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Abstract: Polymer-based three-dimensional (3D) printing—such as the UV-assisted layer-by-layer
polymerization technique—enables fabrication of deformable microstructured materials with
pre-designed properties. However, the properties of such materials require careful characterization.
Thus, for example, in the polymerization process, a new interphase zone is formed at the boundary
between two constituents. This article presents a study of the interphasial transition zone effect
on the elastic instability phenomenon in hyperelastic layered composites. In this study, three
different types of the shear modulus distribution through the thickness of the interphasial layer were
considered. Numerical Bloch-Floquet analysis was employed, superimposed on finite deformations
to detect the onset of instabilities and the associated critical wavelength. Significant changes in
the buckling behavior of the composites were observed because of the existence of the interphasial
inhomogeneous layers. Interphase properties influence the onset of instabilities and the buckling
patterns. Numerical simulations showed that interlayer inhomogeneity may result in higher stability
of composites with respect to classical layup constructions of identical shear stiffness. Moreover, we
found that the critical wavelength of the buckling mode can be regulated by the inhomogeneous
interphase properties. Finally, a qualitative illustration of the effect is presented for 3D-printed
deformable composites with varying thickness of the stiff phase.

Keywords: 3D printing; inhomogeneous interphase; instability; fiber composites; microscopic
instability

1. Introduction

Composite materials are deeply integrated in the modern life, due to their excellent mechanical
and functional properties, which until recently were unachievable. Composites containing two or
more constituents can be tailored to meet specific requirements by design of their geometry and
smart selection of constituent materials. One of the most challenging problems in composite science
is associated with the prediction of their failure. While delamination was historically considered to
be the main failure mode, the phenomenon of local buckling or loss of stability attracted significant
attention recently. In contrast with delamination, when composites lose the integrity catastrophically,
the loss of stability can be considered as reversible microstructure transformation mode; once the
external loads are removed, the initial undeformed state is restored thanks to the stored elastic energy.
This phenomenon of instability-induced microstructure transformation has been employed to design
materials with the switchable properties and functions [1–8].

The pioneering works of Rosen [9] and Hill and Hutchinson [10] laid the basis for the
theoretical understanding of the elastic instability phenomenon. The development of analytical
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tools as well as numerical methods contributed to the increasing number of studies devoted
to the mechanical instabilities in materials and structures. Stability of layered hyperelastic
composites under compressive loads were studied by Triantafyllidis and Maker [11] and, more
recently, Nestorović and Triantafyllidis [12], who predicted the onsets of instabilities in hyperelastic
layered media at the microscopic and macroscopic length scales under plane-strain conditions.
Merodio and Ogden [13–15] showed that the instabilities are possible even under tensile loadings
for incompressible and compressible material models satisfying certain conditions. The onset of
macroscopic instabilities in fibrous and layered composites were analytically studied with the
help of loss of ellipticity analysis [16,17], when the required tensor of effective elastic moduli is
obtained based on phenomenological models, or by means of micromechanics based homogenization
approaches [18–20]. More sophisticated techniques, such as the Bloch-Floquet analysis, were required
to study the microscopic instabilities, which develop at the length scales comparable with the
dimensions of the composite microstructure [21]. This approach was successfully applied for the
periodic composites under plane-strain deformation [22], for two-dimensional layered media subject
to combination of shear and compressive deformation [12], as well as for fiber composites subject to
the compression in fully three-dimensional (3D) settings [23,24].

At the same time, development of new composite manufacturing methods, especially appearance
of multimaterial three-dimensional printing, opens the possibility to validate theoretical and numerical
findings [1,25,26]. For instance, macroscopic and microscopic buckling modes were experimentally
observed in soft layered composites, manufactured with the help of multi-dimensional 3D-printing [27].
Moreover, the experimentally observed critical strains and corresponding buckling patterns were in
good agreement with the theoretical predictions. A significant number of the experimental studies
on the instability analysis of the different soft composite structures produced by 3D-printing were
published in recent years [28]. However, accurate experimental studies involving 3D-printed materials
pose a challenging problem due to uncertainness of the multimaterial 3D-printing technique [29].
The relatively narrow range of the materials available for 3D printing, variability of their properties
due to changes in the environmental conditions [30] and anisotropy of the printing process [31,32]
might introduce inaccuracies in the experimental results. While the development of the multi-material
3D-printing undeniably drastically extends the possible application of additive manufacturing, it also
introduces new issues to be addressed. Due to the resolution limitation of the technique, perfect
transition between two different materials is impossible, and a mixing zone is produced at the
boundary between two constituents. How the existence of such interphasial zone affects the mechanical
properties of 3D-printed composites is an issue becomes important with regard to the stability analysis.
Recently, it was analytically shown that the existence of the interphasial layers in the layered composites
significantly affects their stability [33]. Moreover, Gao and Li [34] numerically revealed the formation of
hierarchical buckling patterns in the composites containing additional layer. However, the mentioned
study [34] treats the transition (regulator) layer as another homogeneous material, while in realistic
composites, especially produced by 3D-printing, this interphasial layer is a graded material with
properties changing through the thickness. In this study, we analyzed the stability of the hyperelastic
layered composites containing nonhomogeneous interphasial layers, appearing at the boundary of
soft matrix and stiffer layers. We employed the Bloch-wave approach to obtain the information on the
instability patterns and associated critical strains in dilute and non-dilute layered composites with
different geometrical parameters and material properties. Finally, some qualitative comparison with
the experimentally observed instability modes in 3D printed layered composites is discussed.

2. Numerical Simulations

To analyze the mechanics of the layered composite with interphasial layers bonding two purely
homogenous hyperelastic constituent materials, we utilized the finite element method with the help of
COMSOL Multiphysics (v. 5.2, COMSOL AB, Stockholm, Sweden). Representative volume element
(RVE) with dimensions t = a, h = 0.05a was used in the calculations, as shown in Figure 1. A mesh
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sensitivity analysis was performed, and the RVE containing 2498 quadrilateral elements with quadratic
shape functions was used.

Figure 1 shows the unit cell of an “ideal” composite without any interphasial layers (a), and the
realistic composite, which contains the transition zone between two main constituents (b). In the
ideal composite, the thickness of the stiff layer is tl = vlt, where vl is the volume fraction of the
stiffer homogenous layer, and t is the period of the unit cell. We assumed that the interphasial layers,
generated from the 3D-printing process (see Experimental section), contain equal amounts of the stiffer
layer and soft matrix materials; the thicknesses of the pure stiff and the interphasial layers in this case
are equal to tl = (1− f )vlt and ti = f vlt, respectively. Here, 0 ≤ f ≤ 1 is the relative thickness of the
interphasial layer.
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Since the interphasial layer is inhomogeneous, we need to define the variation of the local elastic
modulus through the thickness of the interface. In this study, we considered three different types of
shear moduli distributions through thickness, denoted as A, B and C on Figure 2. Shear modulus in
the interphasial zone µi at position x (see Figure 2) is defined as:

µi(x) = (2(µl − µm)− 4µh)x2 + (4µh − (µl − µm))x + µm, (1)

where µm and µl denote the initial shear modulus of soft matrix and stiff layer, respectively.
In expression (1), x varies from zero to one (see Figure 2), µh = c(µl − µm) where c = 0.25, 0.5 and 0.75
for distributions A, B and C, respectively. Note, that for distribution B, the elastic modulus linearly
increases between the values of the initial shear modulus of the soft matrix µm and stiffer layer µl .
The distribution A corresponds to the case, when the average elastic modulus of the interphasial layer
was lower than (µl + µm)/2, as opposed to the distribution C, when the average shear modulus of the
interphasial layer exceeded the value of (µl + µm)/2. All constituents, including the interphasial layers,
were considered as nearly incompressible hyperelastic materials with the neo-Hookean strain-energy
function, integrated in COMSOL as:

W =
1
2

µ(I1(C)− 3)− µ ln(J) +
1
2

Λ ln(J)2 (2)

where Λ is the first Lame constant, C = FTF is the right Cauchy-Green tensor and J = det(F) is the
determinant of the deformation gradient F. To maintain the nearly incompressible behavior of the
constituents, we set a high ratio between the shear modulus and the first Lame constant; in particular
Λ = 1000µ was used in our simulations.
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In order to analyze the stability of the considered layered composites, we employed the
Bloch-Floquet analysis [21] superimposed on finite deformations. The procedure for identifying
the onset of instabilities and associated wavenumbers was performed in two steps. First, the unit
cell underwent static finite deformation, defined by means of the displacement periodic boundary
conditions: {

u1|right = u1|le f t − εh
u2|right = u2|le f t


u1|top = u1|bottom
u2|top = u2|bottom + u2|B
u1|A = u2|A = 0

(3)

Here, the indexes left, right, top and bottom denote the edges of the unit cell (see Figure 1); A and B
correspond to the nodes located at the corners. The stiffness matrix, obtained during the solution of
the problem (2), is stored for further solution of the eigenvalue problem on the next step, when the
Bloch-wave conditions are superimposed on the deformed state by using the boundary conditions:{

u1|right = u1|le f te
ikh·2π

u2|right = u2|le f te
ikh·2π

{
u1|top = u1|bottom
u2|top = u2|bottom

(4)

Here, k̃ is normalized wavenumber corresponding to the Bloch wave vector. We swept the values
of k̃ in the range from 0 to 10 with a step of 0.05, solving the corresponding eigenvalue problem, until
the lowest eigenvalue became zero. If for the considered range of k̃ values only positive eigenvalues
appear, the instability was not detected, and the composite remained stable for given ε. In this case, we
increased the compressive strain and repeated the procedure, described above, for an increased ε, until
the zero eigenvalue for non-zero k̃ was found. The strain ε and wavenumber k̃, for which the first zero
eigenvalue was observed, corresponded to the buckling strain εcr and critical wavenumber k̃cr, defining
the buckling shape. Recall that the special case of k̃cr → 0 corresponds to the macroscopic instability
(long-wave mode); otherwise, the composite undergoes a microscopic loss of stability, developing
finite size wavy shapes upon achieving the critical level of deformation [19,20].

Figure 3 illustrates the described numerical procedure, showing a typical evolution of the
dispersion curves with applied deformation for dilute composite with vl = 0.025 (a) and non-dilute
composite with vl = 0.2 (b). Recall that there is an intrinsic connection between the shear wave
propagation and elastic instabilities in periodic composites [24]. The continuous black curve in
Figure 3a,b describes the dispersion relation in the undeformed state (ε = 0); the curves intersect
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with the x-axis only at k = 0, which corresponds to trivial rigid body motion. An increase in the
applied compressive strain leads to a gradual change of the dispersion curves. Figure 3 illustrates
these changes for the applied compressive strains ε = 0.032 (a) and ε = 0.01 (b) (dotted blue curves).
Finally, for the strains ε = 0.0373 (a) and ε = 0.016 (b), we observed that zero eigenvalue appeared at
the finite wavenumber (dashed red curve). Therefore, the corresponding composites, being deformed
up to these critical strains lost their stability. Note, that for the dilute composite (vl = 0.025) kcrt = 2.3,
which corresponds to the microscopic loss of the stability, while for the non-dilute composite (vl = 0.2)
kcr ≈ 0, which corresponds to the macroscopic instability. Buckling modes of the composites with the
corresponding critical parameters are shown in Figure 3 for the microscopic (a) and macroscopic (b)
cases. Here and thereafter, we use the term “dilute” to refer to the composite undergoing microscopic
loss of stability, as opposite to a “non-dilute” composite, which experiences macroscopic instability
with formation of long-wave buckling shape.

Materials 2019, 12, x FOR PEER REVIEW 5 of 14 

 

intersect with the x-axis only at 𝑘 = 0, which corresponds to trivial rigid body motion. An increase 

in the applied compressive strain leads to a gradual change of the dispersion curves. Figure 3 

illustrates these changes for the applied compressive strains 𝜀 = 0.032 (a) and 𝜀 = 0.01 (b) (dotted 

blue curves). Finally, for the strains 𝜀 = 0.0373 (a) and 𝜀 = 0.016 (b), we observed that zero 

eigenvalue appeared at the finite wavenumber (dashed red curve). Therefore, the corresponding 

composites, being deformed up to these critical strains lost their stability. Note, that for the dilute 

composite (𝑣𝑙 = 0.025) 𝑘𝑐𝑟𝑡 = 2.3, which corresponds to the microscopic loss of the stability, while 

for the non-dilute composite (𝑣𝑙 = 0.2) 𝑘𝑐𝑟 ≈ 0, which corresponds to the macroscopic instability. 

Buckling modes of the composites with the corresponding critical parameters are shown in Figure 3 

for the microscopic (a) and macroscopic (b) cases. Here and thereafter, we use the term “dilute” to 

refer to the composite undergoing microscopic loss of stability, as opposite to a “non-dilute” 

composite, which experiences macroscopic instability with formation of long-wave buckling shape.  

 

Figure 3. The evolution of the dispersion curves of the lowest eigenfrequency during compression of 

ideal layered composite with 𝑣𝑙 = 0.025 (dilute)—(a) and 𝑣𝑙 = 0.2 (non-dilute)—(b). The elastic 

modulus contrast is 𝜇𝑙/𝜇𝑚 = 100. 

3. Results 

Before considering non-ideal composites with interphasial layers, let us firstly make some 

remarks on the instability in ideal hyperelastic composites without interphases. Figure 4 shows the 

dependence of the onset of instability on the shear modulus contrast in hyperelastic layered 

composites under the incompressibility assumption of all constituent materials (Poisson’s ratios of 

layers and matrix are 𝑝𝑙 = 𝑝𝑚 = 0.5, respectively). 

Figure 3. The evolution of the dispersion curves of the lowest eigenfrequency during compression
of ideal layered composite with vl = 0.025 (dilute)—(a) and vl = 0.2 (non-dilute)—(b). The elastic
modulus contrast is µl/µm = 100.

3. Results

Before considering non-ideal composites with interphasial layers, let us firstly make some remarks
on the instability in ideal hyperelastic composites without interphases. Figure 4 shows the dependence
of the onset of instability on the shear modulus contrast in hyperelastic layered composites under the
incompressibility assumption of all constituent materials (Poisson’s ratios of layers and matrix are
pl = pm = 0.5, respectively).

Solid black and red lines correspond to the dilute (vl = 0.025) and non-dilute ideal composites
(vl = 0.2), respectively. It is clear that in the logarithmic scale this dependence looks almost linear
regardless of the instability type that the composite undergoes. Parnes and Chiskis [35] derived
the estimation for the onset of instability, occurring in dilute layered composites with linear elastic
constituents. Under the assumption of incompressibility of both phases in plane strain conditions, the
critical strain can be estimated as:

log(εcr) ≈ −2
3

[
log
(

µl
µm

)
+ log

(
4
3

)]
(5)

This function is shown in Figure 4 with the dotted blue curve. Remarkably, even for high
critical strains εcr > 20%, expression (5), derived for the elastic case, provided very accurate results



Materials 2019, 12, 763 6 of 13

with negligible variation from the exact value of the critical strain in the dilute layered composite
developing microscopic instability mode. Another estimation for the onset of instability in the
non-dilute composites, with elastic constituents originally obtained by Rosen [1], is provided in [35].
Under plane strain conditions, this estimation takes the form:

log(εcr) ≈ − log
(

µl
µm

)
+ log

(
1

4vl(1− vl)

)
. (6)

As one may see from Figure 4, where expression (6) is shown by the dotted blue curve,
the difference between the exact and estimated values of the critical strain is relatively small for
composites with high contrast between elastic moduli; however, it increases with a decrease in the
contrast. These observations allowed us to conclude that the critical buckling strain in hyperelastic
neo-Hookean composites can be accurately estimated by these expressions, initially derived for the
layered composites with linear elastic constituents for dilute as well as for non-dilute cases. However,
we note that this good agreement may be due to the fact that the buckling develops at relatively small
strains, where the linear model can approximate the nonlinear behavior.Materials 2019, 12, x FOR PEER REVIEW 6 of 14 
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(continuous black) and vl = 0.2 (continuous red) and non-ideal composites with vl = 0.025 and f = 0.5
(dashed black) and vl = 0.2 and f = 0.5 (dashed red). Dotted blue curves correspond to the elastic
estimates [1,27].

While the continuous curves in Figure 4 represent the ideal composites, the dashed black and red
curves correspond to the composites with the same µl/µm and vl , which contain the interphasial layers
with f = 0.5 and linear variation of the shear modulus through their thickness (curve B on Figure 2).
We can see that the critical strain in the composites with interphasial layers exceeds the critical strain
in their “ideal” counterparts. It is worth mentioning that the dashed lines corresponding to non-ideal
cases are almost parallel to the solid curves, representing ideal composites, and the difference between
the critical strains (in log scale) remains virtually the same regardless of the elastic modulus contrast.

Thereby, the existence of the interphasial layers might make the layered composite more stable;
however, thus far, we can state this only for linear variation of shear modulus through the thickness.
At the same time, the variation of the shear modulus in the interphasial layers through their thickness
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might be highly nonlinear, for instance, due to the complexity of the mixing and curing processes at
the interphase between the different materials. Figure 5 shows the dependencies of the critical strain
εcr on the relative thickness of interphasial layers in the non-dilute composite (vl = 0.2) for different
variations of the shear modulus inside the transition zone. It can be seen, that for distributions A and
B, the composites with the interphasial layer were more stable than the ideal composite. Note that
composites with linear distribution of shear modulus in interphasial layer (B) had the same effective
macroscopic shear modulus as its ideal counterpart. The effective shear modulus is defined as an
integral over the thickness of the unit cell, namely:

µe f f =
1
t

∫ t

0
µ(x)dx. (7)

Thus, under the uniaxial compression along the layer’s directions, the incompressible hyperelastic
layered composite showed the same relation between applied force and displacement as the
homogeneous material with shear modulus equal to µe f f . Since the response of the ideal composite
and non-ideal composite with linear distribution B were the same for the uniaxial deformation, the
observed increase in the stability of the non-ideal composite could not be explained by the change of
the effective properties. Therefore, the observed increase in the stability in the non-ideal composite
was directly caused by the existence of the smooth transition between soft matrix and stiff layer instead
of “jump” or discontinuity of the shear modulus value on the boundary between main homogenous
materials. Interestingly, for distribution C, the critical strain remainednearly the same for different
values of f , and it may even be lower than the critical strain in ideal layered composite. Similar to
case B, in the composite with distribution C, the smooth transition of shear modulus between soft
matrix and stiff layer had a stabilizing effect on the uniaxial deformation. However, the effective shear
modulus of distribution C was larger than that of the ideal layered composite, which reduced the
stabilizing effect of the smooth transition zone. This is reflected by the variation of critical strain for
distribution C (see Figure 5).Materials 2019, 12, x FOR PEER REVIEW 8 of 14 
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corresponds to the case of ideal composites.

The dependence of critical strain on relative interface thickness f was rather similar for the
dilute composite, which underwent buckling by microscopic mechanisms, as shown in Figure 6a.
Similar to the non-dilute case, the critical strain increased with an increase in f for shear modulus
distributions A and B. At the same time, we did not observe the qualitative difference for dilute
composites between the distributions A and C as in the case of non-dilute composite. Non-ideal
dilute composites demonstrated more stable behavior (require higher compressive strains for onset of
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instability) in comparison with their ideal counterparts regardless of the shear modulus distribution in
the interphasial layer.Materials 2019, 12, x FOR PEER REVIEW 9 of 14 
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While the non-dilute composites lost their stability by the developing long-wave mode
(wavenumber kcr → 0), the dilute composites form wrinkling patterns with finite wavelengths l = 1/k.
Figure 6b shows the dependence of the critical wavenumber kcr on the relative thickness of the
interphasial layer f . We can see that for the shear modulus distributions B and C, the wavenumber
drastically decreased with an increase in the interphase layer thickness f . Interesting behavior was
observed in the composite with type A shear modulus variation through the interphasial layers.
In this case, the dependence of the wavenumber on the relative thickness of the interphasial layer
f was not monotonic. In particular, the normalized critical wavenumber increased first, but then
started decreasing with a further increase in the interphase thickness, f. Note that the effective shear
modulus of the combined stiff phase (interphasial zone and stiff layers) for distribution A was lower
than the one of the ideal composites; the total effective volume fraction for the combined stiffer
zone was increased. However, the smooth change in the local shear modulus—in contrast to the
sharp jump in the ideal composite—created a competing stabilizing effect. The contribution of these
effects is reflected in the non-monotonic dependence of the normalized wave number for composites
with distribution A. For the non-ideal composites with distribution A with higher values of relative
thickness of interphasial layer ( f & 0.6), buckling modes are characterized by lower normalized
critical wavenumber as compared to ideal composites. Gao and Li [34] reported that the layered
composites, in which the interphasial layers have a constant shear modulus, can buckle with a
formation of patterns where the interphasial and stiff layer have different wavelengths in the buckled
mode. These hierarchical patterns appear for specific combinations of geometrical parameters and
materials constants [34]. However, in our study—when the transition between two main homogeneous
(stiff and soft) constituents was smooth—such hierarchical buckling modes were not observed, and
the interphasial and stiff layers demonstrated similar buckling shapes.

Thus far, we considered the ideal and non-ideal composites with the fixed volume fraction of the
stiff layer; we examined the interplay between microscopic and macroscopic instabilities and focused
on the dependence of critical strain on the volume fraction. From previous studies [3,4], it is known
that layered composite undergoes the microscopic type of instabilities if the volume fraction of the
stiff layers does not exceed some critical value, depending on the shear modulus contrast. Otherwise,
the macroscopic loss of the stability is observed. In the case of the layered composites, containing
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interphasial layers, we fixed the thickness of the interphasial layer ti and found critical stretch ratio
λcr = 1− εcr, for which the composite lost its stability.

Figure 7 shows the dependence of the critical stretch ratio on the volume fraction for the ideal
composite (black continuous curve) and composites with interphasial layers (dashed and dashed
dotted curves). We considered the composites with µl/µm = 15 and thicknesses of interphasial layers
ti = 0, 0.01t, 0.025t. The interphasial layer in these composites had the distribution of the shear
modulus, corresponding to the mode B (Figure 2); therefore, all considered composites have the equal
effective shear modulus µe f f . The black dotted line represents the onset of the macroscopic instability
in the ideal composite, calculated according to the explicit formula [3]:

λmacr =

(
1− µ̂

µ

) 1
4

(8)

where:

µ = vlµl + (1− vl)µm, µ̂ =

(
vl
µl

+
1− vl

µm

)−1
(9)

From Figure 7, it is clear that the interphasial layers had significant influence on the buckling
behavior only if their dimensions were comparable with the dimensions of the stiff layer. In this case,
non-ideal layered composite containing interphasial layer were more stable in comparison with ideal
composites with the same effective shear modulus. The effect of the interphasial layer decreased with
an increase in the volume fraction of the stiff layer, until the transition from microscopic to macroscopic
type of instability occurred. At the same time, it should be noted that the observed convergence of
the microscopic curves with an increase in volume fraction does not imply that interphasial layers in
general have a marginal influence in the composites undergoing macroscopic instabilities. In fact, that
Figure 7 shows the results for the composites with fixed ti and not f and, as it was shown in Figure 5b,
the interphasial layers played a significant role in the development of instabilities in the non-dilute
composites as well.Materials 2019, 12, x FOR PEER REVIEW 10 of 14 
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4. Conclusions

The numerical study presented in this paper showed that the existence of inhomogeneous
interphases between two main constituents in hyperelastic layered composites significantly changed
their buckling behavior, affecting the onsets of the instabilities as well as the developing buckling
patterns. In particular, we found that for non-dilute as well as dilute cases, the “non-ideal”
composites—which contain the mixing zone between two materials—were usually more stable in
comparison with their “ideal” counterparts with the same effective shear modulus. However, it appears
that the buckling characteristics depended not only on the thickness and effective shear modulus
of the interphasial layer, but also on the distribution of the shear modulus through its thickness.
Buckling responses predicted by our analysis were based on certain scenarios for distributions of the
properties in the interphase material created due to mixing of the two phases during layer-by-layer
curing. A careful experimental characterization is needed to provide the information on these actual
distributions, and their dependence on various material fabrication and curing conditions. In the
future, it is planned to perform a systematic experimental study of the formed wavy patterns in
3D-printed laminates with controllable interphase mixing zones. In Appendix A, we included a
qualitative comparison of the results with limited experimental observations to illustrate the possible
effect of the interphase properties on the buckling and postbuckling behavior of the periodic laminates
a further careful experimental study should be performed in the future.
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Appendix A

Appendix A.1. Experimental Illustration of the Postbuckling Wavy Patterns in 3D Printed Laminates

The dependence of the buckling mode on the relative thickness of interphasial layer, shown in
Figure 6a, was used to make some qualitative predictions and estimations of the role of the interphases
in 3D-printed layered materials. By using Objet Connex multi-material 3D-printer, we produced
the samples, which contain stiff layer embedded in soft matrix. The matrix was printed using soft
hyperelastic TangoPlus resin; the layer was printed using so-called digital material DM85 with shear
modulus an order of magnitude higher than in TangoPlus [28]. The digital materials in the applied
inkjet technology were produced by local mixing of two base materials: TangoPlus and VeroWhite
with different mass ratios. During the printing process, the print-head moves above the already
printed part of the specimen injecting TangoPlus and VeroWhite inks, and the UV-light cures the
deposited layer after each pass. During the inkjet printing, local mixing on the boundary between
soft matrix and stiff layer occurs. As a result, the printed composites contain the “pure” homogenous
soft matrix (TangoPlus), “pure” stiff homogenous layer (DM85) and the inhomogeneous interphasial
layer, where the mixing occurs. We assumed that the amount of TangoPlus in the interphasial layer
decreased through the thickness of the interface in the direction towards the stiff homogenous layer.
Since the interphasial layer locally is the mixture of TangoPlus and VeroWhite, we treated it as a
new “digital” material; and under the assumption that the amount of TangoPlus in the mixed phase
decreased towards the stiff layer, we further assumed that the shear modulus of the interphasial
layer monotonically increased towards the stiff layer. Another assumption was that the thickness
of the interphasial layer or phase mixing zone did not change with the thickness of the stiff layer.
Thus, the ratio between thicknesses of interphasial and stiff layers f changed with the since the
thickness of the stiff layer. In accordance to the numerical results, shown on Figure 6a, we performed
compression experiments on the 3D-printed composites with different thicknesses of stiff layer in
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order to measure the wavelengths of the buckling patterns. We used only one layer in our experiments;
however, the critical strain and wavelength in this case matched the critical strain and wavelength of
the corresponding dilute composite almost perfectly.

Table A1 shows the experimental snapshots for the composites with different thicknesses of the
embedded stiff layer. Regardless of the layer thickness, we observed that buckling occurred in the
microscopic scenario with the formation of wrinkling patterns. Under the assumptions above about
the interphase and the measurements of the wavelengths, estimates for the dependence of critical
wavenumber kcr on the relative interface thickness can be summarized as shown in Figure A1. We did
not know exactly the thickness of the interphasial layer, and we could only qualitative follow the
change in k with an increase in the relative thickness of the interphasial layer f .

Table A1. Observed buckling patterns for the samples with different thickness of the stiff layer tl.

tl (mm) Observed Buckling Pattern

0.75
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Figure A1. Dependence of critical wavenumber on relative thickness of interphasial layer.

As one may see from Figure A1, wavenumber kcr decreased with an increase in the relative
thickness f . A qualitative comparison of the experimental observations with the numerical results
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(see Figure 6b) may hint that the interphasial layers in the studied 3D-printed composites has the
distribution of the shear modulus through the thickness similar to the cases B or C (Figure 2).
The mixing mass ratio between TangoPlus and VeroWhite in the interphasial layer might change
linearly through the thickness of the interphasial layer; however, the change in the shear modulus
through the thickness of the mixing zone might be highly non-linear. This may explain the observed
dependence of kcr on relative thickness f . Thus, the combination of the experimental observations and
numerical simulations potentially may be used for indirect characterization of interphasial layers in
3D-printed soft composites, based on their buckling behavior.
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