Supporting Information

Pritesh Prasad, Angela A. Salim, Shamsunnahe Khushi, Zeinab G. Khalil, Michelle Quezada and Robert J. Capon*

Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; p.prasad@imb.uq.edu.au (P.P.), a.salim@uq.edu.au (A.A.S.), s.khushi@imb.uq.edu.au (S.K.), z.khalil@imb.uq.edu.au (Z.G.K.), michelle.quezada@newcastle.edu.au (M.Q.)

* Correspondence: r.capon@uq.edu.au (R.J.C.); Tel.: +61 7 3346 2979

*Corresponding author

Tel.: +61 7 3346 2979. Fax: +61 7 3346 2090. E-mail: r.capon@uq.edu.au
Table of Contents

Figure S1. 1H NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)4
Figure S2. 13C NMR (DMSO-d_6, 150 MHz) spectrum of leucettazole A1 (1a)4
Figure S3. HSQC NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)5
Figure S4. HMBC NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)5
Figure S5. Expanded HMBC NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)6
Figure S6. ROESY NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)6
Figure S7. 1H -15N HSQC (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)7
Figure S8. 1H NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole B1 (2a)8
Figure S9. 13C NMR (DMSO-d_6, 150 MHz) spectrum of leucettazole B1 (2a)8
Figure S10. 1H NMR (DMSO-d_6, 600 MHz) spectrum of leucettazine A (3)9
Figure S11. 13C NMR (DMSO-d_6, 150 MHz) spectrum of leucettazine A (3)9

Figure S12. Comparison of 1H NMR (DMSO-d_6, 600 MHz) expanded spectra: (a) leucettazole A1 (1a), (b) mixture of leucettazole A (1) and leucettazine A (3), and (c) leucettazine A (3) ...10

Figure S13. Comparison of 1H NMR (DMSO-d_6, 600 MHz) expanded spectra: (a) leucettazole A1 (1a), (b) mixture of leucettazole A (1) and leucettazine A (3), and (c) leucettazine A (3) ...10

Figure S14. Comparison of 1H NMR (DMSO-d_6, 600 MHz) expanded spectra: (a) leucettazole A1 (1a), (b) mixture of leucettazole A (1) and leucettazine A (3), and (c) leucettazine A (3) ...11

Figure S15. 13C NMR (DMSO-d_6, 150 MHz) spectrum with carbons numbers in black for leucettazole A (1a) and carbon numbers in red for leucettazine A (3) ...11

Figure S16. UHPLC-QTOF analysis of crude EtOH extract treated with MeOH at 60 °C. ..12
Figure S17. UHPLC-QTOF-MS/MS analysis of crude EtOH extract treated with MeOH at 60 °C ..12

Figure S18. UHPLC-QTOF analysis of leucettazole A1 (1a) treated with MeOH at 40 °C. ..13
Figure S19. UHPLC-QTOF-MS/MS analysis of leucettazole A1 (1a) treated with MeOH at 40 °C ..13

Figure S20. UHPLC-QTOF analysis of crude EtOH treated with aqueous MeCN14
Figure S21. UHPLC-QTOF-MS/MS analysis of crude EtOH extract treated with aqueous MeCN14

Figure S22. UHPLC-QTOF analysis of leucettazole A1 (1a) treated with 0.02% TFA/H$_2$O at 60 °C. ..15

Figure S23. UHPLC-QTOF-MS/MS analysis of leucettazole A1 (1a) treated with 0.02% TFA/H$_2$O at 60 °C ..15

Figure S24. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_r 0.556 min representing leucettazole A (1) (m/z 439.1362); (bottom) MS/MS fragmentation for 1 (loss of OH resulting in m/z 422.1089)16
Figure S25. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_{R} 0.757 min representing leucettazole B (2) (m/z 453.1516); (bottom) MS/MS fragmentation for 2 (loss of OH resulting in m/z 436.1241).

Figure S26. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_{R} 0.930 min representing leucettazole A1 (1a) (m/z 467.1706); (bottom) MS/MS fragmentation for 1a (loss of OEt resulting in m/z 421.1272).

Figure S27. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_{R} 1.064 min representing leucettazole B1 (2a) (m/z 481.1837); (bottom) MS/MS fragmentation for 2a (loss of OEt resulting in m/z 435.1398).

Figure S28. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_{R} 1.216 min representing i (m/z 435.1765) (calcd for C_{22}H_{23}N_{6}O_{4}^{+}, 435.1775); (bottom) MS/MS fragmentation for i (loss of OEt resulting in m/z 389.1349).

Figure S29. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_{R} 1.357 min representing ii (m/z 495.1952) (calcd for C_{24}H_{27}N_{6}O_{6}^{+}, 495.1987); (bottom) MS/MS fragmentation for ii (loss of butyl ether resulting in m/z 421.1235).

Figure S30. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_{R} 0.846 min representing iii (m/z 545.1464) (calcd for C_{23}H_{25}N_{6}O_{8}S^{+}, 545.1449); (bottom) MS/MS fragmentation for iii (loss of EtOH resulting in m/z 499.1048).

Figure S31. Antibacterial assay results for leucettazole A1 (1a) and leucettazole B1 (2a)

Figure S32. Antifungal assay results for leucettazole A1 (1a) and leucettazole B1 (2a)

Figure S33. Cytotoxicity assay of leucettazole A1 (1a) and leucettazole B1 (2a) against (a) HEK293 (human embryonic kidney cell line) and (b) SW620 (human colon cancer cell line)
Figure S1. 1H NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)

Figure S2. 13C NMR (DMSO-d_6, 150 MHz) spectrum of leucettazole A1 (1a)
Figure S3. HSQC NMR (DMSO-d$_6$, 600 MHz) spectrum of leucettazole A1 (1a)

Figure S4. HMBC NMR (DMSO-d$_6$, 600 MHz) spectrum of leucettazole A1 (1a)
Figure S5. Expanded HMBC NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)

Figure S6. ROESY NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)
Figure S7. 1H-$_{15}$N HSQC (DMSO-d_6, 600 MHz) spectrum of leucettazole A1 (1a)
Figure S8. 1H NMR (DMSO-d_6, 600 MHz) spectrum of leucettazole B1 (2a)

Figure S9. 13C NMR (DMSO-d_6, 150 MHz) spectrum of leucettazole B1 (2a)
Figure S10. 1H NMR (DMSO-d_6, 600 MHz) spectrum of leucettazine A (3)

Figure S11. 13C NMR (DMSO-d_6, 150 MHz) spectrum of leucettazine A (3)
Figure S12. Comparison of 1H NMR (DMSO-d_6, 600 MHz) expanded spectra: (a) leucettazole A1 (1a), (b) mixture of leucettazole A (1) and leucettazine A (3), and (c) leucettazine A (3)

Figure S13. Comparison of 1H NMR (DMSO-d_6, 600 MHz) expanded spectra: (a) leucettazole A1 (1a), (b) mixture of leucettazole A (1) and leucettazine A (3), and (c) leucettazine A (3)
Figure S14. Comparison of 1H NMR (DMSO-d_6, 600 MHz) expanded spectra: (a) leucettazole A1 (1a), (b) mixture of leucettazole A (1) and leucettazine A (3), and (c) leucettazine A (3)

Figure S15. 13C NMR (DMSO-d_6, 150 MHz) spectrum with carbons numbers in black for leucettazole A (1a) and carbon numbers in red for leucettazine A (3)
Figure S16. UHPLC-QTOF analysis of crude EtOH extract treated with MeOH at 60 °C. Single ion extraction (SIE) chromatograms for (a) m/z 467.17 (leucettazole A1, 1a); (b) m/z 439.14 (leucettazole A, 1); (c) m/z 453.15 (leucettazole A2, 1b).

Figure S17. UHPLC-QTOF-MS/MS analysis of crude EtOH extract treated with MeOH at 60 °C, (top) +ESI TIC scan at tR 0.816 min representing 1b (m/z 453.1516); (bottom) MS/MS fragmentation for 1b (loss of OMe resulting in m/z 421.1235).
Figure S18. UHPLC-QTOF analysis of leucettazole A1 (1a) treated with MeOH at 40 °C. Single ion extraction (SIE) chromatograms for (a) m/z 467.17 (1a); (b) m/z 453.15 (leucettazole A2, 1b).

Figure S19. UHPLC-QTOF-MS/MS analysis of leucettazole A1 (1a) treated with MeOH at 40 °C; (top) +ESI TIC scan at t_R 0.818 min representing 1b (m/z 453.1521); (bottom) MS/MS fragmentation for 1b (loss of OMe resulting in m/z 421.1252).
Figure S20. UHPLC-QTOF analysis of crude EtOH treated with aqueous MeCN. Single ion extraction (SIE) chromatograms for (a) m/z 467.17 (leucetazole A1, 1a); (b) m/z 439.14 (leucetazole A, 1); (c) m/z 481.18 (leucetazole B1, 2a); (d) m/z 453.15 (leucetazole, 2).

Figure S21. UHPLC-QTOF-MS/MS analysis of crude EtOH extract treated with aqueous MeCN, (top) +ESI TIC scan at t_r 0.768 min representing 2 (m/z 453.1516); (bottom) MS/MS fragmentation for 2 (loss of OH resulting in m/z 436.1249).
Figure S22. UHPLC-QTOF analysis of leucettazole A1 (1a) treated with 0.02% TFA/H$_2$O at 60 °C. Single ion extraction (SIE) chromatograms for (a) m/z 467.17 (1a); (b) m/z 439.14 (leucettazole A, 1).

Figure S23. UHPLC-QTOF-MS/MS analysis of leucettazole A1 (1a) treated with 0.02% TFA/H$_2$O at 60 °C; (top) +ESI TIC scan at t$_R$ 0.558 min representing 1 (m/z 439.1366); (bottom) MS/MS fragmentation for 1 (loss of OH resulting in m/z 422.1104).
Figure S24. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_r 0.556 min representing leucettazole A (1) (m/z 439.1362); (bottom) MS/MS fragmentation for 1 (loss of OH resulting in m/z 422.1089).

Figure S25. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_r 0.757 min representing leucettazole B (2) (m/z 453.1516); (bottom) MS/MS fragmentation for 2 (loss of OH resulting in m/z 436.1241).
Figure S26. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_R 0.930 min representing leucettazole A1 (1a) (m/z 467.1706); (bottom) MS/MS fragmentation for 1a (loss of OEt resulting in m/z 421.1272).

Figure S27. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_R 1.064 min representing leucettazole B1 (2a) (m/z 481.1837); (bottom) MS/MS fragmentation for 2a (loss of OEt resulting in m/z 435.1398).
Figure S28. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at tR 1.216 min representing i (m/z 435.1765) (calcd for C_{22}H_{23}N_{6}O_{4}^+, 435.1775); (bottom) MS/MS fragmentation for i (loss of OEt resulting in m/z 389.1349).

Figure S29. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at tR 1.357 min representing ii (m/z 495.1952) (calcd for C_{24}H_{27}N_{6}O_{6}^+, 495.1987); (bottom) MS/MS fragmentation for ii (loss of butyl ether resulting in m/z 421.1235).
Figure S30. UHPLC-QTOF-MS/MS analysis of CMB-01047 n-BuOH solubles (top) +ESI TIC scan at t_r 0.846 min representing iii (m/z 545.1464) (calcd for C₂₃H₂₅N₆O₈S⁺, 545.1449); (bottom) MS/MS fragmentation for iii (loss of EtOH resulting in m/z 499.1048).
Figure S31. Antibacterial assay results for leucettazole A1 (1a) and leucettazole B1 (2a)

Figure S32. Antifungal assay results for leucettazole A1 (1a) and leucettazole B1 (2a)

Figure S33. Cytotoxicity assay of leucettazole A1 (1a) and leucettazole B1 (2a) against (a) HEK293 (human embryonic kidney cell line) and (b) SW620 (human colon cancer cell line)