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Abstract: Recently developed concentric laser metal wire deposition (LMWD) heads allow metal
addition processes which are independent of the deposition direction, thus enabling complex paths
to be generated. The sensitivity of the process to height deviations has experimentally been observed
to be greater with this type of head than with powder ones, therefore requiring more precise and local
process control algorithms to be implemented. This work developed a methodology for measuring
the part, layer by layer, using a 3D scanner based on structured laser light. Height corrections were
applied to the mean and intra-layer height deviations by recalculating the deposition trajectories of
the next layer to be deposited. Local height deviations were adjusted by varying the scanning speed,
thus increasing the feed rate in the lower areas and decreasing it in the higher ones. Defects generated
in the purpose, with height differences within the layer, were successfully corrected. A flat layer was
re-established through the application of the control strategy. The internal integrity of the parts due
to the scanning speed variation was analyzed, resulting in fully dense parts. The structured light
measurement and height correction systems are found to be an affordable and time-efficient solution
that can be integrated into an LMWD environment, thereby improving the process robustness.

Keywords: laser deposition; metal wire; height control; monitoring; cladding; additive manufacturing;
coaxial wire feed; structured light scanning

1. Introduction

Laser metal deposition (LMD) is an additive manufacturing (AM) technique in which a
high-power laser melts a filler material in the form of powder or wire, resulting in layer-by-layer
manufacturing along a predefined robot or machine path [1].

AM allows near net-shape components to be produced for specific sectors in a process which is
costly. In contrast to subtractive techniques, the amount of raw material required for manufacturing
is close to the volume of the final part, requiring only subsequent finish machining to reach the final
shape. This characteristic arouses the interest of sectors such as aeronautics or aerospace, in which
expensive materials such as titanium and nickel-base alloys are often used. These geometries require
either heavy machining operations with high amounts of wasted material [2,3] or costly forging
operations prior to machining. The addition of material in wire form means that 100% of the material
introduced is melted, resulting in a more efficient, safe, and clean process than in the case of powder
LMD. As wire is cheaper than powder, the laser metal wire deposition (LMWD) process is also more
cost-efficient [4].

Materials 2019, 12, 352; doi:10.3390/ma12030352 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7349-5655
https://orcid.org/0000-0002-8477-0699
http://dx.doi.org/10.3390/ma12030352
http://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/12/3/352?type=check_update&version=2


Materials 2019, 12, 352 2 of 13

However, there are process robustness barriers that need to be overcome before AM systems are
suitable for use in industrial environments. Due to the large number of variables that are handled
in the process, it is often difficult to detect the cause of a process failure that may compromise the
internal quality of a part and even more so if the failure is the result of a combination of causes.
Therefore, new developments in the field of process monitoring and control are still necessary before it
is appropriate to incorporate AM technologies into industrial settings [5].

Reviews of different LMD monitoring and control methods have been presented [6,7].
Some authors attempt to maintain process stability by employing vision cameras [8–13]. By placing
a coaxial camera on the deposition head, it is possible to obtain a measurement independent of the
deposition direction. In this way, it is possible to monitor the size of the molten pool and control it by
varying input parameters such as power or scanning speed. The correct choices for the measurement
wavelength range of the camera and filters arranged in the optical path are critical aspects to obtain a
suitable measurement.

LMWD introduces some differences with respect to powder LMD that require a better
understanding of the process and new developments regarding in-process control. Some laser welding
and repairing heads insert the wire laterally at a defined angle to the processing laser, although
this same configuration has also been used to grow parts of simple geometry layer by layer [14].
However, generating geometries with direction changes requires independence in the deposition
direction. Wu et al. [15] presented an approach for achieving deposition direction independence
in which the welding torch rotated according to the deposition direction in a process of wire arc
additive manufacturing (WAAM). Some recently developed LMWD heads [16–20] solve the direction
dependence issue by inserting the wire perpendicular to the substrate, so the laser beam is divided
within the head and then refocused on the working plane. This introduces the additional complexity
of accurately reconstructing the laser beam. Due to the angle of the divided beams with respect to
the vertical, the shape of the laser spot changes significantly when varying the working distance.
Furthermore, while the defocusing effect is important in powder deposition [21], it is critical in the case
of LMWD. Motta and Demir [17] described the issues concerning height deviation using a high-speed
vision camera. Defects were observed such as stubbing when the working distance was too small
and dripping when it was too large. For this reason, control of the distance between head and part is
essential to maintain constant laser power distribution in the working plane and avoid process failures.

By placing a camera off-axis, it is possible to obtain geometric information such as the height of the
bead, or the relative position of the robot with respect to the part [22–24]. In this way, online corrections
of the deposition parameters or the position of the head can be made. However, the cases in which
this type of control have been applied are simple geometries, such as single-track walls, and the
measurement can give rise to great differences in the case of solid parts with overlapping filling
patterns. Donadello et al. [25] developed a novel system of coaxial camera and laser projection which
estimated the height of the piece by triangulation. This allowed a measurement of the height during
deposition, although the accuracy for more complex geometries was not verified.

In other cases, metrological systems based on triangulation have been investigated. Buhr et al. [26]
studied the influence of thermal radiation on the accuracy of the measurements in a line scanner
placed on the head and reached the conclusion that, due to the high light emissions of the process,
current measurement systems cannot perform accurate measurements during continuous deposition.
Interruption of the process makes the precision of the scanner measurement higher than in the case
of vision cameras and it is applicable to any geometry. Heralić et al. [27] also introduced a laser
line scanner to obtain the height profile of the deposited piece and calculated the wire input for the
next layer.

In this work, a structured light-based scanning technology was employed. A sequence of laser
light patterns was projected onto the part and a camera calculated the distance to each point by
triangulation. The advantage over a laser line scanning system is that the measurement can be
made from an external fixed position without the need to introduce an extra movement, which adds
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complexity to the system and decreases its accuracy. The developed control strategy complements the
work in [28], where a height control strategy based on the recalculation of the deposition trajectories
according to the mean height of the previously deposited layer was presented. This paper presents
a novel methodology to apply local corrections within the layer, based on the dynamic variation of
the scanning speed as a function of the height of each region. The effectiveness of the system was
evidenced by the successful correction of induced local defects.

2. Materials and Methods

2.1. Description of the laser metal wire deposition (LMWD) Equipment

The LMWD cell of Figure 1 was used for the implementation of this work. The processing laser
was a 4 kW Ytterbium Laser System YLS4000 (IPG Photonics, Oxford, MA, USA) and the deposition
movement was achieved by an IRB4400 robot (ABB, Zurich, Switzerland). 316LSi stainless steel filler
material (Lincoln Electric, Cleveland, OH, USA) in the form of 0.8 mm diameter wire was introduced by
means of a wire feeder (DINSE G.m.b.H., Hamburg, Germany). The deposition head was a COAXwire
(Fraunhofer IWS, Dresden, Germany), which divides the main laser beam into three beams and then
focuses them again on the working plane [16]. The result is a direction-independent deposition. The 3D
measurement was acquired by means of a Phoxi 3D structured light scanner (Photoneo, Bratislava,
Slovakia). The distance between the scanner and the robot positioner was set at 1239 mm as the
optimum value recommended by the manufacturer. The point-to-point spacing at this distance was
0.524 mm, considered as adequate for the size of the deviations in the LMWD process. The angle of the
scanner with respect to the vertical was fixed at 30◦ in order to obtain the correct scanning of the upper
part of the piece and to avoid collisions with elements of the head.
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Figure 1. Experimental setup of the laser metal wire deposition (LMWD) robotic cell.

Prior to deposition, the measuring system must be calibrated to align the scanner coordinate
system with the robot’s coordinate system. In this procedure, the points of the target pattern are
detected both by vision by the scanner and by touching the points with the robot. With the points
referred to in the robot coordinate system, PRobot, and scanner, PScanner, the transformation matrix T is
calculated (Equation (1)). This matrix is applied to all the points of the subsequent scans, also referring
the scan points to the robot coordinate system.

PRobot= T·PScanner (1)



Materials 2019, 12, 352 4 of 13

The wire feeding was also monitored continuously by means of a Genie Nano C1940 CMOS
vision camera (Teledyne DALSA, Waterloo, ON, Canada) placed laterally and equipped with a visible
bandpass filter, a neutral filter, and LED illumination of the work area.

2.2. Height Control Methodology

The correction strategy developed calculated the deposition trajectories layer by layer based on the
height profile measured in the previously deposited layer. After the deposition of the layer, the process
was stopped and the upper surface of the part was scanned. Due to the calibration procedure, the
coordinates of the obtained point cloud referred to the same working coordinate system as that of the
robot, so height corrections could be applied at their precise location.

In order to reduce the size of the acquired point clouds, in a first step, the points outside the work
volume were removed. This reduced point processing time and therefore the stop time between layers.

Based on this scan the trajectories of the next layer were defined. In this case, the procedure
of stopping the process, scanning the part, and calculating trajectories was applied for each
individual layer.

A representation of the height deviation of a layer is illustrated in Figure 2a. When a layer is to
be deposited, the approximate growth of the layer is known, hence the height that the part should
reach after deposition is referred to as theoretical height, ht. However, the growth of the part will not
necessarily match the theoretical height, so there is an error between the scanned layer height profile,
hs, and the theoretical height (Equation (2)).

e = hs−ht (2)
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Figure 2. Mean height correction strategy and local deviations. (a) Deviations from the mean height of
the piece; (b) Correction of the mean height by slicing the CAD, in STL format, starting from the mean
height of the layer.

In order to avoid excessive corrections on the part that could lead to faults, the error is divided
into a mean, em, and intra-layer, el , height error. The mean error is the difference between the mean
height of the scanned layer, hm, and the theoretical height, whereas the local error represents the
deviation of the scanned height profile with respect to the mean height:

e = em+el = (hm−ht) + (hs−hm). (3)

The control strategy is therefore applied to the height deviation in two steps:

• Mean height correction
• Local intra-layer height correction

Each correction strategy will be explained in the following sections.
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2.2.1. Mean Height Correction

The mean height correction based on the robot position adjustment without considering the CAD
of the part results in large differences between the theoretical and built geometries, especially in parts
with complex shape [29]. Therefore, a control strategy based on the recalculation of the deposition
trajectories applied in this work results in a more accurate reproduction of the theoretical geometry
(CAD model).

In order to perform the mean height correction considering the geometry of the part and the
scanned data, the same procedure was used as in Reference [28], where the CAD model, in STL format,
of the complete part was sliced from the mean measured height to the next height to be reached after
deposition of the following layer (Figure 2b). As in this work, only one layer was deposited between
scans and the height of the volume to be deposited corresponded to the theoretical layer height.
Then, the deposition trajectories of this STL slice were generated using a tool developed in-house [30].
Figure 3a shows the deposition path of a layer together with the scanned point cloud. The deposition
pattern consisted of a zig-zag that rotated 90 degrees each layer and one external perimeter.
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2.2.2. Local Intra-Layer Height Correction

During experimental work it was found that the mean height correction applied to the whole layer
was not sufficient to guarantee the homogeneous and robust growth of the piece. Besides the process
parameters commonly referred to, such as power, scanning speed, or wire feed rate, part growth can
be affected by other factors such as part heating and cooling rate in different zones, part geometry,
or the dynamic precision of the robot in its movements. The importance of each of these factors is
often mixed and it is difficult to distinguish their effect on the final result. This paper does not attempt
to study the cause of height deviations but rather presents a methodology to control local deviations
within the layer regardless of their origin.

The purpose of intra-layer height correction is to introduce more material into areas where
the height is insufficient and less material where height is excessive. The principal alternatives for
varying the material feed rate in different areas in LMWD are to vary the wire feeding speed or the
machine (or robot) scanning speed. In this case, the choice made by the authors was to change the
scanning speed, exploiting the ability to modify the deposition trajectories of the subsequent layers
to be deposited. As a combined correction of the mean and local height of the layer was applied,
the local intra-layer correction was based on deviations with respect to the mean height, giving rise to
smoother corrections.

The deposition paths consist of linear point-to-point movements, which constitute the matrix of
M coordinates with the consecutive points of the robot movement:

M =[m1 m2 . . . mi . . . mI ], mi =
{

mix miy miz

}
. (4)
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To introduce local corrections, the linear movements are discretized by the insertion of
intermediate points. The discretization of the trajectory is illustrated in Figure 3b, with the
representation of two consecutive points, mi and mi+1, before and after the insertion of the intermediate

points. The distance between points is calculated according to a value, d, entered by the user. If
→
hi is

defined as the vector that connects mi and mi+1, the number of points to introduce between them, ni,
is calculated as follows:

ni= round
(∣∣∣∣→hi

∣∣∣∣/d
)
−1, (5)

and the coordinates of the intermediate points, mk, are then computed:

mk= mi +
mi+1−mi

ni+1
·k, k = 1, 2, . . . , ni. (6)

The M matrix is then redefined by inserting the intermediate points. On the other hand,
the scanning of the part originates a matrix, P, with the coordinates of the point cloud:

P =[p1 p2 . . . pn . . . pN ], pn =
{

pnx pny pnz

}
. (7)

Figure 3c shows a zoom view of the trajectory points together with the scanned point cloud and
the intra-layer height control parameters. With this control methodology, the scanning speed between
the newly defined mi and mi+1 is determined as a function of the height profile of the scan.

A certain point in the trajectory, mi, is not necessarily coincident with a point in the scan, pn,
so the height deviation for each trajectory point, desvmi , is calculated based on the z component of the
scan points that are placed at a distance less than a user-defined value, r:

desvmi= mean(P), P ={pn,z|(p n,x−mxi)
2+(p n,y−myi)

2−r2< 0}. (8)

The speed of a movement connecting two points, v→
hi

, is established by means of the diagram

shown in Figure 4, taking the mean value of the deviations of the two points being connected:

v→
hi
= vnom +

vmax−vnom

desvmax
·
desvmi+desvmi+1

2
, (9)

where vnom is set as the nominal speed from which the scan speed adjustments are made. The slope of
the correction curve is also determined by the user-defined parameters desvmax and vmax, corresponding
to the maximum deviation at which the maximum speed is to be applied. These values determine
the severity and stability of the corrections. If the speed change for a certain deviation is excessive,
the growth of the part may change more than is necessary to reach the target height, as well as leading
to large accelerations during the process. On the other hand, if the speed change entered is insufficient,
a local defect may continue increasing and remain uncorrected.

Finally, speeds higher than vmax and lower than vmin are saturated:

v→
hi
=

{
vmin, if vi< vmin

vmax, if vi> vmax
. (10)
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The setting of the nominal, maximum, and minimum speeds must also take into account the
possible effect of the speed change on the final part quality, in order to guarantee homogeneous
component properties and the absence of internal defects.

User-defined values d and r also influence performance of the control. Figure 5 shows the
deposition trajectories calculated with various combinations of these parameters. In Figure 5a, small r
and d values are chosen, resulting in a large number of points on the trajectory and the deviations being
calculated with very close scan points. As a result, more localized height variations can be corrected,
but the velocity changes are also more pronounced. On the other hand, in Figure 5b, a higher value of
d which is also significantly higher than r is selected. This results in fewer points in the trajectories
and very discrete and sudden speed changes. Finally, the parameters in Figure 5c were considered
as adequate for this work, in which a relatively small value of d and a slightly larger value of r are
used. In this way, moderately small deviations can corrected with progressively changing speeds.
Although a lower value of d can introduced, the improvement may not be relevant and the calculation
time of the trajectories may increase considerably.
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The precision with which the trajectory positions are reached is another aspect to consider.
The robot programming allows this precision to be varied in order to allow a continuous movement
without speed changes. On the other hand, this means that the real trajectory of the robot does not
necessarily correspond with the programmed path. This is the case for the corners of the path in
Figure 3a. Although the trajectories are programmed to reach the corner of the section, reaching this
point would lead to a significant reduction in the robot’s speed, resulting in excessive growth in the
corners. For this reason, the precision of the movement is reduced, resulting in more rounded real
trajectories. This is a limitation to consider when determining the point at which corrections are made.
In this work, this problem was solved by means of the parameters d and r, which softened this effect
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to some extent by increasing the distance to the points used to calculate the deviations. In other cases,
this aspect can be addressed, for example, by introducing more rounded corners in the trajectory that
will enable an accurate movement with the programmed speed.

3. Results and Discussion

3.1. Influence of Velocity Change on Part Integrity

Initially, 25 mm × 25 mm section hexahedrons with 10 layers were manufactured. The distance
between consecutive beads was specified as 1.3 mm. The deposition parameters used are given in
Table 1. All parameters were kept constant except the scanning speed of the robot which was varied
with respect to the nominal speed, set at 20 mm/min. The height at which each layer was deposited
was adjusted based on the mean height of the previous layer. Figure 6a shows the hexahedron
manufactured with the nominal speed, whereas in Figure 6a–f hexahedrons varying the speed above
and below the nominal speed are presented. Note that as the scanning speed of the robot increased or
decreased while maintaining the same deposition trajectories, the height of each layer and the height
of the final part increased or decreased accordingly. On the other hand, although the overlap ratio
was also changed as a consequence of the bead width change, the hexahedrons obtained showed an
absence of pores or internal defects for every velocity.

Table 1. LMWD process parameters employed.

Laser Power (W) Wire Feed Speed
(m/min)

Wire Feed Rate
(kg/h)

Protective Gas
Flow Rate (L/min)

Robot Scanning
Speed (mm/s)

1500 3 0.72 12 16–24
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Figure 6. Cross-section of the part for different scanning speeds. (a) Complete hexahedron with
nominal velocity, 20 mm/s; (b) Velocity increase of 20%, 24 mm/s; (c) Velocity increase of 10%,
22 mm/s; (d) Nominal velocity, 20 mm/s; (e) Velocity decrease of 10%, 18 mm/s; (f) Velocity decrease
of 20%, 16 mm/s.
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The results of the experiments have demonstrated the feasibility of adapting the scanning velocity
on a part to vary the height of the deposition. Although different scanning speeds affect part heating
and cooling rates, thus altering the microstructure of the final manufactured part, this aspect has not
been considered in this article, considering as valid totally dense parts, with the absence of pores
or cracks. In future research, the effect of these variations on the properties of the final part will
be determined.

3.2. Defect Correction

Two test specimen geometries were produced to validate the effectiveness of the height correction
method. The deposition parameters were again those of Table 1 and the same zig-zag and external
perimeter deposition pattern was applied. Although it was proven that parts could be built with a
20% speed change with no defects, the speed in these tests was limited to 10% to soften corrections and
ensure internal quality, so the value of vmax was set at 22 mm/s and vmin at 18 mm/s. The maximum
height deviation for these limit speeds, desvmax, was set at 1 mm.

In the first test (Figure 7a), a step-type defect was simulated. After an initial complete layer
deposition, only half of the section was deposited in the second layer. In Figure 7b, the part can be
seen after the correction of the step defect, resulting again in a flat surface. Figure 7c shows the height
profiles of the part calculated for each layer obtained from the scans, and the provoked step defect.
Finally, in Figure 7d, the evolution of the height on both sides of the part is illustrated. The step defect
induced in the second layer can be seen, which results in a difference in height between the two sides
of the section. This difference in height decreases along the layers until it becomes negligible in the
12th layer.
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In the second demonstrator (Figure 8a), a pocket-shaped defect was generated. Again, the result
of scanning speed control is shown in Figure 8b, in which after a certain number of layers a flat
deposition was restored. The pocket defect, consisting of two layers of difference with respect to the
top layer height, was produced deliberately (Figure 8c). The evolution of the height for the pocket and
for the external zone is reflected in Figure 8d. In this case, the height difference in the third layer was
larger, so it was not until the 19th layer that the height of the entire layer was almost levelled.
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profile for each layer; (d) Height evolution for the central and external zones of the piece. Mean height
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In order to verify that the correction had been applied without compromising the integrity of the
part, the corrected samples were cut to analyze possible internal defects. Figure 9 shows a detailed
view of the defect correction, in which no interior defect can be seen either in the case of the step defect
(Figure 9a) or in the pocket defect (Figure 9b).
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By combining the mean layer height correction and local deviations, it was possible to re-establish
a constant layer height. While the method presented in this paper was applied to provoked defects,
the height correction method developed will be employed in future work on larger parts in order
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to maintain stability during manufacture. As further points to be developed, the measurement and
control strategy will be applied to different geometries and materials, as well as analyzing their effect
on the properties of the part.

4. Conclusions

A novel in-process height control methodology was developed in the LMWD process based on
the measurement of the part by means of a structured light scanner resulting in the correction of
intra-layer defects.

The height correction was implemented in two steps. On the one hand, the average height of
the deposited layer was corrected according to the scanned height profile of the workpiece and the
reference CAD geometry. On the other hand, the control of the local deviations was based on the
variation of the scanning speed of the robot. As a result, it was possible to adapt the deposition rate
and therefore the bead height according to the height of each scanned zone.

In order to prove the effectiveness of the height control strategy, defects were provoked to
simulate an irregular growth in different areas of the part. The performance of the control was
tested, experimentally analyzing how planar layers were re-established after a certain number of
deposited layers.

The methodology proved to be adequate to correct local intra-layer defects. The internal integrity
of the part and the absence of defects was also verified in order to validate the process control
methodology based on scanning speed variation.

The recalculation of layer-by-layer deposition paths and the combination of mean layer height
error corrections and local corrections resulted in a reliable method for introducing the methodology
into LMWD manufacturing environments. Although the calibration process, communications,
or trajectory programming may be dependent on the manufacturing environment or scanner used,
it is considered that the methodology presented is applicable to different machine configurations and
measurement systems.

Future research will evaluate the degree to which the system is appropriate for other geometries
and materials.
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