td>119.8, CH</td>
<td>6.81, d (7.4)</td>
<td>4, 7, 9</td>
<td>119.8, CH</td>
<td>6.81, d (7.5)</td>
<td>4, 7, 9</td>
</tr>
<tr>
<td>6</td>
<td>137.8, CH</td>
<td>7.47, dd (7.5, 8.4)</td>
<td>8, 10</td>
<td>137.8, CH</td>
<td>7.47, dd (7.4, 8.6)</td>
<td>8, 10</td>
<td>137.8, CH</td>
<td>7.47, dd (7.5, 8.4)</td>
<td>8, 10</td>
</tr>
<tr>
<td>7</td>
<td>116.9, CH</td>
<td>6.85, d (8.4)</td>
<td>5, 8, 9</td>
<td>116.9, CH</td>
<td>6.85, d (8.6)</td>
<td>5, 8, 9</td>
<td>116.9, CH</td>
<td>6.85, d (8.4)</td>
<td>5, 8, 9</td>
</tr>
<tr>
<td>8</td>
<td>163.3, C</td>
<td>163.3, C</td>
<td></td>
<td>163.3, C</td>
<td>163.3, C</td>
<td></td>
<td>163.3, C</td>
<td>163.3, C</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>109.6, C</td>
<td>109.6, C</td>
<td></td>
<td>109.6, C</td>
<td>109.6, C</td>
<td></td>
<td>109.6, C</td>
<td>109.6, C</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>141.4, C</td>
<td>141.4, C</td>
<td></td>
<td>141.4, C</td>
<td>141.4, C</td>
<td></td>
<td>141.4, C</td>
<td>141.4, C</td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>22.1, CH₃</td>
<td>0.89, d (6.6)</td>
<td>2', 4'</td>
<td>22.1, CH₃</td>
<td>0.89, d (6.6)</td>
<td>2', 4'</td>
<td>22.2, CH₃</td>
<td>0.89, d (6.6)</td>
<td>2', 4'</td>
</tr>
<tr>
<td>2'</td>
<td>24.0, CH₃</td>
<td>0.97, d (6.6)</td>
<td>1', 4'</td>
<td>23.9, CH₃</td>
<td>0.97, d (6.6)</td>
<td>1', 4'</td>
<td>24.0, CH₃</td>
<td>0.97, d (6.6)</td>
<td>1', 4'</td>
</tr>
<tr>
<td>3'</td>
<td>26.0, CH</td>
<td>1.68, m</td>
<td>25.9, CH</td>
<td>1.68, m</td>
<td>26.0, CH</td>
<td>1.68, m</td>
<td>25.9, CH</td>
<td>1.68, m</td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td>40.4, CH₂</td>
<td>1.43, m, 1.82, m</td>
<td>40.4, CH₂</td>
<td>1.43, m, 1.82, m</td>
<td>40.7, CH₂</td>
<td>1.43, m, 1.82, m</td>
<td>40.7, CH₂</td>
<td>1.44, m, 1.84, m</td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>50.7, CH</td>
<td>4.29, m</td>
<td>7'</td>
<td>50.7, CH</td>
<td>4.29, m</td>
<td>7'</td>
<td>50.7, CH</td>
<td>4.29, m</td>
<td>7'</td>
</tr>
<tr>
<td>7'</td>
<td>172.8, C</td>
<td>172.8, C</td>
<td></td>
<td>172.8, C</td>
<td>172.8, C</td>
<td></td>
<td>172.8, C</td>
<td>172.8, C</td>
<td></td>
</tr>
<tr>
<td>8'</td>
<td>73.6, CH</td>
<td>4.42, d (2.5)</td>
<td>7', 10'</td>
<td>73.7, CH</td>
<td>4.42, d (2.5)</td>
<td>7', 10'</td>
<td>73.6, CH</td>
<td>4.42, d (2.3)</td>
<td></td>
</tr>
<tr>
<td>9'</td>
<td>87.9, CH</td>
<td>4.79, t (2.4)</td>
<td>7', 12'</td>
<td>87.9, CH</td>
<td>4.78, t (2.4)</td>
<td>7', 12'</td>
<td>87.9, CH</td>
<td>4.79, t (2.4)</td>
<td></td>
</tr>
<tr>
<td>10'</td>
<td>48.6, CH</td>
<td>4.51, dt (9.1, 2.0)</td>
<td>14'</td>
<td>48.6, CH</td>
<td>4.51, m</td>
<td>48.6, CH</td>
<td>4.51, dt (9.1, 2.0)</td>
<td>14'</td>
<td>48.6, CH</td>
</tr>
<tr>
<td>11'</td>
<td>36.7, CH₂</td>
<td>2.45, dd (2.6, 18.0), 3.01 m</td>
<td>12'</td>
<td>36.7, CH₂</td>
<td>2.46, dd (2.7, 18.2), 3.01 m</td>
<td>37.0, CH₂</td>
<td>2.42, dd (2.7, 18.2), 3.03, m</td>
<td>12'</td>
<td>37.0, CH₂</td>
</tr>
<tr>
<td>12'</td>
<td>178.1, C</td>
<td>178.1, C</td>
<td></td>
<td>178.1, C</td>
<td>178.1, C</td>
<td></td>
<td>178.1, C</td>
<td>178.1, C</td>
<td></td>
</tr>
<tr>
<td>Asparagine or Glutamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14'</td>
<td>173.3, C</td>
<td>173.3, C</td>
<td></td>
<td>173.3, C</td>
<td>173.3, C</td>
<td></td>
<td>173.3, C</td>
<td>173.3, C</td>
<td></td>
</tr>
<tr>
<td>15'</td>
<td>51.3, CH</td>
<td>4.65, dd (6.5, 7.0)</td>
<td>14', 1''</td>
<td>51.5, CH</td>
<td>4.65, t (6.6)</td>
<td>52.4, CH</td>
<td>4.30, m</td>
<td>14', 1''</td>
<td>52.4, CH</td>
</tr>
<tr>
<td>16'</td>
<td>38.2, CH₂</td>
<td>2.57 dd (7.1, 15.2), 2.67, dd (6.4,15.2)</td>
<td>14', 17'</td>
<td>37.9, CH₂</td>
<td>2.57, dd (7.0, 15.4), 2.67, dd (6.4,15.4)</td>
<td>29.2, CH₂</td>
<td>1.86, m, 2.08, m</td>
<td>14', 18'</td>
<td>29.1, CH₂</td>
</tr>
<tr>
<td>17'</td>
<td>174.8, C</td>
<td>174.8, C</td>
<td></td>
<td>174.8, C</td>
<td>32.6, CH</td>
<td>2.25, m</td>
<td>18'</td>
<td>32.6, C</td>
<td>2.26, m</td>
</tr>
<tr>
<td>18'</td>
<td>177.9, C</td>
<td>177.9, C</td>
<td></td>
<td>177.9, C</td>
<td>177.9, C</td>
<td></td>
<td>177.9, C</td>
<td>177.9, C</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Cont.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1°</th>
<th>176.3, C</th>
<th>176.2, C</th>
<th>176.5, C</th>
<th>176.5, C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°</td>
<td>37.0, CH₂</td>
<td>2.24 t (8.0)</td>
<td>37.1, CH₂</td>
<td>2.21 t (8.1)</td>
<td>37.1, CH₂</td>
</tr>
<tr>
<td>3°</td>
<td>27.0, CH₂</td>
<td>1.60, m</td>
<td>26.8, CH₂</td>
<td>1.59, m</td>
<td>27.0, CH₂</td>
</tr>
<tr>
<td>4°–8°</td>
<td>30.5–31.2</td>
<td></td>
<td>30.5–31.2</td>
<td></td>
<td>30.5–31.2</td>
</tr>
<tr>
<td>9°</td>
<td>38.3, CH₂</td>
<td>1.17 m, 1.30 m</td>
<td>35.8, CH₂</td>
<td>1.30 m</td>
<td>40.4, CH₂</td>
</tr>
<tr>
<td>10°</td>
<td>27.0, CH</td>
<td>1.53 m</td>
<td>28.3, CH</td>
<td>1.29 m</td>
<td>29.5, CH₂</td>
</tr>
<tr>
<td>11°</td>
<td>23.2, CH₃</td>
<td>0.88, t (6.8)</td>
<td>37.9, CH₂</td>
<td>1.0 m, 1.30 m</td>
<td>23.2, CH₂</td>
</tr>
<tr>
<td>12°</td>
<td>23.2, CH₃</td>
<td>0.88, t (6.8)</td>
<td>11.9, CH₃</td>
<td>0.88, t (6.8)</td>
<td>23.2, CH₂</td>
</tr>
<tr>
<td>13°</td>
<td>19.8, CH</td>
<td>0.86, d (6.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. NMR data of bacilosarcin C (5) and bacilosarcin B (6) in CD₃OD

<table>
<thead>
<tr>
<th>position</th>
<th>δC, mult</th>
<th>δH, (J in Hz)</th>
<th>HMBC</th>
<th>δH, (J in Hz)</th>
<th>HMBC</th>
<th>δH, (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>171.0 C</td>
<td>4°</td>
<td>40.3, CH₂</td>
<td>1.46, m, 1.80, m</td>
<td>5°</td>
<td>1.46, m, 1.80, m</td>
</tr>
<tr>
<td>3</td>
<td>82.5, CH</td>
<td>4.66, dt (3.5, 12.0)</td>
<td>1,</td>
<td>4.67, dt (3.4, 12.0)</td>
<td>5°</td>
<td>50.4, CH</td>
</tr>
<tr>
<td>4</td>
<td>30.8, CH₂</td>
<td>2.96, dd (3.5, 16.5)</td>
<td>3, 5, 9, 10</td>
<td>2.96, dd (3.5, 16.5)</td>
<td>7°</td>
<td>173.5, C</td>
</tr>
<tr>
<td>5</td>
<td>119.6, CH</td>
<td>6.81, d (7.5)</td>
<td>4, 7, 9</td>
<td>6.81, d (7.5)</td>
<td>9°</td>
<td>68.9, CH</td>
</tr>
<tr>
<td>6</td>
<td>137.5, CH</td>
<td>7.46, dd (7.5, 8.4)</td>
<td>8, 10</td>
<td>7.46, dd (7.5, 8.4)</td>
<td>10°</td>
<td>51.8, CH</td>
</tr>
<tr>
<td>7</td>
<td>116.7, CH</td>
<td>6.85, d (8.4)</td>
<td>5, 8, 9</td>
<td>6.85, d (8.4)</td>
<td>11°</td>
<td>28.8, CH₂</td>
</tr>
<tr>
<td>8</td>
<td>163.1, C</td>
<td>3.06, dd (16.5, 4.0)</td>
<td></td>
<td></td>
<td></td>
<td>12°</td>
</tr>
<tr>
<td>9</td>
<td>109.3, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>141.2, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1°</td>
<td>21.7, CH₃</td>
<td>0.94, d (6.5)</td>
<td>2, 4°</td>
<td>0.94, d (6.5)</td>
<td>14°</td>
<td>53.0, CH</td>
</tr>
<tr>
<td>2°</td>
<td>23.7, CH₃</td>
<td>0.98, d (6.5)</td>
<td>1, 4°</td>
<td>0.98, d (6.5)</td>
<td>15°</td>
<td>96.2, C</td>
</tr>
<tr>
<td>3°</td>
<td>25.9, CH₂</td>
<td>1.71, m</td>
<td></td>
<td></td>
<td></td>
<td>16°</td>
</tr>
</tbody>
</table>

Table 2. NMR data of bacilosarcin C (5) and bacilosarcin B (6) in CD₃OD
Table 3. Antibacterial activities and cytotoxicity of amicoumacin derivates

<table>
<thead>
<tr>
<th>Compound</th>
<th>Antibacterial (MIC, μM)</th>
<th>Cytotoxicity (IC50, μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacillus subtilis</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>NA</td>
<td>4.05</td>
</tr>
<tr>
<td>7</td>
<td>18.87</td>
<td>18.87</td>
</tr>
<tr>
<td>8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>11</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>0.29</td>
<td>0.73</td>
</tr>
<tr>
<td>cis-DDP</td>
<td>0.29</td>
<td>0.73</td>
</tr>
</tbody>
</table>

NA: MIC > 100μM (antibacterial) or IC50 > 100μM (cytotoxicity)
Cytotoxicity and antibacterial activities of a group of amicoumacins from a marine-derived bacterium *Bacillus subtilis*

Yongxin Li¹, Ying Xu¹, Lingli Liu¹, Zhuang Han¹, Pok Yui Lai¹, Xiangrong Guo², Xixiang Zhang², Wenhan Lin³, Pei-Yuan Qian⁴*

¹ KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; E-mail: liyongxin@ust.hk (Y. L.); boxuying@ust.hk (Y. X.); leonie@ust.hk (L. L.); zhuanghan@ust.hk (Z. H.); cycylai@ust.hk (P. Y. L.);
² King Abdullah University of Science and Technology, Saudi Arabia; E-mail: xianrong.guo@kaust.edu.sa (X. G.); xixiang.zhang@kaust.edu.sa (X. Z.)
³ State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China; E-mail: whlin@bjmu.edu.cn

* Author to whom correspondence should be addressed; E-Mail: boqianpy@ust.hk; Tel.: +852-2358-7331; Fax: +852-2358-1559
Fig 5-6 NOESY spectrum of 5..25
Fig 5-7 CD spectrum of 5 ..26
Fig 5-8 IR spectrum of 5 ..26
Fig 5-9 HRESIMS spectrum of 5..27
Fig 1-1 1H NMR spectrum of 1

Fig 1-2 DEPT spectrum of 1
Fig 1-3 COSY spectrum of 1

Fig 1-4 HMQC spectrum of 1
Fig 1-5 HMBC spectrum of 1

Fig 1-6 NOESY spectrum of 1
Fig 1-7 CD spectrum of 1

Fig 1-8 CD spectrum of 1
Fig 1-9 HRESIMS spectrum of 1

Fig 1-10 ESIMS spectrum of 1
Fig 2-1 1H NMR spectrum of 2

Fig 2-2 DEPT spectrum of 2
Fig 2-3 1H-1HCOSY spectrum of 2

Fig 2-4 HMQC spectrum of 2
Fig 2-5 HMBC spectrum of 2

Fig 2-6 NOESY spectrum of 2
Fig 2-7 CD spectrum of 2

Fig 2-8 IR spectrum of 2
Fig 2-9 HRESIMS spectrum of 2

Fig 2-10 ESIMS spectrum of 2
Fig 3-1 1HNMR spectrum of 3

Fig 3-2 13CNMR spectrum of 3
Fig 3-3 $^1\text{H-}^1\text{HCOSY}$ spectrum of 3

Fig 3-4 HMQC spectrum of 3
Fig 3-5 HMBC spectrum of 3

Fig 3-6 IR spectrum of 3
Fig 3-7 CD spectrum of 3

Fig 3-8 HRESIMS spectrum of 3

Fig 3-9 ESIMS spectrum of 3
Fig 4-1 1HNMR spectrum of 4

Fig 4-2 13CNMR spectrum of 4
Fig 4.3 1H-1HCOSY spectrum of 4

Fig 4.4 HMOC spectrum of 4
Fig 4-5 HMBC spectrum of 4

Fig 4-6 NOESY spectrum of 4
Fig 4-7 CD spectrum of 4

Fig 4-8 IR spectrum of 4
Fig 4-9 HRESIMS spectrum of 4

Fig 4-10 ESIMS spectrum of 4
Fig 5-1 1HNMR spectrum of 5

Fig 5-2 1HNMR spectrum of 6
Fig 5.3 1H-1HCOSY spectrum of 5

Fig 5.4 HMQC spectrum of 5
Fig 5-5 HMBC spectrum of 5

Fig 5-6 NOESY spectrum of 5
Fig 5-7 CD spectrum of 5

Fig 5-8 IR spectrum of 5
Fig 5.9 HRESIMS spectrum of 5