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Abstract: This paper applies an innovative approach based on the acoustic emission technique to
monitor the delamination process of 3D parts. Fused deposition modelling (FDM) is currently one
of the most widespread techniques for additive manufacturing of a solid object from a computer
model. Fundamentally, this process is based on a layer-by-layer deposition of a fused filament.
The FDM technique has evolved to the point where it can now be proposed, not only as a prototyping
technique, but also as one applicable to direct manufacturing. Nonetheless, a deeper comprehension
of mechanical behavior and its dependence on process parameters must include the determination of
material properties as a function of the service load. In this work, the effects of extrusion temperature
on inter-layer cohesion are studied using a method employing a double cantilever beam (DCB).
The ASTM D5528 standard was used to determine the delamination energy, GI. In addition, the
acoustic emission technique was employed to follow the delamination process during testing. Finally,
a Charge-Coupled Device (CCD) camera and a calibrated grid was employed to evaluate crack
propagation during testing.

Keywords: acoustic emission; double cantilever beam; fused deposition modelling; Mode I fracture
mechanics; orthotropic materials

1. Introduction

Fused deposition modelling (FDM) is currently one of the most widespread additive
manufacturing techniques at both commercial and business levels. It can be used to create a final
prototype from a Computer-Aided Drafting (CAD) model and represents an interesting tool in many
fields, spanning those of biomedical, aerospace, heritage, and building [1,2]. Several low-cost 3D
printers exist, such as Maker.Bot, Ultimaker, RepRap, Cube, etc., that make this technology accessible
at both home and the office. In principle, the idea behind the FDM process is that of a layer-by-layer
deposition of a feedstock wire which is heated to melting point. Partially melted filament is then
extruded and deposited through a numerically controlled nozzle [1]. Once deposited, the material
solidifies over the previous layer and deposition of the following layer is then started after raising the
nozzle. Due to both this layer-by-layer building process and the intrinsic orientation of the deposited
material, parts manufactured by FDM have an orthotropic behavior similar to that of a laminate
orthotropic structure [3–5]. Initially, only polylactic acid (PLA) and acrylonitrile-butadiene-styrene
(ABS) could be processed by FDM. However, many other materials can now be utilized in this
process, ranging from ceramic to metal, and short fiber composites to bio-resorbable polymers (PCL).
Compared to ABS, PLA has higher mechanical resistance and a lower coefficient of thermal expansion.
The latter characteristic increases the printability of the materials because warping effects, residual
stresses and de-layering phenomena are reduced [6–10].

Materials 2018, 11, 1760; doi:10.3390/ma11091760 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-8682-6078
https://orcid.org/0000-0002-2378-2186
http://www.mdpi.com/1996-1944/11/9/1760?type=check_update&version=1
http://dx.doi.org/10.3390/ma11091760
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1760 2 of 10

One of the keys to the success of FDM technology is that it allows the creation of small
quantities and unique parts having customized geometries and materials. Technological evolution
of this technique in recent years has advanced this approach from a prototyping method to a rapid
manufacturing method [11]. However, progress in terms of knowledge of mechanical behavior and
its dependence on the proper choice of parameter settings is still required. Many recent studies have
been devoted to analyzing the variation of mechanical properties as a function of printing settings
and on the effect of raster orientation [3,12–15]. However, only a few papers [16,17] have investigated
how process parameters affect inter-layer bonding strength. [16] prove that 90◦ rectangular testing
specimens (ASTM D3039 Tensile test) could be used to investigate this property. In addition, in
the same paper, the advantage of depositing shifted layers was noted as having effects on surface
roughness. In [17], the effect of the layer design was investigated for the case of a PLA-printed object in
terms of inter-layer and intra-layer cohesion. Analysis is, however, limited to the single PLA material.
In this paper, the influence of the extrusion temperature on inter-layer cohesion is investigated for
the case of ABS-printed parts. Mechanical tests were performed employing a double cantilever beam
(DCB) specimen according to ASTM D5528 [18]; acoustic emissions (AE) were recorded during the
tests. Specimens obtained using three extrusion temperatures (i.e., 220 ◦C, 230 ◦C, and 240 ◦C) were
tested and the delamination energy GI was evaluated.

AE has not previously been applied to this class of materials; it was introduced with the aim of
obtaining extra information about the behavior of the part during the test. It allows monitoring of the
test, in which identification of variations in recorded acoustic events can be traced to nucleation and
propagation of cracks inside the material. The approach is a passive one: no sound wave is produced
externally, but detection is limited to the acoustic events produced directly inside the sample as a
consequence of the presence of an active defect. AE has been proven to be capable of detecting sudden
motions in stressed parts at a large scale, such as in earthquake events, and at a small scale, such as
in the case of dislocation motion. The analysis of the evolution of these types of events has allowed
researchers to develop appropriate mathematical relationships that have been successfully tested in
several industrial applications [19–21]. Appropriate indicators of acoustic activity have been identified,
such as number of hits, amplitude, waveform features, energy, etc. Taking advantage of statistical
methods, these indicators can be analyzed and combined to provide information about the material’s
behavior [22–26]. This method was successfully applied to metallic materials [27–29], and glass fiber
reinforced polymer (GFRP) [30,31]. Only a few results are available in the literature for carbon fiber
reinforced polymer (CFRP) and FDM parts.

2. Materials and Methods

2.1. Mode I DCB Test

Three different extrusion temperatures were tested, namely, 220 ◦C, 230 ◦C and 240 ◦C. For each
temperature, 3 samples were prepared and tested for a total of 9 DCB specimens. Samples had a
25 mm × 3 mm section and a length of 125 mm. A Kapton tape was inserted at the midplane of the
specimen during manufacturing so that it acted as an initiation site for delamination. The thickness of
the tape was less than 13 µm and its length was 63 mm. An overall schematic is displayed in Figure 1.
Figure 2 and Table 1 report the geometry and the dimensions of the specimens according to the ASTM
D5528 standard [18], respectively.
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Figure 2. Specimen geometry according to ASTM D5528.

Table 1. Specimen dimensions according to ASTM D5528.

Specimen Dimension Value in Standard (mm) Chosen Value (mm)

Lmin (length) 125 125
b (width) 20 . . . 25 25
h (height) 3 . . . 5 (variation ≤ 0.1) 3
a (crack) 63 63

a0 (initial crack) 50 50

Following the ASTM D5528-01 standard, a unidirectional printing approach was adopted, in
which the deposition of the infill occurred parallel to the longitudinal axis of the sample. An Ultimaker
2+ equipped with a 0.4 mm nozzle was employed to manufacture the specimens. The main process
parameter settings for this experiment are displayed in Table 2. The bed temperature was 90 ◦C and
extrusion temperatures were set as indicated above. Specimens were manufactured with the thickness
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perpendicular to the base platform. The air gap indicated in Table 2 is the distance between near beads
in the same layer, while the bead width and the layer thickness represent the width and height of
the filament, respectively. The number of contours represents the number of deposited edges before
initiating the filling of the internal parts.

Table 2. Main printing settings.

Parameter Value

Air gap (mm) 0
Layer thickness (mm) 0.35
Bead width (mm) 0.70
Number of contour lines 3

Mechanical tests were performed with a displacement rate equal to 1 mm/min using the
electro-mechanical Instron 3343 testing machine. In contrast to ASTM D5528, a digital calibrated
grid (rather than a manual grid) was adopted during the test. The grid was superimposed onto
the images recorded during the test by an Allied Marlin CCD camera (Figure 3). A frame rate of
acquisition equal to 12.75 frames/s was set to follow the entire test. To facilitate visualization, the grid
was colored in two ways: blue lines corresponded to the position of the insert while the red lines were
used to evaluate damage propagation. According to [18], the extension of the blue grid, indicated by
a0, indicated the starting delamination length.
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Delamination in a part displaying a linear elastic material is associated with a strain energy release
rate (G) that can be given by the following equation:

G = − dU
B da

(1)

where a is the crack length, B is the specimen width and U is total potential energy of the specimen.
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For the case of the Mode I DCB test, the strain energy release rate can be calculated by using the
formula derived from beam theory (BT):

GBT
I =

3 P δ

2 B a
(2)

where P is the maximum load and δ is the deflection in correspondence of the load. This theory may
be corrected by considering the changing compliance at the end of the crack that causes both rotation
and deformation of the specimen, modifying the distance between the applied load and the end of the
crack. This correction, known as modified beam theory (MBT), reduces GBT

I toughness as follows:

GMBT
I =

3 P δ

2B (a + ∆)
(3)

where ∆ may be determined experimentally by generating a least squares plot of the cube root of
compliance (C1/3), as a function of delamination length.

In Figure 4, an image of the delaminated specimen is shown. Crack opening and propagation at
the end of the insert is clearly visible.
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2.2. Acoustic Emission

A piezoelectric sensor was attached to the surface of the sample in order to detect acoustic signals
generated during the test. A silicone grease was used in order to guarantee an optimal coupling
between the sensor and the sample. In particular, a Pico sensor (5 mm × 4 mm) was used and placed
10 mm from the border of each sample. A Pico sensor is characterized by an operating frequency
range between 200 kHz and 750 kHz, with a resonance frequency equal to 250 kHz. It can be used in a
temperature range from −65 ◦C to 177 ◦C and its peak sensitivity is 54 dB. The sensor was connected
to a 20/40/60-AST preamplifier. For these experiments, the gain was set to 40 dB. The amplified
signal was sent to a PCI-2 acquisition board, while the signals were analyzed by AEWin software.
This allows extraction of the key features of acoustic signals, such as amplitude, energy, hits and
counts. Acquisition frequency was maintained at 100 kHz for all the tests, while the acquisition
amplitude threshold was maintained at 35 dB in order to achieve efficient noise reduction and good
signal detection simultaneously.
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3. Results and Discussion

From examination of the results, differences can be observed for the three analyzed temperatures
of the extrusion nozzle for GI toughness calculated according to beam theory (BT) and the modified
beam theory (MBT); MBT corrects BT by considering the changing compliance at the end of the crack,
which causes both rotation and deformation of the specimen. The crack opening and detected acoustic
signals also displayed differences. In Figure 5, the letters A, B, and C refer to the three extrusion
temperatures: 220 ◦C, 230 ◦C and 240 ◦C, respectively. The specimens are named 1, 2, and 3. For each
group, three samples were tested. However, only two specimens are reported in Figure 5. The first
was neglected because it was used for calibrating the digital grid; therefore, no information could
be inferred for crack length and only AE data could be collected. From Figure 5, it is possible to
infer a reduction of GI calculated by MBT relative to BT. Figure 5 also shows the errors bar of the
results. This confirms that large deformations occurred for FDM specimens, as expected, especially
if created at high temperature; in this case, correction of GI is mandatory for comparison with CFRP
specimens [32,33]. Indeed, the most significant reduction in GI toughness was observed for the group
manufactured at 240 ◦C.
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Figure 5. GI values calculated by Beam Theory (BT) and Modified Beam Theory (MBT).

Figure 6 shows the plot of crack length vs. crosshead displacement. It is clear that the extrusion
temperature has an effect on crack behavior. For the group A specimens (220 ◦C), the highest values of
crack length correspond to the lowest values of crosshead displacement; for the specimens belonging to
group B (230 ◦C), intermediate values of crack lengths are observed to be scattered over a wide interval
of crosshead displacements; and, for the specimens belonging to group C (240 ◦C), the lowest values
of crack length were observed to be in correspondence with a wide range of crosshead displacements.
This behavior can be theorized to be the consequence of different cohesion between adjacent strands
depending on the extrusion temperatures [17]. It is reasonable to say that if temperature is increased,
the fusion of the layers is increased and the highest values of GI toughness are obtained.
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Furthermore, analysis of the AE data shows some differences distinguishing the three
temperatures. Acoustic data are presented in Figure 7. Charts in Figure 7 refer to amplitude, which
represents the largest voltage peak in the acoustic emission signal waveform (expressed in decibels),
and hits, which is the number of acoustic signals detected and measured on a channel during the
tests. It is important to underline that the error bars associated with the amplitude are not included
in the graphs, since the most useful and significant parameter in damage propagation monitoring
is the evolution of the trend of the amplitude of the signals recorded, rather than its variability.
From Figure 7 it can be inferred that the number of hits and amplitude change as a function of
the extrusion temperature. Specifically, the number of hits increases if the extrusion temperature is
increased. Moreover, the highest amplitudes are observed for the samples of group C (manufactured at
the highest temperature, 240 ◦C). From a general point of view, it is possible to conclude that the highest
acoustic activity relates to highest temperature. In conjunction with the previous results, this behavior
suggests an increment of the GI toughness. If temperature increases, in fact, specimens become more
compact and, as a consequence, they produce more acoustic signals for the same applied load.

Interesting observations can be drawn in connection with the predictive capacity of AE if
compared to visual inspection performed during the Mode I tests. The dashed line in Figure 7
indicates the onset of delamination. The initial time of delamination was different in the three groups
but the predictive capability does not change. The tests were undertaken by controlling displacement;
in that way the load rate changed if materials have shown different mechanical behavior characteristics:
i.e., weak or ductile. Group C specimens showed weaker behavior than those of group B, as indicated
by the sharp increase in hits and amplitude. In terms of duration of the tests, this is explained by the
fewer number of seconds at which delamination occurred relative to the group B specimens.

AE allows the detection of a critical stage by the large increment in hit numbers and amplitude
many seconds before the dashed line. This predictive capability is more evident if the extrusion
temperature is higher; samples in group C display the greatest increase in slope, providing confirmation
of higher acoustic activity compared to the other groups. This advantage has also been noted for several
other materials [27–33], and is very important for FDM parts, given that, in most cases, delamination
occurs internally and is not visible.
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4. Conclusions

This paper presents the results of Mode I delamination tests, monitored by acoustic emissions,
performed on fused deposition modelling parts extruded at three different temperatures (220 ◦C,
230 ◦C, and 240 ◦C). It was observed that if extrusion temperature is increased, delamination is reduced
and GI toughness is increased. Acoustic emission analysis provided relevant predictive information
about the material under testing. In particular, higher acoustic activity combined with a higher
extrusion temperature provides a more predictable signal of delamination than any visual indication.
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