Fourfold Filtered Statistical/Computational Approach for the Identification of Imidazole Compounds as HO-1 Inhibitors from Nat70125ural Products

Giuseppe Floresta 1, Emanuele Amata 1, Davide Gentile 1, Giuseppe Romeo 1, Agostino Marrazzo 1, Valeria Pittalà 1, Loredana Salerno 1,* and Antonio Rescifina 1,2,*

1 Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy; giuseppe.floresta@unict.it (G.F.); eamata@unict.it (E.A.); davide.gentile@studium.unict.it (D.G.); gromeo@unict.it (G.R.); marrazzo@unict.it (A.M.); vpittal@unict.it (V.P.)
2 Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy
* Correspondence: lsalerno@unict.it (L.S.); arescifina@unict.it (A.R.); Tel.: +39-095-738-5017 (A.R.)

Table of content

Figure S1. Forge’s parameters used for the conformation hunt S2
Figure S2. Forge’s parameters used for the alignment S2
Table S1. Dataset of filtered natural products containing a non-fused 2-non-substituted imidazole nucleus S3
Table S2. Calculated values of pIC50 (2D and 3D-QSAR) and Ki (docking) and their mean S6
Table S3. Calculated values of pIC50 (2D and 3D-QSAR) and Ki (docking) and their mean for outsider marine compounds S9
Figure S1. Forge’s parameters used for the conformation hunt.

Figure S2. Forge’s parameters used for the alignment.
<table>
<thead>
<tr>
<th>ID</th>
<th>SMILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNP2902</td>
<td>O(C=O)\C=\C\c1n(nc1CC=C(C)C)C</td>
</tr>
<tr>
<td>MNP3090</td>
<td>O(C=O)\C=C=1[N+](C)(C)\c1-NC=1CC=C(C)C</td>
</tr>
<tr>
<td>MNP4640</td>
<td>O-C1=NNCCc2c1[nH]c1e2cccc1c1n(nc1)C</td>
</tr>
<tr>
<td>MNP4778</td>
<td>BrC1e2n(c3e2ec1)cc1nc[nH]c1SC</td>
</tr>
<tr>
<td>MNP4779</td>
<td>BrCc1e2n(c3c2ec1)cc1nc[nH]c1S(-O)=C</td>
</tr>
<tr>
<td>MNP4780</td>
<td>S(C)c1[nH]cc1e2c(c3c1ccnc3)c1cc2</td>
</tr>
<tr>
<td>MNP4781</td>
<td>S(=O)(C)c1[nH]cc1e2c(c3c1ccnc3)c1cc2</td>
</tr>
<tr>
<td>SN0000116</td>
<td>O(C=O)\C=\C\c1n(cnc1)\C(c1ccc1)CC</td>
</tr>
<tr>
<td>SN00001674</td>
<td>ClC1cc(C)cc1[@][\H]OClcc1c1CCc1nc(nc1)c1CCc1nc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00005909</td>
<td>ClC1cc(C)cc1[@][\H]SCClcc1C(c1cc1)Cn1cc[nH]+c1</td>
</tr>
<tr>
<td>SN0001256</td>
<td>O(C=O)\C=\C\c1n(nc1)\C(nc1c1=CC=C(C)c1)CCc1nc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031534</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031535</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031537</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031538</td>
<td>ClC1cc(c1)[\H]+1CCC[@][\H]c1oc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031540</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031541</td>
<td>Fc1ccccc1[\H]+1CCC[@][\H]c1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031542</td>
<td>o1nc(nc1)[\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031543</td>
<td>o1ccccc1[\H]+1CC([\H]c1cc1)c1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031546</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031547</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031548</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031549</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031550</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031551</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031552</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031553</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031554</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc(nc1)-c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031555</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031556</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031557</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031558</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031559</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031560</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031561</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031562</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031563</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00031564</td>
<td>o1nc(nc1)[@][\H]c1n(nc1)c1cc1cc1C(C)(C)c1cc(nc1)-n1ccnc1</td>
</tr>
<tr>
<td>SN00032199</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
<tr>
<td>SN00032201</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
<tr>
<td>SN00032203</td>
<td>ClC1ccccc1\H2+\C(C\H2+\C(C)C\C=C\C(=O)\C=C\C\C(c1)C\C=C\C(=O)\C=C\C\C(c1)C</td>
</tr>
<tr>
<td>SN00032204</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
<tr>
<td>SN00032205</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
<tr>
<td>SN00032206</td>
<td>FeC1ccccc1\H2+\C(C\H2+\C(C)C\C=C\C(=O)\C=C\C\C(c1)C\C=C\C(=O)\C=C\C\C(c1)C</td>
</tr>
<tr>
<td>SN00032209</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
<tr>
<td>SN00032210</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
<tr>
<td>SN00032211</td>
<td>o1c(ncnc1)[@][\H]c1C(C)c1C(C)[\H]c1cc1cc1C(NHC1CC(C)C=O)=Cl-c1ln1\C(c1)C</td>
</tr>
</tbody>
</table>

Table S1. Dataset of filtered natural products containing a non-fused 2-non-substituted imidazole nucleus.
Table S2. Calculated values of pIC₅₀ (2D and 3D-QSAR) and Kᵢ (docking) and their mean a.

<table>
<thead>
<tr>
<th>ID</th>
<th>2D-QSAR</th>
<th>Applicability 2D-QSAR</th>
<th>3D-QSAR</th>
<th>Applicability 3D-QSAR</th>
<th>Docking</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN00087296</td>
<td>5.98</td>
<td>Yes</td>
<td>6.1</td>
<td>Excellent</td>
<td>7.38</td>
<td>6.49</td>
</tr>
<tr>
<td>ZINC08964675</td>
<td>5.36</td>
<td>No</td>
<td>5.7</td>
<td>Good</td>
<td>7.80</td>
<td>6.29</td>
</tr>
<tr>
<td>SN00001674</td>
<td>7.76</td>
<td>Yes</td>
<td>4.5</td>
<td>OK</td>
<td>6.49</td>
<td>6.25</td>
</tr>
<tr>
<td>ZINC08918535</td>
<td>6.08</td>
<td>No</td>
<td>5.2</td>
<td>Excellent</td>
<td>7.13</td>
<td>6.14</td>
</tr>
<tr>
<td>ZINC08964671</td>
<td>5.20</td>
<td>No</td>
<td>6.0</td>
<td>Good</td>
<td>6.86</td>
<td>6.02</td>
</tr>
<tr>
<td>SN00005909</td>
<td>5.27</td>
<td>Yes</td>
<td>5.0</td>
<td>OK</td>
<td>7.76</td>
<td>6.01</td>
</tr>
<tr>
<td>SN00032231</td>
<td>5.53</td>
<td>No</td>
<td>5.5</td>
<td>Bad</td>
<td>6.92</td>
<td>5.98</td>
</tr>
<tr>
<td>SN00238920</td>
<td>4.80</td>
<td>No</td>
<td>4.9</td>
<td>OK</td>
<td>7.90</td>
<td>5.87</td>
</tr>
<tr>
<td>ZINC03985121</td>
<td>4.19</td>
<td>Yes</td>
<td>6.7</td>
<td>Poor</td>
<td>6.66</td>
<td>5.85</td>
</tr>
<tr>
<td>ZINC08917761</td>
<td>6.10</td>
<td>No</td>
<td>5.2</td>
<td>Good</td>
<td>6.20</td>
<td>5.83</td>
</tr>
<tr>
<td>ZINC03985168</td>
<td>3.76</td>
<td>Yes</td>
<td>5.6</td>
<td>OK</td>
<td>7.96</td>
<td>5.78</td>
</tr>
<tr>
<td>SN00230416</td>
<td>5.21</td>
<td>No</td>
<td>5.4</td>
<td>Good</td>
<td>6.53</td>
<td>5.71</td>
</tr>
<tr>
<td>SN00032287</td>
<td>4.30</td>
<td>Yes</td>
<td>4.7</td>
<td>Excellent</td>
<td>8.10</td>
<td>5.70</td>
</tr>
<tr>
<td>SN00213775</td>
<td>5.42</td>
<td>No</td>
<td>5.4</td>
<td>Excellent</td>
<td>6.20</td>
<td>5.67</td>
</tr>
<tr>
<td>ZINC03985184</td>
<td>3.81</td>
<td>No</td>
<td>5.7</td>
<td>Good</td>
<td>7.44</td>
<td>5.65</td>
</tr>
<tr>
<td>SN00087305</td>
<td>4.00</td>
<td>No</td>
<td>5.3</td>
<td>OK</td>
<td>7.53</td>
<td>5.61</td>
</tr>
<tr>
<td>SN00032199</td>
<td>4.33</td>
<td>Yes</td>
<td>5.4</td>
<td>Excellent</td>
<td>7.02</td>
<td>5.58</td>
</tr>
<tr>
<td>ZINC12663482</td>
<td>3.76</td>
<td>Yes</td>
<td>5.6</td>
<td>OK</td>
<td>7.96</td>
<td>5.78</td>
</tr>
<tr>
<td>SN00230416</td>
<td>5.21</td>
<td>No</td>
<td>5.4</td>
<td>Good</td>
<td>6.53</td>
<td>5.71</td>
</tr>
<tr>
<td>SN00032287</td>
<td>4.30</td>
<td>Yes</td>
<td>4.7</td>
<td>Excellent</td>
<td>8.10</td>
<td>5.70</td>
</tr>
<tr>
<td>SN00213775</td>
<td>5.42</td>
<td>No</td>
<td>5.4</td>
<td>Excellent</td>
<td>6.20</td>
<td>5.67</td>
</tr>
<tr>
<td>ZINC03985184</td>
<td>3.81</td>
<td>No</td>
<td>5.7</td>
<td>Good</td>
<td>7.44</td>
<td>5.65</td>
</tr>
<tr>
<td>SN00087305</td>
<td>4.00</td>
<td>No</td>
<td>5.3</td>
<td>OK</td>
<td>7.53</td>
<td>5.61</td>
</tr>
<tr>
<td>SN00032199</td>
<td>4.33</td>
<td>Yes</td>
<td>5.4</td>
<td>Excellent</td>
<td>7.02</td>
<td>5.58</td>
</tr>
<tr>
<td>ZINC12663482</td>
<td>3.76</td>
<td>Yes</td>
<td>5.6</td>
<td>OK</td>
<td>7.96</td>
<td>5.78</td>
</tr>
<tr>
<td>ZINC08918526</td>
<td>5.35</td>
<td>No</td>
<td>5.7</td>
<td>Good</td>
<td>5.53</td>
<td>5.53</td>
</tr>
<tr>
<td>SN00264937</td>
<td>4.60</td>
<td>Yes</td>
<td>5.8</td>
<td>Excellent</td>
<td>6.16</td>
<td>5.52</td>
</tr>
<tr>
<td>ZINC08791863</td>
<td>5.04</td>
<td>No</td>
<td>5.4</td>
<td>Poor</td>
<td>6.11</td>
<td>5.52</td>
</tr>
<tr>
<td>SN00031538</td>
<td>6.01</td>
<td>Yes</td>
<td>5.1</td>
<td>Excellent</td>
<td>5.40</td>
<td>5.50</td>
</tr>
<tr>
<td>ZINC03985111</td>
<td>5.54</td>
<td>Yes</td>
<td>4.7</td>
<td>Bad</td>
<td>6.26</td>
<td>5.50</td>
</tr>
<tr>
<td>SN00032229</td>
<td>4.89</td>
<td>Yes</td>
<td>4.5</td>
<td>Bad</td>
<td>7.08</td>
<td>5.49</td>
</tr>
<tr>
<td>SN00032204</td>
<td>4.34</td>
<td>Yes</td>
<td>4.8</td>
<td>Bad</td>
<td>7.31</td>
<td>5.48</td>
</tr>
<tr>
<td>SN00032224</td>
<td>4.59</td>
<td>Yes</td>
<td>4.6</td>
<td>OK</td>
<td>7.08</td>
<td>5.42</td>
</tr>
<tr>
<td>ZINC03985196</td>
<td>4.93</td>
<td>No</td>
<td>4.8</td>
<td>Poor</td>
<td>6.53</td>
<td>5.42</td>
</tr>
<tr>
<td>SN000306630</td>
<td>4.60</td>
<td>No</td>
<td>5.6</td>
<td>Poor</td>
<td>6.53</td>
<td>5.42</td>
</tr>
<tr>
<td>ZINC12661679</td>
<td>3.82</td>
<td>Yes</td>
<td>4.9</td>
<td>Good</td>
<td>7.37</td>
<td>5.36</td>
</tr>
<tr>
<td>SN000292230</td>
<td>4.87</td>
<td>Yes</td>
<td>4.6</td>
<td>Good</td>
<td>6.62</td>
<td>5.36</td>
</tr>
<tr>
<td>SN00032220</td>
<td>4.05</td>
<td>Yes</td>
<td>5.2</td>
<td>Poor</td>
<td>6.81</td>
<td>5.35</td>
</tr>
<tr>
<td>SN00032209</td>
<td>4.69</td>
<td>Yes</td>
<td>4.9</td>
<td>OK</td>
<td>6.45</td>
<td>5.34</td>
</tr>
<tr>
<td>SN00344415</td>
<td>3.72</td>
<td>No</td>
<td>5.0</td>
<td>Excellent</td>
<td>7.14</td>
<td>5.28</td>
</tr>
<tr>
<td>ZINC06624078</td>
<td>4.35</td>
<td>Yes</td>
<td>5.4</td>
<td>Good</td>
<td>6.08</td>
<td>5.28</td>
</tr>
<tr>
<td>SN00032203</td>
<td>4.03</td>
<td>Yes</td>
<td>5.1</td>
<td>Bad</td>
<td>6.70</td>
<td>5.28</td>
</tr>
<tr>
<td>ZINC06624271</td>
<td>3.35</td>
<td>Yes</td>
<td>4.4</td>
<td>Excellent</td>
<td>8.03</td>
<td>5.26</td>
</tr>
<tr>
<td>SN00320806</td>
<td>4.46</td>
<td>No</td>
<td>4.8</td>
<td>Excellent</td>
<td>6.47</td>
<td>5.24</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Value</td>
<td>Status</td>
<td>Quality</td>
<td>Value</td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>MNP4778</td>
<td>3.78</td>
<td>No</td>
<td>Excellent</td>
<td>6.81</td>
<td>5.23</td>
<td></td>
</tr>
<tr>
<td>SN00032289</td>
<td>3.32</td>
<td>YES</td>
<td>OK</td>
<td>7.25</td>
<td>5.22</td>
<td></td>
</tr>
<tr>
<td>SN00032216</td>
<td>4.37</td>
<td>YES</td>
<td>OK</td>
<td>6.40</td>
<td>5.22</td>
<td></td>
</tr>
<tr>
<td>SN00032288</td>
<td>3.87</td>
<td>YES</td>
<td>Good</td>
<td>7.02</td>
<td>5.20</td>
<td></td>
</tr>
<tr>
<td>ZINCO8791853</td>
<td>3.83</td>
<td>No</td>
<td>Bad</td>
<td>6.40</td>
<td>5.18</td>
<td></td>
</tr>
<tr>
<td>SN00032221</td>
<td>4.34</td>
<td>YES</td>
<td>Poor</td>
<td>6.87</td>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td>SN00032205</td>
<td>4.12</td>
<td>YES</td>
<td>Poor</td>
<td>6.64</td>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>SN00065121</td>
<td>5.15</td>
<td>YES</td>
<td>Excellent</td>
<td>5.16</td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>SN00284317</td>
<td>4.46</td>
<td>No</td>
<td>Excellent</td>
<td>6.42</td>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td>ZINCO3984657</td>
<td>2.79</td>
<td>No</td>
<td>Excellent</td>
<td>6.84</td>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td>ZINCO3985175</td>
<td>3.54</td>
<td>No</td>
<td>Poor</td>
<td>6.37</td>
<td>5.03</td>
<td></td>
</tr>
<tr>
<td>SN00032210</td>
<td>4.83</td>
<td>YES</td>
<td>Bad</td>
<td>5.31</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>MNP4779</td>
<td>2.77</td>
<td>No</td>
<td>Excellent</td>
<td>7.16</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>SN00032219</td>
<td>3.78</td>
<td>YES</td>
<td>Poor</td>
<td>5.94</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>SN00352003</td>
<td>4.30</td>
<td>YES</td>
<td>Excellent</td>
<td>7.10</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>ZINCO12660802</td>
<td>5.25</td>
<td>YES</td>
<td>Excellent</td>
<td>4.95</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>SN00404046</td>
<td>4.13</td>
<td>No</td>
<td>Excellent</td>
<td>6.47</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td>SN00087300</td>
<td>2.99</td>
<td>YES</td>
<td>Poor</td>
<td>6.39</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td>SN00065009</td>
<td>3.48</td>
<td>No</td>
<td>Excellent</td>
<td>6.46</td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td>ZINCO8964714</td>
<td>4.99</td>
<td>No</td>
<td>OK</td>
<td>3.40</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>SN00032217</td>
<td>3.62</td>
<td>YES</td>
<td>Good</td>
<td>6.34</td>
<td>4.89</td>
<td></td>
</tr>
<tr>
<td>SN00000116</td>
<td>4.31</td>
<td>YES</td>
<td>Excellent</td>
<td>5.73</td>
<td>4.78</td>
<td></td>
</tr>
<tr>
<td>SN00253274</td>
<td>2.97</td>
<td>No</td>
<td>Excellent</td>
<td>7.08</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>SN00361791</td>
<td>3.95</td>
<td>YES</td>
<td>Excellent</td>
<td>6.73</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>SN00325795</td>
<td>4.78</td>
<td>YES</td>
<td>Good</td>
<td>5.55</td>
<td>4.71</td>
<td></td>
</tr>
<tr>
<td>SN00032215</td>
<td>4.39</td>
<td>No</td>
<td>OK</td>
<td>5.32</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>SN00086779</td>
<td>4.50</td>
<td>YES</td>
<td>Excellent</td>
<td>4.47</td>
<td>4.66</td>
<td></td>
</tr>
<tr>
<td>MNP2902</td>
<td>3.72</td>
<td>No</td>
<td>Good</td>
<td>5.32</td>
<td>4.61</td>
<td></td>
</tr>
<tr>
<td>SN00032201</td>
<td>3.53</td>
<td>YES</td>
<td>Bad</td>
<td>6.07</td>
<td>4.60</td>
<td></td>
</tr>
<tr>
<td>ZINCO8791359</td>
<td>3.79</td>
<td>No</td>
<td>Poor</td>
<td>5.95</td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>ZINCO3985127</td>
<td>2.93</td>
<td>No</td>
<td>Bad</td>
<td>6.35</td>
<td>4.49</td>
<td></td>
</tr>
<tr>
<td>SN00369505</td>
<td>2.51</td>
<td>No</td>
<td>Excellent</td>
<td>6.57</td>
<td>4.36</td>
<td></td>
</tr>
<tr>
<td>SN00261841</td>
<td>2.42</td>
<td>No</td>
<td>Excellent</td>
<td>6.01</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>ZINCO8918542</td>
<td>6.66</td>
<td>No</td>
<td>Good</td>
<td>4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00380631</td>
<td>2.15</td>
<td>No</td>
<td>OK</td>
<td>6.10</td>
<td>4.05</td>
<td></td>
</tr>
<tr>
<td>ZINCO8964674</td>
<td>6.11</td>
<td>No</td>
<td>Excellent</td>
<td>4.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00243990</td>
<td>2.27</td>
<td>No</td>
<td>OK</td>
<td>6.42</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>SN00280678</td>
<td>4.89</td>
<td>No</td>
<td>Good</td>
<td>3.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO8964713</td>
<td>5.74</td>
<td>No</td>
<td>Excellent</td>
<td>3.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO8918541</td>
<td>5.91</td>
<td>No</td>
<td>Good</td>
<td>3.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO8917976</td>
<td>5.34</td>
<td>No</td>
<td>OK</td>
<td>3.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00380361</td>
<td>5.78</td>
<td>No</td>
<td>Excellent</td>
<td>3.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO12663441</td>
<td>4.99</td>
<td>YES</td>
<td>OK</td>
<td>3.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00087288</td>
<td>5.90</td>
<td>YES</td>
<td>Excellent</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00032284</td>
<td>4.84</td>
<td>YES</td>
<td>OK</td>
<td>3.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO8791849</td>
<td>4.23</td>
<td>No</td>
<td>Excellent</td>
<td>3.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00032225</td>
<td>5.18</td>
<td>No</td>
<td>Poor</td>
<td>3.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00032212</td>
<td>4.94</td>
<td>YES</td>
<td>Poor</td>
<td>3.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00393484</td>
<td>4.42</td>
<td>No</td>
<td>Bad</td>
<td>3.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00265125</td>
<td>4.49</td>
<td>No</td>
<td>Poor</td>
<td>3.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO8964670</td>
<td>4.45</td>
<td>No</td>
<td>Good</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00032256</td>
<td>4.64</td>
<td>YES</td>
<td>OK</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN00278994</td>
<td>5.13</td>
<td>No</td>
<td>Bad</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINCO3985199</td>
<td>4.66</td>
<td>YES</td>
<td>Bad</td>
<td>3.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Score</td>
<td>Test</td>
<td>Result</td>
<td>Class</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>ZINC08964715</td>
<td>4.25</td>
<td>No</td>
<td>5.5</td>
<td>Excellent</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>ZINC08789969</td>
<td>4.57</td>
<td>No</td>
<td>5.0</td>
<td>Bad</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>ZINC12661337</td>
<td>4.85</td>
<td>No</td>
<td>4.4</td>
<td>Excellent</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>ZINC03985169</td>
<td>4.76</td>
<td>YES</td>
<td>4.4</td>
<td>Good</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>SN00031540</td>
<td>4.31</td>
<td>No</td>
<td>4.8</td>
<td>Poor</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>SN0395025</td>
<td>4.06</td>
<td>No</td>
<td>4.8</td>
<td>Excellent</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>SN00365948</td>
<td>4.30</td>
<td>YES</td>
<td>4.5</td>
<td>Excellent</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>ZINC08791851</td>
<td>3.49</td>
<td>No</td>
<td>5.3</td>
<td>Good</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>ZINC03984507</td>
<td>2.86</td>
<td>No</td>
<td>5.9</td>
<td>Excellent</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>SN00032206</td>
<td>3.42</td>
<td>YES</td>
<td>5.1</td>
<td>Bad</td>
<td>2.84</td>
<td></td>
</tr>
<tr>
<td>ZINC08764507</td>
<td>4.51</td>
<td>No</td>
<td>3.9</td>
<td>Bad</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>ZINC02129942</td>
<td>2.29</td>
<td>No</td>
<td>6.1</td>
<td>Excellent</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>ZINC03985204</td>
<td>3.55</td>
<td>No</td>
<td>4.8</td>
<td>OK</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>MN4P780</td>
<td>3.71</td>
<td>No</td>
<td>4.6</td>
<td>Good</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>ZINC12663597</td>
<td>3.81</td>
<td>No</td>
<td>4.5</td>
<td>OK</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>SN00039570</td>
<td>4.90</td>
<td>No</td>
<td>3.3</td>
<td>Good</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>SN00031541</td>
<td>3.51</td>
<td>No</td>
<td>4.6</td>
<td>Poor</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>SN00076641</td>
<td>3.78</td>
<td>No</td>
<td>4.3</td>
<td>Good</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>ZINC02133189</td>
<td>2.60</td>
<td>No</td>
<td>5.4</td>
<td>Excellent</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>ZINC06623704</td>
<td>3.20</td>
<td>No</td>
<td>4.8</td>
<td>Poor</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>SN00031547</td>
<td>3.60</td>
<td>No</td>
<td>4.4</td>
<td>Good</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>ZINC03985037</td>
<td>2.07</td>
<td>No</td>
<td>5.9</td>
<td>Excellent</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>ZINC12663493</td>
<td>3.05</td>
<td>YES</td>
<td>4.9</td>
<td>Poor</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>SN00031546</td>
<td>3.42</td>
<td>No</td>
<td>4.5</td>
<td>Excellent</td>
<td>2.64</td>
<td></td>
</tr>
<tr>
<td>SN00034394</td>
<td>3.86</td>
<td>No</td>
<td>4.0</td>
<td>Good</td>
<td>2.62</td>
<td></td>
</tr>
<tr>
<td>SN00031553</td>
<td>3.59</td>
<td>No</td>
<td>4.1</td>
<td>Poor</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>MN5523</td>
<td>3.79</td>
<td>No</td>
<td>3.9</td>
<td>Excellent</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>ZINC06623694</td>
<td>2.68</td>
<td>YES</td>
<td>5.0</td>
<td>Good</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>ZINC11535815</td>
<td>2.74</td>
<td>YES</td>
<td>4.9</td>
<td>Excellent</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>SN00031548</td>
<td>3.43</td>
<td>No</td>
<td>4.2</td>
<td>Good</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>MN4P781</td>
<td>2.35</td>
<td>No</td>
<td>5.2</td>
<td>Excellent</td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>SN00031547</td>
<td>2.94</td>
<td>No</td>
<td>4.6</td>
<td>OK</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>SN00031559</td>
<td>2.62</td>
<td>YES</td>
<td>4.9</td>
<td>OK</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>SN000280641</td>
<td>3.11</td>
<td>No</td>
<td>4.4</td>
<td>Excellent</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>SN00021256</td>
<td>3.79</td>
<td>No</td>
<td>3.7</td>
<td>Excellent</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>SN000355204</td>
<td>2.39</td>
<td>No</td>
<td>5.1</td>
<td>Excellent</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>ZINC05205207</td>
<td>3.39</td>
<td>YES</td>
<td>4.1</td>
<td>OK</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>SN00031551</td>
<td>2.88</td>
<td>No</td>
<td>4.6</td>
<td>Good</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>SN00031555</td>
<td>2.47</td>
<td>No</td>
<td>5.0</td>
<td>Poor</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>SN00031542</td>
<td>2.74</td>
<td>No</td>
<td>4.7</td>
<td>Excellent</td>
<td>2.48</td>
<td></td>
</tr>
<tr>
<td>SN00031564</td>
<td>3.23</td>
<td>No</td>
<td>4.2</td>
<td>Excellent</td>
<td>2.48</td>
<td></td>
</tr>
<tr>
<td>SN00031543</td>
<td>2.62</td>
<td>No</td>
<td>4.8</td>
<td>Excellent</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>SN00031534</td>
<td>2.60</td>
<td>No</td>
<td>4.8</td>
<td>Good</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>SN00031557</td>
<td>2.94</td>
<td>No</td>
<td>4.2</td>
<td>OK</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>SN00031563</td>
<td>2.73</td>
<td>No</td>
<td>4.3</td>
<td>OK</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>SN00031535</td>
<td>2.35</td>
<td>No</td>
<td>4.6</td>
<td>Excellent</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>SN00214383</td>
<td>2.55</td>
<td>No</td>
<td>4.1</td>
<td>Good</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>MN4P640</td>
<td>2.45</td>
<td>YES</td>
<td>4.1</td>
<td>OK</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>SN00031552</td>
<td>2.41</td>
<td>No</td>
<td>3.9</td>
<td>Excellent</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>SN00031561</td>
<td>1.96</td>
<td>No</td>
<td>4.3</td>
<td>Excellent</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>SN00031550</td>
<td>1.97</td>
<td>No</td>
<td>4.1</td>
<td>OK</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>MN4P390</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.43</td>
<td></td>
</tr>
<tr>
<td>SN00286074</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
* In green were highlighted the compounds possessing a calculated value of pK_i in the range 6.01–8.09 (1.00–0.01 μM).

Table S3. Calculated values of pIC$_{50}$ (2D and 3D-QSAR) and K_i (docking) and their mean for outsider marine compounds.

<table>
<thead>
<tr>
<th>ID 2</th>
<th>2D-QSAR</th>
<th>Applicability 2D-QSAR</th>
<th>3D-QSAR</th>
<th>Applicability 3D-QSAR</th>
<th>Docking</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNP4580</td>
<td>5.16</td>
<td>Yes</td>
<td>6.3</td>
<td>OK</td>
<td>7.48</td>
<td>6.31</td>
</tr>
<tr>
<td>MNP6510</td>
<td>5.94</td>
<td>No</td>
<td>5.3</td>
<td>Good</td>
<td>6.90</td>
<td>6.04</td>
</tr>
<tr>
<td>MNP3690</td>
<td>5.21</td>
<td>Yes</td>
<td>5.5</td>
<td>Excellent</td>
<td>7.11</td>
<td>5.94</td>
</tr>
<tr>
<td>MNP10136</td>
<td>4.63</td>
<td>Yes</td>
<td>5.6</td>
<td>Excellent</td>
<td>6.53</td>
<td>5.58</td>
</tr>
</tbody>
</table>