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Abstract: Concrete is a building material commonly used for ages. Therefore, in the result of repairs
or demolition of building structures, large amounts of concrete rubble are created, which requires
appropriate management. The aim of the realized research was to determine the influence of heat and
mechanical treatment of concrete rubble on the properties of recycled aggregate concrete. The research
experiment included 12 series, with three variables: X;—roasting temperature (300, 600, 900 °C),
Xp—time of mechanical treatment (5, 10, 15 min), X3—content of coarse recycled aggregates (20, 40,
60% by volume). Two additional series containing recycled aggregate without treatment and natural
aggregate were also prepared. Established properties of individual aggregates have confirmed a
positive effect of thermo-mechanical treatment. Then, based on the results of compressive strength,
flexural strength, Young’s modulus, volumetric density, water absorption, water permeability and
capillarity, the most favourable parameters of heat and mechanical treatment of concrete were
determined. The test results showed that appropriate treatment of concrete rubble allows to obtain
high-quality coarse aggregate and valuable fine fraction. This was also confirmed by the macro-
and microscopic observations of the aggregate and separated cement paste. Works realized on the
concrete recycling method resulted in obtaining a patent PAT.229887.

Keywords: recycled concrete aggregate; recycled aggregate concrete; concrete gravel;
thermo-mechanical treatment; microstructure; X-ray diffraction

1. Introduction

Concrete is the single most widely used construction material in the world but also one of the
most environmentally unfriendly. Its manufacture consumes a large amount of non-renewable natural
resources (aggregates: 80%), Portland cement (10%), supplementary cementitious materials (3%),
and water (7%). Its production is responsible for 5% of anthropogenic worldwide CO, emissions [1].

Natural aggregates (NAs) used in the manufacture of concrete are inert granular materials such
as sand, gravel or crushed stone. Natural gravel and sand are usually dug or dredged from a pit, river,
lake or seabed. Crushed aggregate is produced by crushing quarry rock, boulders or large-size gravel.
Currently, the global aggregate production is estimated at 40 billion tons, which is leading to a depletion
of natural resources, high energy consumption, and impacts on the environment [2].

Countries that are consuming the largest amounts of aggregates are China (38%), India (13%), other
Asian countries (12%), Africa (8%), USA (6%), EU + EFTA (8%), C&S America (6%) and Oceania (4%).
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Approximately 58% of aggregates are used for the manufacture of concrete and mortar. The use of
recycled aggregates from construction and demolition waste (CDW) in the manufacture of concrete and
mortar is a viable alternative to reduce the unsustainable level of consumption of natural aggregates
worldwide and avoid landfilling CDW [3,4].

Concrete structures are demolished at the end of their service life generating concrete waste which
can be recycled in treatment plants [5]. In these plants, concrete rubble is crushed to reduce the grain
size in order to produce recycled concrete aggregates (RCAs). The RCAs can be screened to obtain
two fractions: coarse recycled concrete aggregates (CRCAs) and fine recycled concrete aggregates
(FRCAS). Most of the RCA studies have been focused on the use of CRCAs, because of the worse
physico-mechanical and chemical properties of FRCAs. Hence, most technical recommendations
(e.g., codes, instructions) exclusively propose the use of CRCAs for RCA production [4].

Recycled concrete aggregates are composed of natural aggregates covered with a porous layer of
cement paste. The recycled aggregate’s quality is closely related to the adhered cement paste properties,
since the bond between the primitive natural aggregates and the cement paste is usually weak in the
interfacial transition zone [6]. It is widely accepted that the presence of cement paste in RCA justifies
its worse physico-mechanical and chemical properties compared to NAs. Recycled concrete aggregate
texture is more angular, rough, and porous than NAs [7]. Recycled concrete aggregate density is
lower than NAs and the absorption of water is greater. Recycled concrete aggregates have a lower
resistance to fragmentation than NAs due to the adhered cement paste [8]. From a chemical point of
view, RCAs contain more sulphates and soluble salts than natural aggregates [9,10].

The replacement of NAs by RCAs reduces the new concrete’s mechanical and durability properties.
Nevertheless, the use of high-quality RCAs may result in concrete with similar compressive strength,
flexural strength, Young’s modulus and shrinkage than conventional concrete, even with high
replacement ratios. The cement paste content is the main factor influencing creep deformation, which
can limit the use of RCA in structural concrete application. The conventional concrete shrinkage
prediction models are also affected by the cement paste adhered to the RCA, since it modifies
the internal curing conditions, especially when the aggregates are used pre-saturated. From a
durability point of view, the use of RCA increases porosity, water absorption, carbonation depth,
chloride ion penetration, and decreases resistance to freezing-thawing, sulphate attack or resistance to
abrasion [11,12].

In order to improve RCA quality, many researchers have applied different techniques for removing
the adhered cement paste from the original natural aggregates. The main methods used so far are:
(i) acid treatment, in which the RCA are soaked in acidic solutions (nitric acid, hydrochloric acid,
sulphuric acid, phosphoric acid, acetic acid) [13-16], (ii) thermal treatment in which the RCA is treated
thermally in a furnace and immediately immersed in water [8,15], (iii) mechanical treatment in which
the RCA is treated in a jaw crusher or ball mill [15]. These methods improve the physico-mechanical
and chemical properties of RCA. The use of treated RCA significantly improves the compressive
strength of concrete compared to that of untreated recycled aggregates. Pandurangan et al. [15]
recommend the mechanical treatment against the use of acids because it is faster, economical and
eco-friendly, although acid treatment methods are more effective in improving the bond strength of
reinforcement and concrete.

However, studies on the combined effect of different treatment methods are scarce. This study
analyses the combined effect of thermal and mechanical treatment on RCA properties, as well as the
mechanical and durability properties of the new concrete. For this purpose, three variables have been
tested: roasting temperature (300, 600, 900 °C), time of mechanical treatment (5, 10, 15 min) and content
of coarse RCA in concrete mixtures. The best option to manufacture structural concrete with treated
RCA is selected. From a practical point of view, the results of this work are especially interesting in
emerging countries with a shortage of natural aggregates and where the production of high-quality
RCAs is a necessity.
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2. Materials and Methods

2.1. Materials

The Portland cement CEM I 42.5R, from the Ozaréw cement plant (Poland) meeting the
requirements of PN-EN 197-1 standard was used for the test samples. The following natural aggregate
was used for the concrete mix: sand, fraction 0-2 mm; gravel, fraction 2-4 mm; granite, fractions 4-8 and
8-16 mm. The recycled aggregate was obtained from crushing of concrete based on granite aggregate.
After crushing, the debris was subjected to heat and mechanical treatment and then screened into
4-8 mm and 8-16 mm fractions. A superplasticizer based on modified polycarboxylates was used.

2.2. Methods

The aggregate bulk density test was carried out in according to EN 1097-3. The density of the
concrete mixture was determined according to EN 12350-6 and the consistency according to EN 12350-2.
The compressive strength of concrete was tested on cubic samples of 150 mm x 150 mm x 150 mm
according to EN 12390-3. Determination of modulus of elasticity was carried out on cylindrical samples
of 150 mm x 300 mm based on EN 12390-13. The concrete flexural strength test was carried out on
samples of 100 mm x 100 mm x 500 mm according to EN 12390-5. The concrete density and water
permeability were determined on cubic samples of 100 mm x 100 mm x 100 mm according to EN
12390-7 and EN 12390-8, respectively. The concrete water absorbability test was carried out according
to the Polish Standard PN-88/B-06259.

3. Technology of Recycled Aggregate Production

3.1. The Origin of Concrete Rubble

The recycled aggregate was obtained from processing of 3-year old laboratory samples of the
dimensions of 150 mm x 150 mm x 150 mm and 150 mm x 150 mm x 750 mm, taken as control
samples during the construction of concrete pavements. The composition of the concrete mixture of
these samples is presented in Table 1. The designed concrete class was C35/45.

Table 1. The composition of the concrete mixture on 1 m3.

Component Content
Sulphate Resistant Cement CEM I 42.5 N HSR/NA, kg 360
Sand 0-2 mm, kg 641
Granite 2-8 mm, kg 450
Granite 8-16 mm, kg 720
Plasticizer, dm3 3.2
Superplasticizer, dm? 2.48
Air-entraining admixtures, dm? 2.98
Water, dm> 144

3.2. The Preliminary Crushing of the Samples

The preliminary crushing of the samples due to their excessive dimensions exceeding the inlet of
the laboratory crusher took place during the concrete compressive and flexural strength test. The results
of those tests are presented in Table 2.

Table 2. Average test results of compressive and flexural strength of concrete samples.

Average' Standard Average Flexural Standard
Compressive Deviation Concrete Class Strength (MPa) Deviation
Strength (MPa) ®

67.0 8.56 C35/45 7.61 0.58
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3.3. Primary Crushing of Concrete Rubble

The basic crushing of previously disintegrated concrete samples was carried out in the jaw crusher.
The concrete was crushed to the grain size d < 20 mm and then it was sieved in order to separate fine
and dust fractions (<4 mm). The obtained coarse aggregate is shown in Figure 1.

Figure 1. Coarse recycled concrete aggregate.

3.4. The Thermal Treatment of Recycled Concrete Aggregate

The recycled aggregate of 4-20 mm fraction was then roasted in a CT 100 EK ceramic laboratory
furnace at a rated temperature of 1250 °C. The recycled aggregate calcination is necessary in order to
dehydrate the cement paste, which reduces adhesion of the hardened mortar to the aggregate grains
and finally makes it easier to remove it from the surface of the aggregate.

The heat treatment time was set at 3 h. According to the plan of the experiment, the roasting
temperature was set at 3 levels: 300 °C, 600 °C, and 900 °C. The heating process of recycled concrete
aggregate is shown in Figure 2.

T Ecl

calcinating
300

{600,900}

cooling

20

r—t—t 4 B
0 3 G 18
time [h]

Figure 2. The heating process of recycled concrete aggregate.
After thermal treatment and cooling, the recycled aggregate was mechanically processed.

3.5. The Mechanical Treatment of Recycled Concrete Aggregate

The last stage of the recycled aggregate quality improvement was mechanical processing.
The Los Angeles drum was used for that purpose. The machining time was set at 5 min, 10 min,
and 15 min, respectively. It allowed for the final separation of the cement mortar from the surface
of coarse aggregate grains. Then the treated material was screened in order to separate fractions of
4-8 mm and 8-16 mm required for further tests.
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3.6. Impact of Thermo-Mechanical Treatment on the Amount of Separated Cement Mortar

After heat and mechanical treatment the percentage content of separated cement mortar (<4 mm) in
relation to the initial mass of recycled aggregate was determined. The results are presented in Table 3.

Table 3. The amount of separated cement mortar.

Temperature (°C) Mechanical Treatment The Amount of Separated

Time (min) Cement Mortar (mass %)
300 5 24
300 10 32
300 15 36
600 5 35
600 10 38
600 15 4
900 5 81
900 10 95
900 15 9%

Mortar obtained, after grinding, can be used as an active addition to cement composites or as a
substitute for part of the binder [17-20]. It can also be a component of lime-sand products. The test
results will be described in another paper.

After the analysis of the results it was observed that the abrasiveness of the aggregate mortar
increased gradually with temperature and time of heat and mechanical treatment until the moment of
roasting the aggregate in 900 °C, where sudden and unexpected increase in abrasiveness occurred.
After the mechanical treatment of the aggregate roasted at 900 °C, almost the entire series was sieved
through a 4-mm screen. It turned out that roasting at such a temperature destroyed the granite
structure. To confirm this, an additional previously unplanned experiment was carried out, roasting
the natural granite at 900 °C for 3 h. It turned out that the granite lost its properties at 900 °C, as the
aggregate was destroyed in the moment of light pressure. A significant decrease in the mechanical
properties of granite and a sudden increase in its porosity due to high temperatures above 800 °C was
also observed by other authors [21,22].

4. Preparation of a Research Plan

4.1. Selection of Variables and Development of the Experiment Plan

An experiment based on three variables was planned in order to investigate the
influence of the improvement of the quality of coarse recycled aggregate on selected concrete
properties: X;—temperature of recycled aggregate heat treatment; X,—mechanical treatment time;
and X3—percentage amount of coarse recycled aggregate. The levels of their variability are shown in
detail in Table 4.

Table 4. Variables in the experiment plan.

X1 Temperature of Recycled Aggregate Heat Treatment 300 600 900 °C
Xo Mechanical treatment time 5 10 15 min
X3 Amount of recycled aggregate fraction 4-16 mm 20 40 60 %

The theory of statistical planning of experiments was used to determine the research plan.
The experiment and calculations were carried out in accordance with the statistically determined,
sequential Hartley’s PS/DS-P:Ha3 plan, built on hypercube. The Hartley’s DoE (Design of the
Experiment) enables to check repeatability of results, to find which inputs and their interactions
influence the output significantly, to calculate regression equation and check its adequacy with
test results.
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Upon the basis of abovementioned variables, an experimental plan including 12 research series
and 2 control series was established. For the first control series (13), the recycled concrete aggregates
were used directly after crushing, without heat and mechanical treatment (RCAwt), while the next
control series (14) was made with granite (NA). Table 5 shows the detailed experimental plan including

the real and coded values of the variables.

Table 5. Sequential Hartley’s PS/DS-P:Ha3 plan.

. Real Variables Coded Variables
Series
X1 (°O) X (min) X3 (%) X3
1 300 15 40 -1 1 0
2 600 10 20 0 0 -1
3 900 15 20 1 1 -1
4 300 5 60 -1 -1 1
5 900 15 60 1 1 1
6 600 5 40 0 -1 0
7 300 15 60 -1 1 1
8 300 5 20 -1 -1 -1
9 900 5 60 1 -1 1
10 900 5 20 1 -1 -1
11 300 10 40 -1 0 0
12 300 15 20 -1 1 -1
13 Control with RCAwt 60 - - -
14 Control with NA (granite) - - -

Where: RCAwt—recycled concrete aggregate without treatment; NA—natural aggregate. Testing of concrete

properties was carried out after 28 days of curing of the samples in laboratory conditions.

4.2. The Composition of the Concrete Mixtures

Table 6 shows the composition of the concrete mix depending on the percentage of
recycled aggregate. The compositions of concrete mixes were designed on the assumption of a
constant amount of CEM I 42.5R cement in the amount of 400 kg/m? and a constant w/c ratio.

Table 6. The composition of the concrete mixes on 1 m? depending on the content of recycled aggregates.

Concrete Mix Composition According to

Component Unit Different Amount of RCA (%)

0% 20% 40% 60%
Cement CEM 142.5R kg/m?3 400 400 400 400
w/c - 0.40 0.40 0.40 0.40
Water dm?/m3 158.0 158.0 158.0 158.0
Superplasticizer dm3/m3 2.0 2.0 2.0 2.0
Sand 0-2 mm kg/m?3 659.4 659.4 659.4 659.4
Gravel 24 mm kg/m3 164.9 164.9 164.9 164.9
Granite4-8 mm kg/m? 453.6 362.9 272.2 181.4
Granite 8-16 mm kg/m? 721.6 577.3 433.0 288.7
RCA 4-8 mm kg/m3 0.0 82.9 165.8 248.7
RCA 8-16 mm kg/m?3 0.0 131.9 263.8 395.7

After 28 days of curing physical and mechanical properties were tested.

5. Test Results and Discussion

5.1. Properties of Used Aggregates

Table 7 presents the test results of selected properties of recycled and natural aggregates in the
range of bulk density in a dry and saturated state and water absorption.
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Table 7. Properties of recycling and natural aggregates.

Calcination Bulk Density in the Dry Bulk Density in the Water Absorption
Type of Aggregate T ° 3 Saturated Surface o
emperature (°C) State (g/cm?) 3 (%)
Dry (g/cm?)
RCA 4-8 mm 300 1.21 1.26 3.80
RCA 8-16 mm 300 1.19 1.24 3.48
RCA 4-8 mm 600 1.26 1.29 3.11
RCA 8-16 mm 600 1.24 1.26 3.70
RCA 4-8 mm 900 1.16 1.20 6.00
RCA 8-16 mm 900 1.14 1.21 8.00
RCAwt 4-8 mm - 0.93 1.10 6.85
RCAwt 8-16 mm - 0.92 1.08 7.83
NA 4-8 mm - 1.30 1.31 1.30
NA 8-16 mm - 1.28 1.29 1.30

The above results indicate that recycled aggregates roasted at a temperature of 600 °C were
characterized by bulk density which was closest to natural aggregate, both in dry and saturated state.
Also the water absorption of this aggregate was the lowest among the tested recycled aggregates
(3.11% and 3.70%). This was mainly due to the effective removal of the old cement mortar from the
aggregate grains, the presence of which jeopardizes the RCA properties, in particular the increase
in its water absorption. It was due because at the temperature of about 600 °C, calcium hydroxide
mainly located in the contact zone between the aggregate grain and the cement paste was dehydrated,
making it easier to remove the mortar during mechanical treatments. The absorbability of untreated
aggregates was much higher and amounted to 6.85% and 7.83%, respectively. Slightly worse results
were obtained in case of aggregates roasted in 300 °C. The results indicated that recycled aggregate not
subjected to the heat and mechanical treatment was characterized by definitely the lowest bulk density,
which was caused by its developed surface due to the presence of cement mortar and irregular shape
hindering tight packing of grains in the container, which is in agreement with most of the studies on
physical properties of recycled aggregates [7,9]. The presence of cement mortar on the surface is also
confirmed by increasing bulk density in the saturated state by about 18% in compare to the dried state.
Roasting of granite in 900 °C caused damage to the grains structure, the breakdown of which into
smaller fragments resulted in an increase of the bulk density in relation to the aggregate not roasted by
better packing of particles in the vessel. However, this material was still characterized by relatively
high water absorption, about five to six times higher in comparison to the natural aggregate.

5.2. Properties of Concrete Mixture

The results of the consistency of concrete mixtures measured by the slump test and their density
are presented in Table 8.

Upon the basis of the analysis of the above results, it can be seen that the highest slump of 225 mm
cone corresponding to the consistence class S5 was recorded for 14 control series. The lowest slump of
140 mm cone corresponding to the consistence class S3 was recorded for series 13. The reason was the
use of recycling aggregate without the heat and mechanical treatment having the highest amount of
cement mortar absorbing water.

For the samples from series 5 and 9 containing 60% of recycled aggregate roasted in 900 °C,
the consistence class was not determined, as no slump was observed here. In other series,
the consistence values were similar to each other and corresponded to class S4.
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Table 8. Results of fresh concrete mixtures.

Series Slump Test Consistency Density of the
(mm) Class Mixture (kg/m3)
1 175 54 2374
2 200 54 2340
3 170 54 2334
4 175 54 2290
5 0 - 2281
6 185 S4 2370
7 200 S4 2356
8 180 S4 2372
9 0 - 2275
10 160 54 2331
11 180 54 2353
12 200 54 2391
13 140 S3 2340
14 225 S5 2420

5.3. Properties of Hardened Concrete

Table 9 shows the average results of concrete properties tests for the individual series of the
experiment, together with the control series. Compressive strength (f.m 28), flexural strength (fgy, 23),
Young’s modulus (E), volume density (D), water absorption (WA), water permeability (WP) as water
depth penetration and water capillarity as increase of sample mass (WC) have been determined.

Table 9. The average results of concrete properties tests for individual experimental series and for
control series.

. fem,28 frm 28 E D WA WP WC
Series (MPa) Concrete class (MPa) (GPa) (kg /m?) (%) (mm) (%)
1 71.50 C55/67 7.60 37.8 2318.00 4.0 50 3.08
2 68.00 C50/60 7.74 37.2 2290.00 3.9 40 3.06
3 51.00 C35/45 7.07 34.6 2259.67 4.6 50 3.20
4 57.00 C45/55 8.26 35.2 2234.67 4.5 55 3.25
5 46.75 C30/37 6.63 33.0 2231.50 4.8 65 3.68
6 70.00 C55/67 8.59 37.7 2281.00 4.0 43 2.98
7 66.25 C50/60 8.53 36.5 2284.67 44 45 3.10
8 73.50 C55/67 7.53 36.6 2294.67 4.2 43 3.21
9 59.25 C45/55 6.82 36.4 2224.67 5.0 63 3.97
10 56.50 C45/55 6.88 35.2 2279.67 4.5 48 3.00
11 67.50 C50/60 791 36.9 2282.67 4.1 52 3.48
12 59.00 C40/50 7.17 37.0 2299.00 4.2 43 3.15
13 55.25 C35/45 6.79 34.0 2249.33 5.6 65 4.19
14 60.50 C50/60 5.98 38.5 2313.33 3.7 48 3.11

The test results were statistically analyzed in order to determine an approximating function
describing changes in selected physico-mechanical properties of the concretes. The analyses
included variance, a calculation of regression coefficients and an assessment of the regression
coefficients’ significance. The function describing changes in the physico-mechanical properties
of concretes adopted a form of the second degree polynomial (1):

Y = b() + b1X1 + bzXz + b3X3 + b4X1X2 + b5X1X3 + b6X2X3 + b7X12 + ngzz + b9X32 (1)

Calculations were performed using Statistica Version 13. The equations for the concrete’s
compressive strength, flexural strength, Young’s modules (E), volume density, water absorption,



Materials 2019, 12, 367 9 of 24

water permeability and water capillarity which considers only significant regression coefficients at
o = (.05, are presented in Table 10.

Table 10. The equations list for each properties of concrete.

Properties Equations R?
Compressive strength, fom, MPa =702 — 442 X x| — 248 X x3 — 6.03 X x12 — 5.76 x x32 — 2.86 X x1x2 + 3.09 X XpX3 0.70
Flexural strength, f¢,,, MPa =821 — 049 x x1 +0.21 x x3 — 0.92 x x12 — 0.32 X X X X3 0.69
Young’s modules, E, GPa =37.54 — 0.75 x x1 — 0.29 x x3 — 1.24 x x72 — 0.74 X X1 X X» 0.70
Volume density, D, kg/m3 =2281-164 x x; —21.4 x x3 — 10.6 X x1xp 0.68
Water absorption, WA, % =3.87+0.20 x x; +0.17 x x3 + 0.41 x x;2 0.71
Water permeability, WP, mm =47.21 +4.85 X x1 +5.48 X x3 +10.31 x x;2 0.84

Water capillarity, C, % - -

The statistical analysis revealed that all analysed physical and mechanical properties of concrete
were significantly affected by the roasting temperature and recycled aggregate content. On the other
hand, the time of mechanical treatment usually did not significantly affect the obtained values of
parameters, therefore the variable x; was assumed at the average level (x, = 0, 10 min). Due to
the incomplete research plan the test result analysis was prepared upon the basis of established
regression equations.

5.3.1. Compressive Strength

Figure 3 shows changes in concrete compressive strength depending on the roasting temperature
of rubble (x;) and recycled aggregate content (x3). Figure 4 shows the average strength results obtained
for the individual research series in comparison with the series containing the untreated recycled
aggregate (13) and the control series containing the natural aggregate (14).

£ 28 = 70.2-4.42xx)-2.48xx,-6.03xx,"+5.76xx,"  R*=0.70
0.8 /

0.6 e

0.4
0.2
< 0
0.2
-0 4
06
-0.8

=70

- : Il <68

10 08 06 04 02 0.0 0.2 0.4 0.6 0.8 1.0J<63

<58

X4 . <53

Figure 3. The changes in compressive strength of concrete, depending on x; and x3 (xz = 0).
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Figure 4. The compressive strength of concretes compared with series 13 and 14.

Upon the basis of Figure 3, it can be stated that the heat treatment of recycled aggregates
positively influenced the concrete compressive strength, in particular in the temperature range from
300 °C to 600 °C. At about 600 °C, the disintegration of portlandite into lime and water occurred,
which simplified the removing of the cement mortar from the surface of coarse recycled aggregate.
After detachment, some of the lime remained on the surface of the aggregate and then reacted with the
new cement paste. This fact caused a better sealing of the contact zone which resulted in the increase
of the mechanical properties.

In higher temperatures (900 °C), the aggregate structure was damaged, resulting in a sudden
decrease in compression strength by about 17% on the average. It is also confirmed by the amount of
cement mortar separated from the aggregate surface after its heat and mechanical treatment (Table 2).
As shown in Figure 4, in the presence of 60% of recycled aggregate subjected to treatment, the results
higher by approx. 12% on the average were obtained for the concrete compressive strength than
for untreated aggregate (series 13) and a few percent higher in comparison with natural aggregate
(series 14). The use of recycled aggregate without the heat and mechanical treatment decreased the
compressive strength of concrete by three classes compared to the control concrete.

5.3.2. Flexural Strength

Figures 5 and 6 show changes in the concrete flexural strength depending on the roasting
temperature of rubble (x;) and recycled aggregate content (x3), respectively, as well as the average
flexural strength results obtained for the individual test series compared to the series with untreated
aggregate (13), and the control series with the natural aggregate (14).

frn 26=8.21-0.49x;+0.21xx3-0.92 %, %-0.32x *x; R*=0.69

1

0.8

0.6

0.4

02
<0
02
0.4
06

| k]

0.8 — P

<78

& B <76

4 08 06 04 02 0 02 04 06 08 1[EH<7A

<72

X1 <7

Figure 5. Changes in flexural strength of concrete depending on x; and x3 (x; = 0).
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Figure 6. The flexural strength of concretes compared with series 13 and 14.

Figure 5 reveals that concretes with recycled aggregate treated in 600 °C obtained the most
favourable bending strength. This is the optimal temperature due to decomposition process of calcium
hydroxide (portlandite) located in the contact zone between the aggregate and cement paste. As a
result, the removal of cement mortar from the grain surface is facilitated, which is confirmed by
the results presented in Table 3. However, traces of mortar remain on the aggregate grains surface,
which forms a more permanent bonds with new cement paste. This results in higher flexural strength
for all test series than for the control series (14). It should also be noted that in all series the flexural
strength of concrete ranged from 10% to 14% of their compressive strength.

5.3.3. Young’s Modulus E

Figures 7 and 8 show the results of Young’s Modulus (E) depending on variables x; and x3, as well
as the average results compared to the series with untreated recycled aggregate (13), and the control
series with natural aggregate (14).

E=37.54-0.75xx;-0.29xx,-1.24xx,> R*=0.70

: - 37
1 08 06 04 02 0 02 04 06 08 1[@EH<36.75
E<3575
X4 <3475

Figure 7. The changes in Young’s Modulus depending on x; and x3 (x2 = 0).
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Figure 8. Young’s Modulus of concretes compared with series 13 and 14.

The important factors influencing the strength and deformation properties of concrete are the
adhesion between cement paste and aggregate grains, and the microstructure of the transition zone in
the area of stress concentration due to the difference in modulus of elasticity values of the hardened
paste and the aggregate. Figure 7 reveals that the highest modulus of elasticity was observed for
series with the aggregate roasted up to 600 °C. The process of roasting and mechanical treatment
resulted in removing the old cement mortar from the aggregate surface, which improved the adhesion
of the aggregate to the cement paste. In such way the modulus of elasticity exceeding 35 GPa
was obtained. The exception are series with aggregates roasted in 900 °C, which caused damage to the
aggregate structure and significant deterioration of concrete properties. Figure 9 shows the relationship
between the modulus of elasticity for the individual series and the compressive strength of concrete,
while Figure 10 shows a comparison of the results with standard values (for quartzite aggregates,
according to EN 1992-1-1 [23]).

39
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E=0.13-f_, + 28.1024
R2=0.75

Young's Modulus E, GPa

Compressive strength, MPa

Figure 9. Relationship between the Young’s Modulus for the individual series and the compressive
strength of concrete.
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Figure 10. The comparison of the results of Young’s Modulus with standard results according to EN
1992-1-1 [23].

Figure 9 shows that there is correlation in the experiment between the compressive strength
of concrete and Young’s Modulus. The highest value of Young’s Modulus was obtained in the
control series (14) with granite aggregate, which even exceeded the standard value. In most series,
the modulus of elasticity was lower when comparing to determine the standard by about 4% on
the average. Similar results were obtained by other authors, where the addition of 100% of recycled
high-quality aggregate resulted in reduction of Young’s Modulus by only 11% [24]. However, it can be
seen that changes in modulus of elasticity values in the individual series due to heat and mechanical
treatment and recycled aggregate content were not significant. In most series, the E value decreased by
2-10% comparing to the control series. In series with recycled aggregate roasted at 900 °C the decrease
was even 14%. This is confirmed by other authors, which obtained much higher drops in Young’s
Modulus values with an increase of recycled coarse aggregate content [25,26].

5.3.4. Volume Density

Figures 11 and 12 show the results of the concrete volume density depending on the variables x;
and x3, and the average results comparing to the series with untreated RA (13) and the control series
with natural aggregate (14).
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Figure 11. The changes in volume density of concrete depending on x; and x3 (x; = 0).
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Figure 12. The volume density of concretes compared with series 13 and 14.

14 of 24

From Figures 11 and 12 it results that both the roasting temperature up to 600 °C and the recycled
aggregate content influenced the concrete density. In general, the concrete with the natural aggregate
was characterized by the highest density, which results from the highest density of granite present in it.
The increase of recycled aggregate content resulted in decrease of the concrete density. It results from
the content of cement mortar present on the aggregate surface. However, it can be noticed that the
differences in concrete density throughout the experiment are small and reach the order of 4%. This is

due to the good quality of the rubble obtained from high-quality source concrete (C45/55).

5.3.5. Water Absorption

The results of concrete water absorption for each series of the experiment are shown in Figure 13.
Figure 14 shows a comparison of average results with the series with untreated recycled aggregate (13)
and the control series with natural aggregate (14).

X3
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Figure 13. The water absorption of concrete depending on x; and x3 (xp = 0).
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Figure 14. The water absorption of concretes compared with series 13 and 14.

The best concrete water absorption was observed in the case of using 20-40% of recycled aggregate
roasted in temperatures up to 600 °C. In such cases, the absorbability approaches the value for the
control concrete (<4% for series 2 and 6). It results from effective removal of porous cement mortar
from the recycled aggregate surface. Its high absorbability causes many problems connected with
determining the amount of water added to the recycled concrete aggregate in order to obtain the
required consistency. In series 13 with untreated aggregate, the absorbability of concrete has increased
significantly by 66%, compared to control concrete. Clearly higher absorbability of recycled aggregate
concrete compared to the natural aggregate concrete was also observed by other researchers [27,28].
Removing the cement mortar from the aggregate surface as a result of proposed treatment facilitates
the design and execution of the concrete mix and significantly improves the properties of recycled
aggregate concrete, bringing it closer to the properties of control concrete.

5.3.6. Water Permeability (Depth of Penetration)

Figures 15 and 16 show the results of water permeability for concrete, expressed by the depth of
water penetration under pressure, depending on the variables x; and x3, as well as the average results
in comparison with the series with untreated aggregate (13) and with the control series with natural
aggregate (14).
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Figure 15. The changes in the depth of water penetration depending on x; and x3 (xp = 0).
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Figure 16. The water penetration of concretes compared with series 13 and 14.

As shown in Figure 15, the penetration depth of pressurized water increases with the increase
in recycled aggregate content, which is related to the presence of porous cement mortar on the
grain surface. It can also be seen that the heat and mechanical treatment of recycled aggregate up
to 600 °C had a positive effect on the capillary structure of concrete, reducing the depth of water
penetration in comparison with the control concrete by 6-10%. It may be assumed that the highest
water penetration depth was obtained for the series with untreated recycling aggregate (series 13)
due to the highest content of porous cement mortar significantly improving the concrete permeability
(Figure 16). Similarly, unfavourable results were also obtained for series containing 60% of recycled
aggregate roasted in 900 °C. As previously stated, such treatment damaged the grain structure of the
aggregate, leading to the increase of its porosity and water permeability. Moreover, it should be noted
that in none of the tested series the depth of water penetration exceeded 65 mm, which proves the
relatively compact structure of prepared samples.

5.3.7. Water Capillarity

Figure 17 shows the course of capillary water rising in selected test series, expressed by the
percentage mass of water absorbed by the concrete in time.
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Figure 17. Average values of water capillarity as percent mass increase for selected series.
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Figure 17 shows that concrete with untreated aggregate and aggregate roasted at 900 °C showed
the highest capillary water pull capacity. It confirms the results obtained in case of water permeability.
It should be noted that the process of water extraction in those series was significantly more intensive,
especially during the first hours of the test, which was influenced by the presence of a porous
cement mortar. The results of research by other authors also confirmed a significant increase in
capillary water rising in case of recycled aggregates compared to the natural aggregate [28,29]. In other
series, the course of the test was similar to the results obtained for control concrete, which confirms
that the cement mortar was almost completely removed from the aggregate surface as a result of heat
and mechanical treatment.

6. Structure and Microstructure Tests

6.1. Optical and Scanning Microscopy

The observation of aggregates using an optical microscope was aimed for comparing changes in
their surface as a result of contact with cement slurry during the hydration process, as well as after
the applied heat and mechanical treatment. For this purpose, the cylindrical samples of dimensions
of 50 mm x 48 mm from cement paste (CEM I 42.5R and water) of w/c = 0.45 were made, in which
the natural aggregates (granite and gravel, respectively) were immersed. Previously part of the grain
was covered with stearin in order to prevent its direct contact with the paste. Samples were kept in
water for 3 months before testing. After drying the samples were subjected to the heat and mechanical
treatment (i.e., roasting for 60 min in 650 °C and grinding in the Los Angeles drum). Then the obtained
aggregates were observed under an optical microscope in order to determine the possible damage or
visible changes in the external structure. Figures 18 and 19 show the granite aggregate and gravel,
respectively, subjected to the heat and mechanical treatment.

with contact with

cement paste

Figure 18. The granite after thermo-mechanical treatment.
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Gravel surface
without contact
with cement paste

Gravel surface
after contact with
cement paste

Figure 19. Gravel after thermo-mechanical treatment.

Figures 18 and 19 show that the removal of cement slurry from the granite aggregate as a result of
the applied heat and mechanical treatment was not as effective as in case of gravel aggregate. A part
of the slurry remained on the surface of the granite grain, colouring itself light brown. The difference
between the part of the grain surface that was in contact with the cement slurry and another part is
quite obvious (Figure 18). On the other hand, in the case of the gravel aggregate, the difference is
not noticeable, which proves the beneficial effect of heat and mechanical treatment on this type of
aggregate. However, the surface of the gravel contacting the slurry was locally developed due to the
adjacent slurry, which has also become yellowish. In addition, the mechanical treatment made the
previously smooth aggregate surface uneven and rough, which makes it easier for the grain to combine
with cement paste in the new cement composite.

In the case of the granite aggregate, the presence of grout on its surface does not significantly
change the grain shape. According to other researchers, the granite aggregate is characterized by
higher chemical activity in contact with cement paste than the gravel. They have also found that the
microstructure of the cement paste surrounding the gravel grain is loose and porous due to higher
absorbability of the aggregate. The microstructure of the paste around the granite is denser than around
the gravel, small pores and defects are visible and many groups of hydrates are closely bonded with
each other. It is therefore difficult to identify the paste and the aggregate [30]. The physical interaction
between the aggregate and the cement slurry depends mainly on the roughness of the surface and the
absorbability of the aggregate. Due to the fact that granite has a compact and rough structure with low
absorbability and surface chemical activity, the adhesion of the paste to its surface is much better than
in case of the gravel aggregate. The smooth surface of the gravel, at which the portlandite tiles are
located, facilitates the separation of the cement paste through the proposed treatment. Therefore, as a
result of heat and mechanical treatment more paste residues were observed on the surface of granite
grains than on the gravel grains. Figures 20-23 show the observations made with use of scanning
microscopy for the contact zone in the control concrete with gravel aggregate and in the concrete with
recycled aggregate not roasted properly and subjected to the heat and mechanical treatment.
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Figure 21. Contact zone between recycled aggregate without thermo-mechanical treatment and
cement paste.
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Figure 22. Recycled aggregate after thermo-mechanical treatment.
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Figure 23. Contact zone between recycled aggregate after thermo-mechanical treatment and
cement paste.

Figure 20 shows the contact zone typical for the ordinary concretes, the portlandite tiles are
positioned perpendicularly to the aggregate surface. There are fewer grains of cement at the aggregate
grains surface, due to the difficulty in its packing, which leads to a local increase of w/c ratio. As a
consequence, there is less cement there that can be hydrated and fill free spaces. This is why the
contact zone usually has a higher porosity than the distant cement paste [31]. In the contact zone
between the untreated recycled aggregate and new cement slurry the portlandite tiles and C-S-H
phase are also visible (Figure 21). Figure 22 shows a fragment of the recycled aggregate after heat and
mechanical treatment. On its surface there is an old cement mortar rich in durable C-S-H phases,
as well as partially dehydrated calcium silicates and partial decayed products of calcite. Figure 23
shows the recycled aggregate after the heat and mechanical treatment, embedded in new concrete.
The contact zone between the recycled aggregate grain and the new paste has a compact structure,
which may result from strong bonding of high-quality recycling mortar containing C-S-H phases with
the components of new paste, as well as the developed structure of the gravel aggregate due to applied
heat and mechanical treatment. As it was noted, the rough surface of the aggregate deteriorates the
portlandite orientation. Orientation of CH tiles is additionally disturbed by the presence of Ca(OH),
fragments, which, being the nuclei of crystallization of this phase, causes the growth of calcium
hydroxide crystals in various directions, improving mortar strength [32].

6.2. X-Ray Diffraction

During the proposed heat and mechanical treatment of concrete rubble, in addition to high-quality
recycled aggregates, a cement mortar was also obtained, which due to the induced pozzolana properties
as a result of thermal treatment can be used as a cement substitute in cement composites or as a
pozzolana additive [19,20,33,34].

In order to determine the effect of heat and mechanical treatment on the phase composition
of cement slurry separated from the aggregate (experiment p. 6.1), the X-ray diffraction tests
were realized. The samples were analysed by X-ray diffraction analysis (XRD) using a VEB
FreibergerPragisionsmechanik TUR-M-62- with DRONEK radiation. All diffraction patterns were
obtained by scanning the goniometer from 6 to 66 (20) at a rate of 0.05 min~!. The X-rays for unroasted
and treated paste are collected, respectively, in Figures 24 and 25. The scanning of the goniometer (20)
and the absolute intensity of the reflections ([wz) are also represented.
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Figure 24. XRD patterns of cement paste from recycled aggregates without thermo-mechanical treatment.
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Figure 25. XRD patterns of cement paste from recycled aggregates after thermo-mechanical treatment
(calcinating in 650 °C by 60 min).

For both cement slurries the portlandite, calcium aluminates, belite, alite, as well as aluminate
and aluminoferrite phases were identified. As expected, in case of material not subjected to the
roasting process (Figure 24), the peak associated with the presence of portlandite was very intense,
while in the sample subjected to heat treatment it was a lot less intense, which indicates a well-selected
treatment temperature, allowing for almost complete decomposition of Ca(OH),. The small peak from
portlandite in the sample subjected to roasting (Figure 25) can be explained by high hygroscopicity of
disintegrated cement slurry. The roasted sample revealed higher and more frequent peaks indicating
the presence of Portland clinker components (C3S, C3S, C3A, C4AF), which are responsible for reactivity
with water and for the hydration process. This explains the usefulness of roasted recycling slurry as a
pozzolana additive and active filler [19,20]. The gravel aggregate improved with high-quality mortar
rich in the abovementioned components enabling further hydration, which more easily reacts with
new cement slurry, and which may directly translate into improved properties of cement composites.
This is confirmed by the observations of other authors, who have noticed that within the recycling
aggregate there is the non-hydrated cement, calcium hydroxide (CH), and dicalcium silicate (C,S),
which are capable of hydration and creation of rehydration products [35-38].
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7. Conclusions

According to the results of the research carried out, an appropriate heat and mechanical treatment
of concrete rubble favours obtaining the coarse aggregate from high-quality recycling, of parameters
similar to the natural aggregate. As a result, it can be used as a component of full value for
cement concretes. The experiment revealed that when 60% of coarse natural aggregate (granite)
is replaced by recycled aggregate, it is possible to obtain concrete class C55/67, i.e., a class higher than
the control concrete. For comparison, using the recycled aggregate without the heat and mechanical
treatment decreased the compressive strength of the concrete by three classes compared to the control
concrete. In the case of other tested properties of concrete, it was observed that after roasting debris in
300-600 °C it was possible to obtain the best results, the closest to the control concrete, and sometimes
even slightly better, which took place, for example, in the case of flexural strength. After the treatment,
trace amounts of mortar remained on the aggregate surface, creating permanent bonds with the new
cement paste and improving the investigated feature.

Properly selected temperature of concrete rubble roasting determines the degree of aggregate
cleaning, which is measured by the amount of cement mortar removed from the surface of the grains.
Excessive temperature (900 °C) additionally caused damage of the granite grains, which was the
main reason for a significant deterioration of aggregate properties, concrete mix consistence and the
properties of hardened concrete.

The most advantageous roasting temperature was 600 °C, which also allows to reuse the fine
fraction (<4 mm). That fraction may constitute even up to 60% of concrete rubble mass. Usually such
material is treated as a waste and is used for storing or filling hollows. After the heat and mechanical
treatment, this fraction, rich in cement paste, partially regains its binding properties and may
be successfully used as a cement substitute or as a pozzolana additive for cement composites.
Moreover, a high temperature is favourable for burning the majority of impurities present in concrete
rubble. Therefore, it can be stated that the proposed method of heat and mechanical treatment of
concrete rubble at a temperature of 600 °C, despite the related costs, connected among other things
with the necessity of building the technological line and energy costs, allows for complex use of
concrete rubble for construction purposes, thus replacing non-renewable materials. Therefore, it is a
highly ecological solution, in line with the idea of sustainable development of the world and requires
further research in this direction.

8. Patent

Based on the results of research on aggregate and recycling mortar obtained according to the
proposed heat and mechanical treatment of concrete rubble, a prototype of a device for comprehensive
recycling of concrete rubble was designed. The device in its design is similar to the rotary furnace,
equipped with two chambers: one for roasting and another one for abrasion and crushing. As a
result of experimentally selected processing parameters, it is possible to obtain high-quality recycling
aggregate and recycling mortar of pozzolana properties. The process of separating the mortar from
the coarse aggregate and its partial disintegration is realized in one device. The concrete rubble
first reaches the roasting chamber, where it is simultaneously heated to 600-650 °C, assuring almost
complete dehydration of cement in the mortar and cyclic lifting on four shelves embedded in equal
spaces on a rotating device. As a result, the debris heats up evenly and quickly, and collides with the
machine jacket and shelves when falling. Therefore, the mortar is initially separated from the aggregate.
Then the material is gradually moved towards the grinding and crushing chamber, where the mortar is
finally separated from the aggregate and partially crushed by passing through a system of three rollers.
Then the cement mortar together with cleaned recycling aggregate goes outside the machine, e.g., onto
the bucket conveyor. The device, as well as the way the concrete rubble is processed, has become
the subject of patent PAT.229887 called “Method of separating the hardened cement mortar from the
coarse aggregate and disintegrating this mortar, and the device for using this method” [39].
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