Article

N-Lipidated Amino Acids and Peptides Immobilized on Cellulose Able to Split Amide Bonds

Justyna Fraczyk * and Zbigniew J. Kaminski

Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; justyna.fraczyk@p.lodz.pl, zbigniew.kaminski@p.lodz.pl

* Correspondence: justyna.fraczyk@p.lodz.pl; Tel.: +48-426-313-321

Received: 26 January 2019; Accepted: 11 February 2019; Published: date
Figure S1. Measurement of Z-Leu-NA hydrolysis in a solution at pH = 8.5 using a library of synzymes: (a) sub-library of synzymes with serine residue at C-terminal positions, (b) sub-library of synzymes with glutamic acid residue at C-terminal positions, (c) sub-library of synzymes with histidine residue at C-terminal positions.
Figure S2. Measurement of Z-Leu-NA hydrolysis using the 9 most effective synzymes at pH 8.5 (third catalytic cycle).
Figure S3. Measurement of Z-Leu-NA hydrolysis in a solution at pH = 8.5 using a library of synzymes with Cu$^{2+}$ ions docked in the catalytic pocket: (a) sub-library of synzymes with serine residue at C-terminal positions, (b) sub-library of synzymes with glutamic acid residue at C-terminal positions, (c) sub-library of synzymes with histidine residue at C-terminal positions.

Figure S4. Measurement of Z-Leu-NA hydrolysis at pH 8.5 using the most effective synzymes with Cu$^{2+}$ docked in the active pocket (third catalytic cycle).
Figure S5. Measurement of Z-Leu-NA hydrolysis in a solution at pH = 8.5 using a library of synzymes with Zn$^{2+}$ ions docked in the catalytic pocket: (a) sub-library with serine residue at C-terminal positions, (b) sub-library with glutamic acid residue at C-terminal positions, (c) sub-library with histidine residue at C-terminal positions.

Figure S6. Measurement of Z-Leu-NA hydrolysis at pH 8.5 using the most effective synzymes with Zn$^{2+}$ ions docked in the active pocket (third catalytic cycle).