Supplementary Information for "High partial auxeticity in simple model with Yukawa interactions induced by nanochannels in [111]-direction"

Konstantin V. Tretiakov¹, Paweł M. Pigłowski¹, Jakub W. Narojczyk¹, Mikołaj Bilski² and Krzysztof W. Wojciechowski¹

¹ Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
² Institute of Applied Mechanics, Poznań University of Technology, Jana Pawła II 24, 60–965 Poznań, Poland
* tretiakov@ifmpan.poznan.pl, Tel.: +48-61-689-52-76; mikolaj.bilski@put.poznan.pl

Published: date

1. Used nomenclature

The signs used in the manuscript are shown below

- \(N \) – the number of particles
- \(N_{HS} \) – the number of particles forming the inclusion
- \(N_Y \) – the number of ’Yukawa’ particles
- \(n \) – the number of fcc cells on the edge of the system
- \(c \) – the concentration of the nanoinclusion particles
- \(\sigma \) – the particles’ diameter
- \(\kappa^{-1} \) – the Debye’s screening length
- \(\epsilon \) – the contact potential
- \(\beta = 1/(k_B T) \)
- \(k_B \) – the Boltzmann constant
- \(T \) – the temperature
- \(r_{ij} \) – distance between \(i \)-th and \(j \)-th particle
- \(S_{ijkl} \) – component of elastic compliance tensor
- \(\varepsilon_{ij} \) – component of strain tensor
- \(V_p \) – equilibrium volume of the system
- \(P \) – pressure
- \(p^* \equiv \beta P \sigma^3 \) – reduced pressure
- \(h \) – the box matrix
- \(h_0 \equiv \langle h \rangle \) – the reference box matrix
- \(I \) – identity matrix
- \(\delta_{ij} \) – the Kronecker delta
- \(n_i \) – the \(i \)-component of a unit vector in the direction of the applied stress
- \(m_i \) – the \(i \)-component of a unit vector in the direction in which the reaction of the system is observed.
- \(v_{an} \) – the Poisson’s ratio
- \(\chi \) – the degree of auxeticity

In this paper Voigt’s notation and Einstein’s summation are used.
2. Computations of the elastic compliances

The Lagrangian strain tensor can be expressed as [1]:

\[\varepsilon_{ij} \equiv \left(\partial_i u_j + \partial_j u_i + \sum_k \partial_i u_k \partial_j u_k \right) / 2 , \]

(1)

where \(u_i \equiv x_i - X_i \) is the displacement vector and \(X_i, x_i \) describe respectively the undeformed state and the state under the deformation [1]. Under constant isotropic pressure \(P \) the expansion of the change of free enthalpy (Gibbs free energy), \(\Delta G \), caused by deformation of a crystal has the form [2]:

\[\Delta G = \frac{1}{2} V p B_{ijkl} \varepsilon_{ij} \varepsilon_{kl} + ... \]

(2)

where \(B_{ijkl} \) are the components of the elastic constants tensor at fixed temperature and pressure \(P \) (the Einstein’s summations is used). Under the isotropic pressure conditions, \(\sigma_{ij} \equiv -P \delta_{ij} \), the elastic constants \(B_{ijkl} \) form the relation between the components of the strain tensor \(\varepsilon_{kl} \) and the stress tensor \(\sigma_{ij} \) [3] (the Hooke’s law):

\[\Delta \sigma_{ij} = B_{ijkl} \varepsilon_{kl} , \]

(3)

where \(\Delta \sigma_{ij} \equiv \sigma_{ij} + P \delta_{ij} \). By inversion, the above reads:

\[\varepsilon_{ij} = S_{ijkl} \Delta \sigma_{kl} , \]

(4)

where \(S_{ijkl} \) is the elastic compliance tensor, a fourth-rank tensor which remains unchanged when replacing \(i \)-\(j \), \(k \)-\(l \) and \(ij \)-\(kl \). The elastic compliances are related to the elastic constants tensor elements by the following equality [4]:

\[S_{iklm} B_{lmpq} = \frac{1}{2} \left(\delta_{ip} \delta_{kq} + \delta_{iq} \delta_{kp} \right) . \]

(5)

In computer simulations the strain tensor is obtained from two matrices - the \(h \) matrix describing the system’s state (under pressure \(P \)) and reference box matrix [5,6] \(h_0 \) (\(h_0 \equiv \langle h \rangle \)):

\[^\prime = \frac{1}{2} \left(h_0^{-1} h . h . h_0^{-1} - 1 \right) , \]

(6)

where \(I \) is the unit matrix of the dimensionality 3. Both \(h \) and \(h_0 \) are kept symmetric during simulations. Considering that at equilibrium \(\varepsilon_{ij} = 0 \), it has been shown [5] that fluctuations of \(\varepsilon_{ij} \) are related to the elastic compliance tensor \(S_{ijkl} \):

\[S_{ijkl} = \langle \Delta \varepsilon_{ij} \Delta \varepsilon_{kl} \rangle \frac{V_p}{k_B T} , \]

(7)

where \(\Delta \varepsilon_{ij} \) is the difference between reference and instantaneous states, and the \(\langle \ldots \rangle \) denotes the averaging in the isothermal–isobaric ensemble:

\[\langle f \rangle = \frac{\int d^6 \varepsilon f \exp(-G/k_B T)}{\int d^6 \varepsilon \exp(-G/k_B T)} \]

(8)

(for more details see [3,7,8]).

3. \(\mathbf{n} \) and \(\mathbf{m} \) directions

Based on the knowledge of the full tensor of elastic compliances one can calculate the Poisson’s ratio for arbitrary direction [9]:

\[\nu_{nm} = \frac{m_i m_j S_{ijkl} n_k n_l}{n_p n_s S_{pqrs} n_p n_s} , \]

(9)
In the equation (9) \vec{n} and \vec{m} are unit vectors indicating selected pair of directions (illustrated in the Figure 1) for which the Poisson’s ratio is calculated. The $\vec{n} = (n_x, n_y, n_z)$ vector is oriented in the direction of the applied stress (according to the definition of the Poisson’s ratio). The \vec{m} represents the direction in which the reaction of the system on the applied stress is observed. It is located on the plane orthogonal to \vec{n}, spanned by vectors \vec{m}_1 and \vec{m}_2:

\[
\vec{m}_1 = \frac{\hat{k} \times \vec{n}}{\sqrt{(\hat{k} \times \vec{n}) \cdot (\hat{k} \times \vec{n})}} = \frac{1}{\sqrt{n_x^2 + n_y^2}} (-n_y, n_x, 0),
\]

(10)

\[
\vec{m}_2 = \vec{n} \times \vec{m}_1 = \frac{1}{\sqrt{n_x^2 + n_y^2}} (-n_x n_z, -n_y n_z, n_x^2 + n_y^2),
\]

(11)

where \hat{k} is the versor of the Oz axis. The versor is the unit vector denoted by symbol $\hat{}$. The α angle describes the orientation of \vec{m} vector on that plane:

\[
\vec{m} = \vec{m}_1 \cos \alpha + \vec{m}_2 \sin \alpha.
\]

(12)

Figure 1. Spherical coordinates: \vec{n} (described by polar and azimuthal angles θ, ϕ) and \vec{m} (described by α angle). α is the angle between \vec{m} and \vec{m}_1 (\vec{m}_1 is the versor created by plane Oxy and plane orthogonal to \vec{n}).

References

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).