Article

Functional Chitosan Derivative and Chitin as Decolorization Materials for Methylene Blue and Methyl Orange from Aqueous Solution

Abdelkader Labidi 1,2, Asier M. Salaberria 3, Susana C. M. Fernandes 4, Jalel Labidi 3, * and Manef Abderrabba 1

1 Preparatory Institute of Scientific and Technical Studies of Tunis, University of Carthage, Sidi Bou Said road, B.P. 51 2070, La Marsa, Tunisia; abdelkaderlabidi0907@gmail.com (A.L.); abderrabbamane@ gmail.com (M.A.)
2 Chemistry Department, University of Sciences of Tunis, El Manar University, B.P: 248, El Manar II, 2092, Tunis, Tunisia.
3 Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plza. Europa1, 20018 Donostia-San Sebastian, Spain; asier.martinez@ehu.eus
4 CNRS/ Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Materiaux, Umr 5254, 64000, Pau, France; susana.fernandes@univ-pau.fr
* Correspondence: jalel.labidi@ehu.es

Figure S1. 13C NMR spectra of chitosan (a) and chitosan-g-polyacrylamide (CS-g-PAM) (b).

Figure S2. TGA (a) and DTG (b) spectra of chitosan and chitosan-g-polyacrylamide (CS-g-PAM).
Figure S3. DSC spectra of chitosan and chitosan-g-polyacrylamide (CS-g-PAM).

Figure S4. SEM micrographs of chitin (a) and chitosan (b); XRD of chitin and chitosan (c).

Figure S5. Arrhenius plot of $\ln K_C$ versus $\frac{1}{T}$ for the decolorization of MB and MO by CS-g-PAM and CH: initial MB and MO concentration: 5.0 mg/mL; CS-g-PAM and CH concentration: 0.3 g·10mL$^{-1}$ (a); plot of $\ln(1 - \theta)$ versus $\frac{1}{T}$ for the decolorization of dyes solution: initial MB, MO concentration: 10 mg/L; CS-g-PAM and CH concentration: 0.3 g·10mL$^{-1}$ at 25 °C (b).