Supplementary Materials: Improved Charge Separation in WO$_3$/CuWO$_4$ Composite Photoanodes for Photoelectrochemical Water Oxidation

Danping Wang, Prince Saurabh Bassi, Huan Qi, Xin Zhao, Gurudayal, Lydia Helena Wong, Rong Xu, Thirumany Sritharan and Zhong Chen

Figure S1. XRD patterns of different WO$_3$ phases obtained from magnetron sputtering on FTO (red) and normal glass slide (blue) substrates, which showed the FTO layer helped to induce the crystal growth of monoclinic WO$_3$.

Figure S2. TEM images of particles scraped from WO$_3$/CuWO$_4$ indicating network morphology of the CuWO$_4$ layer. (a) Network structure of CuWO$_4$ layer; (b) Branched CuWO$_4$ nanoparticles from broken network piece.
Figure S3. Photocurrent comparison of thin film obtained from different runs of dip coating. (Colored lines: Photocurrent under AM 1.5G illumination, Black lines: dark current).

Figure S4. Mott-Schottky plots of WO$_3$/CuWO$_4$ thin film at 10 k (black) and 5 k Hz (red) under dark condition.
Figure S5. Absorption efficiency of: (a) WO\textsubscript{3}/CuWO\textsubscript{4}; (b) WO\textsubscript{3}; and (c) CuWO\textsubscript{4} thin films by measuring the transmission and reflection spectra using an integrating sphere (Absorbance (η_{abs}) = 1 − Transmittance − Reflectance).

Figure S6. Linear sweep voltammetry of all samples with (solid lines) and without the illumination of AM 1.5 (dashed lines), measured in 0.5 M Na\textsubscript{2}SO\textsubscript{4} + 0.5 M H\textsubscript{2}O\textsubscript{2} aqueous solution.